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ABSTRACT:

Geographical features on bus routes impact a bus’s performance, and as a consequence affect human mobility through cities. 
Analysis of these geographical features is non-trivial because they often must be manually recorded, limiting the ability 
to extract these features on a large scale. This paper proposes a novel method of extracting features from crowd-
sourced OpenStreetMap (OSM) data and compares this method to the ground truth data for 539 stop pair segments in Dublin, 
Ireland. This paper also proposes algorithms to detect turns and the direction taken by buses at roundabouts, using the angle 
between points on the segment lines. Statistical analysis was performed, and elastic net linear regression models were developed 
with a subset of the route features to show their effect. The results show over 97% accurate identification of most individual 
features using the novel technique, with most errors resulting from OSM quality issues. The features that most negatively 
affected the average speed and reliability of the bus with statistical significance (p < 0.025) were: retail land use, turns, 
traffic lights, and roundabouts. The average speed limit and the length of the segment had a positive impact on the average speed 
but not on the reliability. This method can be used with any bus performance metric to obtain a deeper understanding of the 
dynamics of bus travel, provide detailed information for bus travel time simulations and more accurately predict bus journey 
times to improve scheduling on the overall bus network.

1. INTRODUCTION

Making bus transport an attractive option to commuters is an
important component of the global drive towards modern, smart
and sustainable cities. Accurately predicting bus journey times
is essential for scheduling bus services, and bus reliability is
an important indicator of a bus route’s performance and pas-
senger satisfaction (Dastjerdi et al., 2019). Various metrics are
used to measure bus performance depending on the application.
Average speed and reliability are commonly used metrics (Hu
and Shalaby, 2017). There are several variations of the reli-
ability metric, and can either refer to variability in travel time
or to degree of deviation from a timetable (El-Geneidy et al.,
2011). A related metric is headway variability. Headway is the
time interval between two consecutive buses on the same route
(Soza-Parra et al., 2021). When headway variability on a route
is poor, the extreme case is bus bunching, when buses arrive
at a stop in very close succession (Chioni et al., 2020). Geo-
graphical features such as traffic lights or bus lanes are known
to impact upon these metrics of bus performance and optimising
these geographical features can even increase the use of public
transport (Arasan and Vedagiri, 2010). However, analysis of
these features is non-trivial because they are often manually re-
corded, limiting the ability to extract these features on a large
scale. Many of the analyses are limited to a small number of
bus routes. Small sample sizes make it difficult to detect pat-
terns due to the highly correlated nature of geographical data
and the complex environment buses operate in.

Some of the earliest work looking at factors impacting bus per-
formance dates from the 1970s (Sterman and Schofer, 1976)
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and 1980s (Abkowitz and Engelstein, 1983). These studies
were conducted before Automatic Vehicle Location (AVL) data
was available, and both the factors being studied and the bus
travel times had to be collected manually. This data collec-
tion was prohibitively expensive to do at a large scale, and
many of these studies were very small. AVL data has now been
available for many years, and historical or real-time bus jour-
ney times are commonly available, but collecting the geograph-
ical data remains challenging. There are some recent studies
in this area that highlight this continuing limitation. Feng et
al. (2015) quantified the joint impacts of stop locations, sig-
nalised intersections and traffic conditions on bus travel time
on a 41-mile urban stretch of road with 21 stop pair segments.
Hu and Shalaby (2017) evaluated multiple features on two bus
routes in Toronto, Canada, with the geographical data provided
by the City of Toronto. Cui et al. (2019) analysed the impact
of driveway density, bus volume, the number of bus routes, bus
stop density and traffic signals on 180 road segments. The geo-
graphical data in this study was obtained from field surveys and
Baidu Street Maps. Almeida et al. (2022) state that the spatial
characteristics of the 36 segments in their study were collected
from Google Maps. They evaluated the impact of the number
of traffic lanes, bus lanes, land use zones, bus stops and traffic
signals on bus’ speed. Similarly, Kaewunruen et al. (2021) also
examined 36 segments in Birmingham, UK, while evaluating
the impact of segment length, pedestrian crossings, and inter-
sections with traffic lights on bus reliability. However, it is un-
clear where the geographical data is coming from in this study.
Soza-Parra et al. (2021) looked at the entire bus network in San-
tiago, Chilli in their analysis of factors that affect headway vari-
ability but the geographical features examined were limited to
segregated bus lanes and traffic lights. The location of these
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features was provided by the local public transport metropol-
itan area and the local metropolitan traffic control centre, re-
spectively. Chioni et al. (2020) look at 360 segments in Athens,
Greece, in their study to evaluate factors that cause bus bunch-
ing. The geographical features evaluated were: traffic signals,
bus lanes, the position of the bus stops, number of lanes, num-
ber of routes and land use, but it is unclear how the data on
the factors was obtained. Lyan (2021) extracted factors such
as traffic lights, stops, and roundabouts for 1400 segments from
OSM data but does not validate the accuracy of the results com-
pared to a manual survey or use any proxy measures of qual-
ity. The geographical data in this study also comes from OSM,
the most successful crowd-sourced geographic database (Ber-
tolotto et al., 2020). While the aim of OSM is to produce a free
world map, it has been used as a datasource in academic re-
search (Grinberger et al., 2022). The quality of OSM data and
possible ways of evaluating the quality has also been the focus
of much research and the results of these studies vary by loca-
tion and by application (Alghanim et al., 2021; Rabiei-Dastjerdi
et al., 2020). To our knowledge, there are currently no studies
evaluating the quality of OSM data as it pertains to the factors
that influence bus performance.

