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ABSTRACT: 

In the last 15 years semantic 3D city models have seen a steady growth in terms of creation and adoption. Many cities world-wide have 

now at least one city model which can be used for several applications. Energy- and sustainability-related topics are among those that 

have experienced a noteworthy increase of interest from the Geomatics community. 3D city models have become a steady component 

of Urban Energy Modelling, in which bottom-up approaches are developed to assess, for example, the energy efficiency of the building 

stock and to explore different scenarios of building refurbishment. Within this context, this paper focuses on investigating how much 

party walls can contribute to the energy demand estimation of a building. For this reason, two approaches to compute party walls are 

described and compared. The nature and the magnitude of their differences, as well as their possible impact on downstream applications, 

are considered in order to shed light on whether discrepancies in the amount of computed party wall area might lead to significant 

differences in terms energy demand of the residential building stock. The case study area is located in the Netherlands and encompasses 

the municipality of Rijssen-Holten. 

1. INTRODUCTION

The growing availability of country-wide spatial data for the 

building stock is fostering the steady development of new 

approaches when it comes to Urban Energy Modelling (UEM) 

(Keirstead et al., 2012; Sousa et al., 2027). Instead of the 

“classical” top-down approaches, the trend is now to develop 

multi-scale bottom-up approaches where the starting point is the 

building. Virtual 3D city models, ideally based on open 

standards, have seen a growing popularity in the last decade as 

they can represent an integrated source of spatial and non-spatial 

information, which different applications can take advantage of. 

For example, the energy domain has seen a growing number of 

studies and advances in this regard, with particular attention paid 

to linking 3D city models with energy simulation tools to 

estimate or simulate the energy demand of the (residential) 

building stock (Agugiaro, 2016b; Remmen et al., 2018). 

In the case of the Netherlands, several country-wide open 

datasets (spatial and non–spatial) have been available for years 

now and have already been used to perform some energy-related 

studies. A major role is played by the BAG dataset, which 

contains 2D footprints1 of all circa 9.5 million buildings in the 

country, and a selection of other attributes (e.g. address, year of 

construction, building function, etc.). In recent years, the 3D 
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BAG has been released: the first version, released in 2019 (Dukai 

et al., 2019), contained LoD1 geometries, while the most recent 

release, the 3D BAG v. 2.0, released in 2021, has added multi-

LoD geometries up to LoD2 (Peters et al., 2022). The 3D BAG 

is modelled according the international standard CityGML and 

its improved LoD concept (Biljecki et al., 2016). In particular, 

LoD2 geometries are reconstructed and semantically enriched, 

i.e. it is possible to differentiate between the different types of

surfaces composing the building envelope: GroundSurfaces,

WallSurfaces, and RoofSurfaces. However, party walls between

adjacent buildings are either semantically not differentiated, or

not part of the current 3D BAG at all. An example for the former

case is given by a two adjacent building completely sharing a

WallSurface: the user cannot distinguish such WallSurfaces from

the outdoor adjacent walls, i.e. those in contact with the air. An

example of the latter case is given by two adjacent buildings

sharing only a portion of the adjacent WallSurfaces: neither

geometry not semantics are available to distinguish the surface

“touching” another building from the one in contact with the air.

It is currently up to the user to define and implement algorithms

to compute them if needed, for example when performing energy

simulations based on the building envelope. The paper presents,

compares and discusses two different approaches to extract the

party walls from adjacent buildings to address this gap.
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Figure 1. [Left] Overview of the study area, i.e. the municipality of Rijssen-Holten (highlighted in red), and its location in 

the Netherlands. [Right] Detailed view of study area and the 3D BAG tiles covering it. 

1.1 Study area 

Although the tests and comparisons were carried out on a dataset 

of circa 30.500 buildings, the aim of this research is to gain 

insight into the advantages and disadvantages of each method 

before scaling it up to the whole country. The test dataset refers 

to the municipality of Rijssen-Holten, in the eastern part of the 

Netherlands, and was obtained by integrating, enriching and 

further processing data from the 3D BAG, the BAG, and 

additional datasets. The geographical extent of the test area 

(divided into 25 tiles) is presented in Figure 1. It covers the whole 

area of the municipality of Rijssen-Holten and buildings from the 

nearby municipalities falling within the tiles. The data sources 

were harmonised and integrated to build a semantically enriched 

3D city model. The dataset was previously pre-processed in terms 

of geometries, as described in (León-Sánchez et al., 2021). 