To summarise, the problems that currently exist in this research
area are that geographical features often have to be manually
collected, either by field survey or using online maps, and the
studies in the are tend to be quite small, and/or use a very lim-
ited set of geographical feature. Volunteered geographic in-
formation like OSM shows promise but there is no research on
the quality of OSM data for the geographical features that af-
fect buses. This paper attempts to solve these problems with the
following four main contributions:

• Presents a framework for extracting OSM data relevant
to the factors that impact bus routes that is transferable
between geographical regions and works with any bus met-
ric.

• Presents novel methods for detecting turns on bus routes
and the direction taken by a bus at roundabouts.

• Compares the result of these approaches to the ground
truth data for a large dataset of 15 bus routes consisting
of 539 unique stop pair segments.

• Performs in-depth analysis of the resulting data for average
speed and reliability.

2. DATA

Several types of data are used in this study, including historical
bus journey data, static route data and geographical data. Ire-
land’s National Transport Authority (NTA) provided the histor-
ical bus journey data. It contained details of the journeys on the
Dublin Bus network of 253 routes from 1st January 2018 to 31st
December 2018. Fifteen bus routes from the 253 routes in the
city met the following inclusion criteria: they must be outbound
routes originating in the city centre of Dublin and terminating in
a suburban area; they must have good data quality with at least
70% of the original dataset being usable and the route must also
have a large test size with at least 4000 unique bus journeys
on that route each year. No other selection criteria were con-
sidered when selecting the bus routes. The selected bus routes
were 15A, 15B, 25A, 26, 27A, 41, 42, 49, 54A, 56A, 65B, 66,
69, 79A, and 130. The static route data included the shapefiles

for the routes, and the location of the bus stops on the routes is
available from the NTA in General Transit Feed Specification
(GTFS) format. OSM has a structure of nodes (points), ways
(lines connecting points), and polygons (areas defined by lines)
that associate the spatial data component with contextual tags.
For example, roads and bus routes are represented by ways, bus
stops and traffic lights are represented by nodes, and industrial
land use is represented as a polygon. The contextual tags for
nodes and ways include details like the road’s name or type or
the bus stop’s identifying name or number. This study extrac-
ted the OSM data using the QuickOSM extension in QGIS, an
open-source geographic information system. The categories of
OSM data used were nodes (traffic lights, pedestrian crossings
and mini-roundabouts), ways representing the roads and poly-
gons for land use.

3. METHODOLOGY

After obtaining OSM data, it was visualised in QGIS to validate
the data was extracted correctly. The OSM data is then exported
to a PostgreSQL database with a PostGIS extension. SQL quer-
ies was used with python 3.6 to manipulate the data in Jupyter
Notebooks. Statistical analysis was performed with statmodels.

3.1 Defining Time Groups

The two biggest contributing factors to bus travel time variab-
ility are passenger load and traffic conditions (Mazloumi et al.,
2011). However, these are complex to measure directly, but as
they tend to be cyclical, the day of the week and time of day
can be used as proxy measures (Mazloumi et al., 2011). These
impactful factors account for much travel time variability, so
it is important to control for these factors to see the impact of
geographical features. The data was analysed to find the aver-
age whole route travel time for each of the routes at each of the
time periods that occurred in the data, and based on that, the
data was split into eight groups for analysis. This resulted in
weekdays being split into five time groups, and weekends were
split into three time groups and analysed separately, as shown
in Table 1. The long morning peak period may seem counterin-
tuitive but makes sense considering that these outbound routes
originate in the city centre. The direction of travel also impacts
journey time in how it relates to passenger load and traffic con-
ditions at different times of the day. This is why only outbound
bus routes that originate in the city centre and terminate in the
suburbs were selected.