Additionally, several energy-relevant properties were also 

computed and/or integrated (León-Sánchez et al., 2022): 

● Following the CityGML model for buildings, building

attributes are always available at building level. The only

attributes available for building parts are the respective

GroundSurface area and the volume of the LoD2 building

envelope (if available)

● The available attributes for the buildings are:

- The Pand ID (i.e. building ID, from the BAG)

- Class of the building

- Function(s): defined by means of the BAG gebruiksdoel

values (in Dutch: usage function)

- Number of floors above and below terrain (if this

information is available)

- GroundSurface area, in m2

- Gross volume (i.e. enclosed by the LoD2 thematic

surfaces), in m3

- Information regarding their topology (e.g. free-standing

or adjacent to other buildings), expressed by means of the

number of adjacent buildings;

● For all thematic surfaces (i.e. Roof-, Wall and

GroundSurfaces), attributes are extracted from the

geometries and are:

- Azimuth angle, in decimal degrees, measured counter-

clockwise from North

- Orientation, expressed as one of {N, NE, E, SE, S, SW,

W, NW} values

- Inclination (tilt) angle, in decimal degrees, measured

from the horizontal plane upwards

- Normal vector to the thematic surface, expressed by

means of its 3 components (nx, ny, nz)

- Area of the thematic surface, in m2.

Table 1 and Table 2 provide a general overview of the dataset in 

terms of buildings and thematic surfaces, respectively. 

Buildings Count % 

Number of buildings 30448 100.0% 

of which: 

● only in LoD0 886 2.9% 

● up to LoD2 29562 97.1% 

- Single-part LoD2 building 29505 96.9% 

- Multi-part LoD2 building 57 0.2% 

● Free-standing building 17058 56.0% 

● Non-free-standing building 13390 44.0% 

● Residential building 14489 47.6% 

● Mixed-use building 1235 4.1% 

● Non-residential (single function) 9787 32.1% 

● Non-residential (multi-function) 200 0.7% 

● Of unknown class 4737 15.6% 

Table 1. Overview statistics of the Rijssen-Holten dataset in 

terms of buildings. 

LoD2 thematic 

surfaces 

Count Area 

n % m2 % 

Total 672129 100.0% 15834612.46 100.0% 

  of which 

● GroundSurface 29624 4.4% 4484810.56 28.3% 

● RoofSurface 94237 14.0% 5118210.27 32.3% 

● Ext. WallSurface 548268 81.6% 6231591.64 39.4% 

Table 2. Overview statistics of the Rijssen-Holten dataset 

in terms of thematic surfaces, before the computation of the 

party walls. 

2. COMPUTATION OF PARTY WALLS

Two different approaches have been implemented and compared 

to compute of the area of the party walls, in order to get insight 

in the pros and cons of each method, both in terms of accuracy 

and computation time. For example, first, the less time-intensive 

2D & 3D “hybrid” approach (in the following also called simply 

“Hybrid”), which in our test dataset took approximately 4 

minutes to complete, might represent an acceptable solution 

whenever accuracy can be traded off for quicker computation 

time, if compared to the circa 11 minutes required for the second, 

fully 3D approach. More details regarding each approach will be 

given in the next subsections. Nevertheless, besides the 

differences in computational time, this research attempts to shed 

light on the nature and the magnitude of these differences and 
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their possible impact on downstream applications. Furthermore, 

it is relevant to investigate whether discrepancies in the amount 

of computed party wall area might lead to significant differences 

in terms of results when computing the energy demand of the 

residential building stock. More details will be given in section 

3.1. 

2.1 2D & 3D “hybrid” approach 

The first method uses the (LoD2) 3D BAG 3D dataset and 

combines a 3D approach for calculating the areas of semantic 

surfaces with a 2D approach to identify and assess the area of 

shared walls between two adjacent building units. First, the 3D 

BAG data are retrieved as CityJSON tiles, which contains the 3D 

building geometries classified as semantic surfaces. Then the 

area of all 3D planar polygons is computed via a Python code. 