3.2 Creating Segments

Bus routes exist within OSM as a relation (a collection of ways
and nodes), but very few bus routes had been added in Dublin,
and most were either out of date, incomplete or had errors. For
this reason, it was decided to use shapefiles of the bus route
from the bus operator in GTFS format. These route shapefiles
and bus stop locations are uploaded to the PostgreSQL data-
base. Functions built into PostGIS were used to split the route
into segments. The bus route shapefiles did not perfectly align
with the roads in OSM as they were collected using Global Po-
sitioning System (GPS) data, so the route had to be snapped to
the road. It was then possible to split the route into line seg-
ments representing the bus’ journey between two consecutive
bus stops. Firstly, the ST LineLocatePoint function returns the
fractional location of the closest node on the bus route (way)
for each bus stop along the route. These fractional locations
are used with the ST LineSubstring function to return the route
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Weekday
Early

Morning

Weekday
Morning

Peak

Weekday
Afternoon

Weekday
Evening

Peak

Weekday
Late

Evening

Weekend
Morning

Weekend
Afternoon

Weekend
Evening

Start Time 04:00 07:30 11:00 16:30 19:00 04:00 12:00 21:00
End Time 07:30 11:00 16:30 19:00 End Service 12:00 21:00 End Service
Average Speed/km 27.42 23.21 21.19 18.61 24.16 27.13 22.95 26.6
Reliability 0.09 0.057 0.05 0.049 0.062 0.07 0.06 0.08

Table 1. Time groups used in this study and the average speed and reliability of the buses during these times.

segment between each consecutive pair of bus stops. Many seg-
ments were part of two or more bus routes, especially in the city
centre, so a data frame of unique segments was created. The
ratio of the total length that each segment represented was cal-
culated from the fractional locations, and the total length of the
route was calculated using ST Length function. The ratio was
maintained as a feature in the data frame and multiplied by the
length of the route to get the length of each segment in metres.

The average journey time, the average speed and the reliabil-
ity index for each segment were calculated using the historical
bus journey data and the length of the segment. In this study,
the reliability index is taken to be one divided by the standard
deviation of the average journey time for that segment. This is
aligned with the reliability measure described by Sterman and
Schofer (1976). As shown in Table 1 the weekday evening peak
is the time group with the lowest average speed and reliabil-
ity, while weekday early mornings have the highest. Reliab-
ility shows greater relative variation than average speed. Bus
frequency on each segment was also calculated using the his-
torical bus journey data. The analysis of frequency was limited
to the 15 routes in the study and did not consider other buses
on the network. Due to data quality issues inherent with GPS
technology (Lyan, 2021), there was, on average, 15% missing
data, so the true frequency cannot be determined with absolute
accuracy, but the analysis indicates relative frequency between
segments.

3.3 Extracting Node Features

Some of the features were readily available in OSM as nodes:
traffic lights, pedestrian crossings and mini-roundabouts. Data-
sets containing each of these features separately in the relev-
ant geographical area were created using QGIS and stored in
the PostgreSQL database. The features associated with a bus
route could be easily extracted using the ST DWithin function.
In this case, the function was used to return the node features
(e.g. traffic lights) within a certain distance of the way repres-
enting the bus route segment. The node features used coincided
with the bus route segments, so the radian value was set low at
0.00002 (which corresponds to approximately 2m) to minimise
false positives on adjacent roads. The number of node features
per km for all segments was calculated and added as features to
the segment data frame.

3.4 Extracting Way Features

To extract the desired tags of the roads, the bus routes seg-
ments had to be correlated with a road. The tag for roads in
OSM is ”highway”, and it has many different subtypes, includ-
ing roads that buses can not drive on: driveways, footpaths
and cycle lanes. The bus route was matched to the closest
OSM highway that was one of the following types: ’primary’,
’secondary’, ’tertiary’, ’residential’, ’motorway’, ’unclassified’,
’primary link’, ’secondary link’, ’motorway link’, ’trunk link’,

Figure 1. Visualisation of the turn identification process. (a) Two 
tests are performed. In test 1, the angle between nodes 1, 2 and 3 
is recorded. In this case, the angle is less than 150°. For test 2, 
the angle between nodes 1, 2 and 4 is recorded. In this case, the 

angle is less than 150° also, so a left turn is recorded for that 
segment. (b) Similar to the left turn, except in this case, both 

tests return angles greater than 220°, so a right turn is recorded.
(c) The second test exists to avoid splits in the road, like the one
shown, being recorded as a turn. It does not always occur, but if
the nodes are positioned unfavourably, the threshold for a turn
can be surpassed. In this case, test 1 will return an angle of less

than 150°, but test 2 will not, so no turn will be recorded. If node
3 is the last node on the segment, then the decision about turns is

made solely on test 1.
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’trunk’, ’service’. This process results in a list of roads on each
segment. Some segments will have only one road, and others
will have multiple. The tags of the OSM road were then eas-
ily extracted, such as the average speed limit on that segment
and the type of road (in the analysis, only if it was a secondary,
primary, tertiary or residential road was considered), if a bus
lane or bridge was present and the number of lanes. The aver-
age speed limit was treated as an average speed limit on all the
roads on the segment; the proportion of the segment that each
road occupied was not considered. The road types were recor-
ded as binary - either a segment contained a residential road, or
it did not. A segment can contain more than one type of road.

3.5 Extracting Polygon Features

There are land-use tags already present in OSM. These tags
were used for residential land use, commercial land use, and
industrial land use. The recreation land use tag was combined
with the leisure tag to get a complete picture of land used for
recreation. Retail land use was combined with the shop tag to
get a full picture of this type of land use. Railway and bus sta-
tions were combined to produce a transport land use feature. In
this case, it was decided to remove the node features and keep
only the polygon features to avoid false positives. Education
land use was combined with school and university tags. Finally,
multiple services were combined into a services land use tag;
this included fire stations, hospitals, nursing homes, churches,
and police stations. The land-use features were recorded as a
binary - either a segment had that type of land use, or it did not.
A segment can contain more than one type of land use.

3.6 Change of Direction Features

3.6.1 Turns Turns are considered significant factors in a bus’s
speed and reliability but are less well studied than other geo-
graphical factors (Alfa et al., 1988). Turns can either be against
traffic where it is necessary to wait for oncoming traffic to stop
before crossing their lane, or with traffic. In the geographical
area studied, left turns are with traffic and right turns are against
traffic. It was therefore expected, that right turns would have
a greater impact on bus performance than left turns. To de-
tect direction change on a bus segment, the ST Angle query
was used to measure the angle between each three consecutive
nodes on the way as depicted in Figure 1. An angle of less
than 150° was a left turn, and an angle greater than 220° was
a right turn. To minimise false positives when a road slightly
changes direction when it divides, an additional check was in-
cluded, where the angle between the first, second and the node
after the third node was also checked. Direction changes coin-
cident with roundabouts were excluded, as they are accounted
for separately. The number of left and right turns per km was
added to the data frame.

3.6.2 Roundabouts In OSM, roundabouts are implemen-
ted as ways, like other roads, but with a specific tag (junc-
tion=roundabout) that identifies them as roundabouts. Similar
to the node features, roundabouts on bus routes could be eas-
ily identified using a ST DWithin proximity query. We are not
solely interested in the presence of the roundabout but also in
the direction the bus took at the roundabout. Each segment was
provisionally assigned a roundabout score of zero. For each
node on the bus route segment, a ST DWithin query was per-
formed with a dataset of roundabouts produced using QGIS.
As shown in Figure 2 the first node on the segment that co-
incided with the roundabout, the last node that coincided with

Figure 2. Visualisation of process for detecting the direction a 
bus takes at a roundabout.

the roundabout and the node after that (i.e. the first node after 
the route leaves the roundabout) were identified. The S T Angle 
function was used with these three nodes to determine the angu-
lar change in direction after the roundabout. While roundabouts 
can vary in reality, they were conceptually simplified as a left, 
straight, right or complete turn in this experiment. If the re-
turned angle is greater than 315° degrees, that is considered a 
full circle of the roundabout and four is added to the roundabout 
score for that segment. Similarly, an angle of greater than 215°
and less than 315° is considered a right turn and a score of three 
is added to the roundabout score. Angles between 162° and 
215° are deemed straight, and a score of two is added. Angles 
less than 162° are considered a left turn, and a score of one is 
added. In the case of segments with multiple roundabouts, the 
roundabout score is cumulative. This approach tries to numeric-
ally quantify the amount of time a bus spends on a roundabout.