Then, surface areas for all the semantic surfaces of the buildings 

are aggregated, resulting in the total wall, floor and roof surface 

for each building. The next step is to identify the party walls. This 

operation is carried out using the LoD1.2 building geometries of 

the 3D BAG to identify where the footprint of adjacent buildings 

touch. Combining the length of the border overlaps between two 

buildings with the 50 percentile height information from the 

LoD1.2 model, the percentage of overlap between the total wall 

surfaces of two neighbouring buildings is estimated. Finally, in 

the last step, the previously computed percentage value is applied 

to the wall surface areas from the LoD2 model, resulting in a 

rough but quick estimate of the party wall surface area between 

adjacent buildings. In total 12221 residential buildings were 

processed using this “hybrid” approach. They were further 

integrated with information regarding the number of dwellings 

(e.g. apartments) for each building, resulting in 14704 dwellings. 

Due to different versions (e.g. temporal misalignments) of the 

underlying source data of the 3D BAG, the dwelling database 

(CBS, 2021) and the LoD1.2 3D BAG data, coupling these data 

resulted in a loss of 1.1% of dwellings. However, this data loss 

can be considered negligible for the later analyses. 

The 2D & 3D hybrid approach is expected to introduce an error 

in estimating the surface area of party walls due to the usage of 

the 50 percentile height information of the LoD1.2 version of the 

3D BAG. Using the 50 percentile, height information provides a 

singular estimate of the vertical dimension per building, though 

in practice using only one value to express the height of a 

dwelling may in many cases may deviate greatly for the actual 

height profile. Furthermore, utilising just the percentage of 

footprint perimeter in common between two adjacent buildings 

provides no detailed spatial information regarding the position of 

party wall. Additionally, tolerance values are included in the 

algorithm to tackle possibly slightly overlapping or disjoint 

footprint polygons. Table 3 lists the tolerance parameters used for 

this approach. 

2.2 Fully 3D approach 

The second method follows a purely 3D geometrical multi-step 

approach and uses the 3D city model “as is”, but stored in a 3D 

City Database (Yao et al., 2018) instance. It is based on and 

improves the approach mentioned in (Agugiaro, 2016a). In order 

to reduce the number of buildings (and the respective 

WallSurfaces) to be tested, only those buildings that are non-free-

standing, i.e. have a number of adjacent building greater than 

zero, are selected. This means that only circa 43% of all buildings 

(i.e. 13129 out of 30448) were processed, therefore speeding up 

the whole process. 

For each building, the WallSurfaces adjacent to those of another 

building are selected and a geometrical intersection is carried out 

in 3D. The resulting polygon (or polygons) are then stored and 

classified as “Party WallSurface(s)”. In Figure 2 they are 

represented in red. The remaining polygon(s) of the intersection 

are then stored as “(external) WallSurfaces” and, in the same 

Figure, are represented in blue. All newly created 3D polygons 

are checked for validity. Additionally, area, azimuth, direction 

and surface normal are also computed for all newly generated 3D 

polygons. Extremely small polygons with an area value smaller 

than 0.0001 m2 are ignored and not stored. The same operation is 

then repeated tile by tile and for each selected building. Figure 2 

presents a 3D visualisation of a set of buildings computed within 

the same tile. The colour coding is the same as mentioned before. 

In order to cope with errors that may occur in fully automatically 

generated datasets (such as the 3D BAG), some tolerance values 

were included in the developed algorithm. “Typical” problems 

are: 

● Slightly overlapping (or disjoint) polygons (in theory the

footprints of adjacent houses should be perfectly adjacent)

● Footprint polygons with “spikes” or particularly irregular

shapes

● Not perfectly coplanar polygon geometries

● Not perfectly vertical walls

● Wrongly oriented vertical walls (e.g. surface normal vectors

wrongly pointing “inside” the building instead of outside)

● Not perfectly parallel walls between adjacent buildings.

The tolerance values listed in Table 4 were used in this work.

Once the computation of the party walls was completed, the 

resulting values of area for all WallSurface geometries were 

aggregated and compared, at building level and for the whole 

dataset. For each building, the total sum of WallSurface area 

Parameter name Value UoM Description 

Min. “touch” length for 

perfectly adjacent buildings 

>0 m For all “perfectly” touching building footprints (no overlaps, no gaps), any segment 

corresponding to the intersection of the two polygons with a length greater than 0 is used 
for computation of party walls. 