3.7 Analysis

Analysis was performed on the resulting dataset to understand 
the effect of the features on the average speed and reliability of 
the bus at different times of the day. Due to geographic data’s 
highly correlated nature, it was impossible to maintain all of the 
features and have a stable statistical analysis. Initially, Ordin-
ary Least Squares (OLS) linear regression models were trained, 
however, the condition number of the models was high (22 
and 440 for average speed and reliability models respectively). 
The condition number is diagnostic of multicollinearity issues 
(Kim, 2019) common in geographical data since linear depend-
encies cannot be avoided by experiment design (Brunsdon et al., 
2012). Ideally, the condition number should be as low as pos-
sible and less than 20 is recommended (Brunsdon et al., 2012). 
Multicollinearity is problematic because it can cause models 
to have inaccurate regression coefficients, produce incorrect p-
values and reduce model predictability making it sensitive to 
small feature changes (Altelbany, 2021). To avoid this, and im-
prove confidence in the results, two changes were made. Firstly,
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highly correlated features were removed. Correlation matrices
and feature importance were used to determine the correlation
between and relative impact of the features. Features that are
deemed redundant due to being highly correlated with another
feature and having minimal impact on the independent variable
were removed. The removed features were ratio and the num-
ber of lanes for both reliability and average speed models, and
secondary roads and residential roads for average speed and re-
liability models, respectively. Secondly, regularisation methods
were used to overcome the shortcomings of OLS regression.
Regularisation regression refers to forms of regression where
the coefficient estimates are constrained with penalty terms to
avoid overfitting. Elastic net regression is a combination of
ridge regression which uses squared penalty terms and lasso
regression which uses absolute penalty terms (Zou and Hastie,
2005). Elastic net regression was chosen as the superior regu-
larisation method of handling data with multicollinearity issues
(Altelbany, 2021). Elastic net models were developed with the
remaining features to show their relative effect on the bus per-
formance. The final models had condition numbers of 11.5 and
13 for average speed and reliability respectively. The accuracy
of data extraction from OSM was evaluated for all features us-
ing visual examination in QGIS. Where possible, the ground
truth for the features was determined using visual analysis of
the bus routes in QGIS, such as turns and roundabouts. Bus
lanes, traffic lights and pedestrian crossings were determined by
visual inspection using Google Maps satellite imagery. It was
not possible to verify the ground truth for the types of roads and
land use features as they are subjective in many cases.

4. RESULTS AND DISCUSSION

Feature
Accuracy
Extraction

OSM

Accuracy
Ground
Truth

Traffic Lights 100% 98%
Pedestrian Crossings 100% 99%
Mini Roundabouts 100% 99%
Road Identification 100% 99%
Average Speed Limit 100% N/A
Road Primary 100% N/A
Road Secondary 100% N/A
Road Tertiary 100% N/A
Road Residential 100% N/A
Bus Lane 100% 79%
Bridge 100% 100%
Landuse Residential 100% N/A
Landuse Industrial 100% N/A
Landuse Recreation 100% N/A
Landuse Retail 100% N/A
Landuse Transport 100% N/A
Landuse Education 99% N/A
Landuse Services 99% N/A
Left Turns N/A 97.5%
Right Turns N/A 98%
Roundabouts 99% 98%

Table 2. Accuracy of feature extraction compared to OSM data 
and the ground truth

Table 2 details the results of the method compared to the OSM
data and the ground truth. The method extracts the data present
in OSM with almost perfect accuracy, and the results of the fea-
ture extraction method compared to the ground truth show over
97% accurate identification of all individual features except for
bus lanes. In the case of the node features, the particular traffic
light, pedestrian crossing, or mini-roundabout is either present
in OSM or not. There are no cases of the traffic light being
present in OSM and not being detected by the proximity query.
Still, occasionally on narrow roads, a traffic light on an adja-
cent road is detected as a false positive. Also, there were two
incidents of mini-roundabouts not being marked in OSM.

The next group of features are the ones that are stored in OSM
as tags of the road - average speed limit, bus lanes and bridges.
The ground truth for bridges is straightforward to assess and
bridges are well recorded in the OSM data for Dublin. All
bridges were correctly recorded with no false negatives. The
worst recorded feature in our dataset was bus lanes. Bus lanes
are often not recorded in OSM in Dublin, and as a result, the
accuracy of this feature compared to the ground truth is only
79%. We suspect this is because the bus lanes in Dublin tend
to be intermittent. This creates a barrier to entry in OSM be-
cause the way needs to be split into three ways and the details
recorded separately. Analysis showed that the ground truth as-
sessment showed 117 segments with a majority bus lane; only
28 were correctly recorded with 23 false positives and 89 false
negatives. Land use features tended to be well recorded in OSM
and extracted well using the search features. Some schools and
other public services are not tagged as such in OSM, resulting
in slightly lower accuracy for those features.