Geometry buffer for nearly 

adjacent footprints 

0.05 m Maximum distance between two nearby building footprints polygons to classify adjacent 

walls was party walls. 

Min. “touch” length for nearly 
adjacent buildings 

0.3 m Minimal length of segment resulting from the intersection of the polygon perimeters of 
two nearly adjacent buildings to compute a party walls.  

Table 3. List of tolerance parameters used to compute the party walls with the 2D & 3D hybrid approach. 

Parameter name Value UoM Description 

side_reduction_epsilon 0.05 m Distance from the footprint vertices to look for adjacent walls 

side_width_epsilon 0.01 m Max side distance to look for adjacent walls 

area_tolerance 0.0001 m2 Minimum area accepted 

collinearity_angle_epsilon 4.0 ° (dec. degrees) Maximum angle in order to consider two non-collinear vectors as collinear 

Table 4. List of tolerance parameters used to compute the party walls with the fully 3D approach 
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Figure 2. Example of 3D visualisation of the 3D city model after the computation of the party walls. GroundSurfaces are represented 

in yellow, WallSurfaces in grey. In case of adjacent buildings, the party walls are represented in red, while the non-shared part 

is represented in blue. RoofSurfaces are not shown. 

before and after the computation of the party walls was 

compared, the difference being – ideally – always 0. Values were 

compared in terms of absolute differences (in m2) and relative 

(in%). At building level, Table 5 contains the maximum (i.e. >0) 

and minimum (i.e. <0) differences, as absolute and relative area 

differences, respectively. The same test was carried out for the 

whole dataset. Results are shown in Table 6. Globally, the overall 

WallSurface area difference before and after the computation of 

the party walls yields only -0.03 m2, which corresponds 

to -5.2*10-7%. In both cases, it can be seen that the area 

differences before and after are rather negligible, at least 

considering the scope for which these geometries and values 

were computed. 

WallSurf. area [m2] Difference 

Building Pand ID Before After [m2] [%] 

1742100000006559 206.837 206.838 0.0012 0.0006 

all other buildings … … … … 

1735100000056783 189.323 189.322 -0.0006 -0.0003 

Table 5. Comparison of WallSurface area before and after 

the computation of the party walls. Analysis at building level. 

WallSurf. area Before After Difference (after-before) 

m2 m2 m2 % 

Total 6231591.64 6231591.61 -0.03 -5.2*10-7% 

  of which 

Ext. WallS. 6231591.64 5413005.64 -818586.00 -13.1% 

Party WallS. 0 818585.97 818585.97 N/A 

Table 6. Comparison of WallSurface area before and after 

the computation of the party walls. Analysis at dataset level. 

2.3 Comparison of the party walls results 

For both approaches, once the computation of the party walls was 

completed, a comparison was carried out on the residential 

buildings within the municipality of Rijssen-Holten (i.e. 12221 

out of 14489 in the whole dataset, cfr. Table 1). All other 

buildings (e.g. non-residential ones) were left out at this state of 

the work, as they are not used in the later computation of the 

energy demand. In particular, the resulting values of area for each 

class of geometries composing the building envelope were 

aggregated for the whole dataset and compared. Later on, major 

differences at building level were identified in order to better 

understand the pros and cons of both methods and foresee further 

sources of errors. Looking at the whole dataset, the first 

comparison was carried out in terms of number of residential 

buildings identified as adjacent and for which party walls were 

computed. The results from the fully 3D approach was used as 

reference. Table 7 presents the success rate as number of adjacent 

buildings for which party walls were computed in both 

approaches and, vice-versa, the cases where the process did not 

work (and the reasons of success or failure). Overall, the “hybrid” 

approach identified circa 98% of the adjacent buildings compared 

to the fully 3D approach. For the second comparison, the 

composition of the building envelope of an “average” residential 

building in Rijssen-Holten was computed by averaging all 

surface area values (according to the corresponding class: 

exterior walls, party walls, etc.). The same operation was carried 

out the with result of both methods. Table 8 contains the results 

and allows for comparison between the two approaches. 