For changes of direction: left turns, right turns and roundabouts,
assessing the method becomes non-trivial. Turns do not exist as
entities in OSM data so no evaluation can be made on that basis.
It can be difficult to determine in reality if a change in bearing
is a turn or a curved road, so the ground evaluation of left turns
is somewhat subjective. There are 95 left turns, 94 of those are
recorded correctly, one was missed, and there are 12 false pos-
itives. The ground truth for right turns is more straightforward
to quantify as they involve crossing a traffic lane. There are
75 right turns, and 71 of those are recorded correctly, four are
missed, and there are six false positives. The false negatives
were when the turn angle was insufficient to be recorded cor-
rectly. Roundabouts are recorded in OSM, and there are 64 seg-
ments with roundabouts in the ground truth data. Of these, there
are 60 recorded correctly as roundabouts, and four are missed.
There are no false positives. Of the missed roundabouts, all are
not tagged as roundabouts in OSM. Of those recorded correctly
as roundabouts, 55 have the correct directions indicated, and
five do not. Untagged roundabouts are the single biggest cause
of error in this method. They result in errors as roundabouts not
being interpreted as roundabouts and also cause false-positive
left turns.

A feature that was dropped from all models was the number of
lanes feature, due to having low feature importance and being
correlated with multiple other features. The number of lanes
feature was analysed independently of the other features and an
increased number of lanes generally decreases average speed
and reliability, when only the urban segments were examined,
the opposite is true. This result echoes the findings of Chioni et
al. (2020), who found a positive correlation between the number
of lanes and bus bunching in segments with heavy traffic and a
negative correlation in segments in less-congested regions.
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Feature
Weekday

Early
Morning

Weekday
Morning

Peak

Weekday
Afternoon

Weekday
Evening

Peak

Weekday
Late

Evening

Weekend
Morning

Weekend
Afternoon

Weekend
Evening

Intercept 30.154* 26.538* 24.825* 21.381* 28.451* 31.289* 27.456* 30.521*
Frequency -0.273 -0.031 -0.278 -0.666* -0.735 -0.364 -0.718 -0.741
Length 2.223* 2.458* 2.821* 2.841* 2.989* 2.652* 2.786* 2.89*
Traffic Lights -2.408* -3.319* -2.819* -2.401* -2.8* -3.229* -2.84* -2.737*
Pedestrian Crossings -0.499 -0.935* -0.919* -1.013* -0.889* -0.694 -0.878* -0.838*
Mini Roundabouts -0.124 -0.262 -0.521 -0.4 -0.561 -0.386 -0.455 -0.664
Average Speed Limit 1.334* 1.144* 1.347* 0.896* 1.629* 1.281* 1.286* 2.023*
Road Primary 2.682 1.891 1.762 1.665 -0.069 2.539 1.427 0.018
Road Tertiary -2.698* -1.035 -0.941 -0.473 -1.114 -1.499 -0.037 -1.708
Road Residential -0.614 -0.504 0.287 0.482 -0.727 -1.056 -0.305 -1.191
Bus Lane -3.617* -2.148 -1.899 -2.305 -2.531 -2.149 -2.314 -2.092
Bridge -4.322* -3.062 -2.258 -2.254 -3.474* -3.205 -3.057 -4.306*
Landuse Residential 0.958 -1.114 -1.806 -0.926 -2.543* -1.472 -2.95* -1.902
Landuse Industrial -0.686 0.931 0.533 0.687 4.021* 1.749 3.395* 5.221*
Landuse Recreation 0.481 0.952 1.362 0.769 0.749 0.492 0.406 0.861
Landuse Retail -5.223* -4.402* -4.761* -4.432* -4.422* -5.417* -4.893* -4.679*
Landuse Transport -4.356* -3.176 -2.435 -2.503 -3.938* -4.477* -4.077* -4.383*
Landuse Education 2.012 -0.479 -0.481 -0.356 -0.07 0.498 0.457 0.305
Landuse Services -1.579 -1.423 -1.627 -0.962 -0.96 -0.782 -1.499 -0.881
Left Turns -0.89 -0.735 -0.792* -0.73* -1.005* -0.905* -0.952* -1.144*
Right Turns -1.368* -1.195* -1.038* -1.003* -1.121* -1.504* -1.217* -1.067*
Roundabouts -1.847* -1.438* -1.035* -0.558 -1.062* -1.724* -1.106* -1.195*

Adjusted R2 0.342 0.446 0.490 0.510 0.508 0.453 0.496 0.492
∗= statistically significant (p < 0.025)

Table 3. Average speed model coefficients by time period.

.
Table 4 are generally intuitive and consistent with the literature.
Reliability and average speed are related metrics with a correl-
ation coefficient of 0.55. The frequency of the bus negatively
impacts the average speed and reliability, especially during the
weekday evening peak, late evening and at the weekend. This
is perhaps surprising but is consistent with the literature (Cui
et al., 2019). We suggest it may be due to increased bunching
and headway variability if supply exceeds demand. The length
of the route has a large positive impact on average speed and
a small negative impact on reliability and is statistically signi-
ficant at all times of day. These results are consistent with the
literature (Lyan, 2021; Soza-Parra et al., 2021). Increased seg-
ment length improves speed as the bus spends proportionately
less of the segment speeding up and slowing down but will res-
ult in a longer travel time with more opportunity for variability.

Traffic lights negatively affect average speed and reliability, as
has been shown in the literature many times (Abkowitz and En-
gelstein, 1983; Feng et al., 2015). Similarly, pedestrian cross-
ings always have a negative impact on the speed or reliabil-
ity, but to a lesser extent than traffic lights as they are only ac-
tivated when pedestrians are present. Pedestrian crossings are
statistically significant during the busiest travel times. Mini-
roundabouts have negative coefficients for average speed and
mixed coefficients for reliability, likely because they are highly
correlated with suburban areas; however, mini-roundabouts were
never found to be statistically significant.

The average speed limit positively affects average speed, as ex-

The results of the statistical analysis presented in Table 3 and pected (Lyan, 2021), and is statistically significant at all times.
The average speed limit has a small mixed impact on reliabil-
ity that is not statistically significant. Primary roads positively
impact bus speed, except during peak evening travel time, and
have a negative impact on bus reliability. Secondary roads have
a large statistically significant negative impact on bus reliability.
Tertiary roads have a negative impact on average speed, statist-
ically significant during the early morning period, but they have
a small mixed impact on reliability. Residential roads do not
have a significant impact on average speed. Bus lanes have a
negative impact on average speed on reliability. The analysis
of bus lanes was done on the ground truth, not the values de-
rived from the method, as the lack of bus lanes being included
in OSM data meant no meaningful conclusion could be drawn
from the extracted data. It may seem counterintuitive that bus
lanes do not increase speed and reliability. Still, it is consistent
with the existing literature (Soza-Parra et al., 2021; Chioni et
al., 2020). The most likely explanation is that since bus lanes
tend to be put in places with heavy traffic when compared to
segments without bus lanes, there is a negative impact. Another
possible reason for that may be that in Dublin, the bus lanes tend
to be short and intermittent, and in many places in the city, and
they are quite narrow, which has been shown to have a less pos-
itive impact on bus speed (Arasan and Vedagiri, 2010). Bridges
were found to have a significant negative impact on average
speed but a minimal mixed impact on reliability. This is likely
because bridges often are narrow points on the road. This nar-
rowing causes a consistent slowdown, impacting speed but not
reliability.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W5-2022 
7th International Conference on Smart Data and Smart Cities (SDSC), 19–21 October 2022, Sydney, Australia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W5-2022-37-2022 | © Author(s) 2022. CC BY 4.0 License.

 
42



Feature Weekday
Early

Morning

Weekday
Morning

Peak

Weekday
Afternoon

Weekday
Evening

Peak

Weekday
Late

Evening

Weekend
Morning

Weekend
Afternoon

Weekend
Evening

Intercept 0.125* 0.078* 0.068* 0.068* 0.088* 0.099* 0.077* 0.105*
Frequency -0.008* -0.0 -0.001 -0.001 -0.004* -0.003 -0.004* -0.005*
Length -0.013* -0.008* -0.006* -0.007* -0.008* -0.009* -0.008* -0.011*
Traffic Lights -0.018* -0.011* -0.008* -0.008* -0.01* -0.012* -0.01* -0.012*
Pedestrian Crossings -0.003 -0.002 -0.003* -0.003* -0.002 -0.002 -0.002 -0.002
Mini Roundabouts 0.003 0.001 0.0 -0.001 -0.001 -0.001 0.0 -0.0
Average Speed Limit -0.001 0.003 0.0 -0.003 0.0 -0.002 -0.0 0.003
Road Primary -0.021 -0.012 -0.005 -0.013 -0.015 -0.014 -0.014 -0.023
Road Tertiary 0.004 -0.005 -0.004 -0.001 0.0 -0.005 0.005 0.004
Road Secondary -0.021 -0.014* -0.015* -0.02* -0.016* -0.019* -0.011* -0.015*
Bus Lane -0.013 -0.004 -0.003 -0.006 -0.006 -0.007 -0.006 -0.01
Bridge -0.003 -0.006 -0.001 -0.001 -0.006 0.001 -0.002 -0.008
Landuse Residential -0.014 -0.007 -0.002 0.004 -0.006 -0.006 -0.007 -0.009
Landuse Industrial -0.006 0.004 0.0 -0.005 0.012* 0.004 0.01* 0.027*
Landuse Recreation -0.002 0.001 0.005* 0.002 -0.001 -0.002 -0.0 -0.003
Landuse Retail -0.02* -0.012* -0.013* -0.016* -0.016* -0.018* -0.014* -0.017*
Landuse Transport -0.012 -0.007 0.0 -0.005 -0.011 -0.011 -0.012 -0.011
Landuse Education 0.019* -0.003 -0.005 0.003 0.0 0.001 0.001 0.0
Landuse Services -0.018 -0.005 -0.003 -0.003 -0.008 -0.008 -0.006 -0.009
Left Turns -0.002 -0.0 -0.0 -0.0 -0.001 0.0 -0.0 -0.002
Right Turns -0.004 -0.002 -0.002 -0.004* -0.003 -0.004 -0.003 -0.002
Roundabouts -0.011* -0.006* -0.002 -0.002 -0.003 -0.005* -0.003 -0.004

Adjusted R2 0.291 0.281 0.388 0.454 0.393 0.318 0.372 0.318
∗= statistically significant (p < 0.025)

Table 4. Reliability model coefficients by time period.

Retail land use has the largest impact on average speed and
reliability, and it is always negative and statistically signific-
ant. Other land-use features show mixed impact on the average
speed and reliability corresponding to the normal movement of
people. Industrial land has a large significant positive impact
on both reliability and average speed during the late evenings
and weekends, corresponding with times when the local busi-
nesses are closed. Similarly, recreation land use significantly
impacts average speed and reliability during the weekday after-
noons when many people are at school or work. Educational
land use was not significant for average speed and positively
impacted reliability during the weekday early mornings.

Both left and right turns have large significant negative effects
on average speed, with right turns (against traffic) having more
than double the impact of left turns (with traffic). Right turns
only significantly impact reliability during the evening peak
travel period, and left turns have no significant impact on re-
liability. These findings make sense when one considers a bus
slowing down to navigate a left turn safely, but this speed re-
duction is consistent and does not impact reliability. Similarly,
a right turn always impacts the bus’ average speed but only im-
pacts reliability at peak times when the volume of oncoming
traffic will influence how long the bus must wait before turning.
Roundabouts significantly negatively impact the average speed
at all times of the day except evening peak but only significantly
impacts reliability in the early part of the day. Generally, the
coefficients for both metrics are bigger during off-peak periods,
indicating that perhaps the effect of roundabouts is only seen in
free-moving traffic, and the effect is lost as traffic increases.

The average adjusted R2 values in the models in this study, 0.47
and 0.35 for average speed and reliability respectively, are in
line with the existing literature. The adjusted R2 values vary
widely depending on the metric and features used and are not
reported in all studies because they are not always deemed im-
portant in understanding the relationship between the depend-
ent and independent variables (Kaewunruen et al., 2021; El-
Geneidy et al., 2011). Consistently lower adjusted R2 values
are seen in studies looking at reliability versus average speed:
El-Geneidy et al. (2011) found adjusted R2 between 0.07 and
0.59. Chioni et al. (2020) had adjusted R2 of 0.11 when look-
ing at bus bunching with OLS linear regression but that im-
proved to 0.57 when Geographically Weighted Regression was
used. Studies that include passenger and traffic information as
features tend to report higher adjusted R2 values. Feng et al.
(2015) and Hu and Shalaby (2017) included passenger board-
ing and traffic features in their segment models and achieved
adjusted R2 values as high as 0.78 and 0.75 respectively.

5. CONCLUSION

The proposed framework returns results consistent with the lit-
erature, is comparable to a manual approach in accuracy, and
can automatically analyse many bus routes quickly compared to
a manual survey. The method is independent of the geograph-
ical region and bus metrics. The methods for detecting turns and
roundabouts are successful. A large number of features were
examined in this study in contrast to previous works, and it is
the largest segment dataset to be validated against the ground
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truth. Retail land use, right turns, left turns, traffic lights, and
roundabouts emerged as the biggest negative factors for bus av-
erage speed and reliability. The average speed limit and the
length of the segment have large positive impacts on average
speed. The biggest limitation of this approach is the depend-
ence on the quality of the local OSM data, especially the tend-
ency for contributors not to record bus lanes and roundabouts.

Planned further work includes validation of the land-use fea-
tures against the official Ordnance Survey data in Ireland, and
the development of methods to detect unmarked roundabouts in
OSM to improve the quality of OSM data and this method. Ad-
ditional metrics such as headway variability, timetable adher-
ence or bus bunching can be analysed with this method and the
method can be applied to whole bus routes, not just segments.
Additional features could also be included, such as on-street
parking. This work can be extended to improve the prediction
of bus journey times on existing and planned routes and bus
journey time simulations and improve scheduling and bus net-
works’ overall reliability.
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