Globally, the “hybrid” approach computes circa 5% less 

envelope surface. The differences in terms of average floor and 

roof surfaces are negligible, in both cases the relative difference 

is -0.16%. However, differences are larger when comparing the 

values of exterior and party wall surfaces. Compared to the fully 

3D approach, the “hybrid” approach overestimates by circa 3% 

the area of the exterior walls. But of particular relevance is the 

underestimation of circa 40% of the party walls. This difference 

is considerable and is not fully compensated by the 

overestimation of the external wall surfaces. One of the reasons 

for these results might be an indication that utilising LoD1.2 

average building height information to estimate the surface area 

of the party wall leads to such a negative bias. 

Looking at the distribution of the differences in surface areas 

provides further information on how the two approaches differ. 

Figure 3 shows these differences in two histograms for external 

wall and party wall surface areas, respectively. This figure 

emphasises the earlier observation that the “hybrid” approach, on 

average, overestimates external wall surface areas while 

underestimating party wall surface areas – though for both 

thematic surfaces the opposite also occurs. Table 9 provides 

additional insights concerning the percentage of the total 

“hybrid” appraoch results that deviate no more than a given 

percentage from the fully 3D approach results. The table reveals 

that roughly 36% of external wall “hybrid” approach estimates 

differ no more than 1% from the fully 3D approach, while 94% 

fall within 25% deviation. Conversely, merely 2% of “hybrid” 

approach results differ no more than 1% from the fully 3D 

approach. Moreover, no more than 64% of by the “hybrid” 

approach computed party wall surfaces deviate less than or equal 

to 50% from the fully 3D approach. 
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Success rate Count % 

Success: adjacent buildings, and party walls 

computed with both approaches 

8081 66.1% 

Success: Non-adjacent buildings, no party walls 

computed with both methodologies 

3905 32.0% 

Failure: Failed to identify adjacent buildings, 

no party walls computed with “hybrid” 

approach 

163 1.3% 

Failure: Failed to identify adjacent buildings, 
party walls computed with “hybrid” approach 

where there are actually none 

72 0.6% 

Table 7. Success rate of identifying adjacent buildings 

and computing party walls with the 2D & 3D hybrid approach. 

Approach 

Surface area [m2] 

Ext. wall Party wall Roof Ground Tot 

“Hybrid” 201.43 50.15 133.37 108.49 493.44 

Fully 3D 195.59 83.40 133.57 108.66 521.22 

Diff. (%) 2.98% -39.87% -0.16% -0.16% -5.33 

Table 8. Comparison of the building envelope composition of 

an average residential building in Rijssen-Holten. 

Figure 3. Distribution of the difference (in %) between the 

estimates of the external wall surface areas (left) and the 

party wall surface areas (right). Differences are between the 

hybrid and the fully 3D approach. 

Maximum area difference. Up to… 

...1% ...5% ...25% ...50% 

Ext. walls 36.4% 56.0% 94.0% 98.6% 

Party walls 2.0% 10.1% 54.1% 64.2% 

Roof 99.8% 99.8% 99.9% 99.9% 

Ground 99.8% 99.8% 99.9% 99.9% 

Table 9. Population percentage of the thematic surface 

areas computed with the hybrid approach that deviate 

respectively at maximum 1%, 5%, 25% and 50% from the 

corresponding results of the fully 3D approach. 

Finally, in order to facilitate data exploration and visual 

analysis, building-level attributes were attached to the 3D city 

model geometries and visualised (e.g. in QGIS). An example of 

a 2D view is given in Figure 4. In this way, some outliers or 

particularly “critical” buildings could be identified and checked, 

also visually, in order to reason on and understand what the 

reasons for such particular large deviations might have been. An 

example of some of the most problematic buildings is presented 

in Table 10 and an example of detail view is given in Figure 5. 

Figure 4. 2D visualisation of the wall surface deviations (in 

%) between hybrid and fully 3D approach. 

Roof surface area [m2] Ground surface area [m2] Exterior wall surface area [m2] 

Building Pand ID Hybrid Fully 3D Hybrid Fully 3D Hybrid Fully 3D 

1742100000009131 0.01 71.87 0.00 50.83 1.06 174.47 

1742100000001657 3.67 1708.3 0.00 1363.2 68.89 1072.6 

1742100000013944 14.01 85.43 11.45 69.91 37.41 218.7 

1742100000004411 17.33 81.99 14.30 70.43 44.19 213.30 

1742100000005071 18.51 71.31 15.44 61.52 49.29 177.49 

1742100000006296 16.52 110.9 15.89 97.06 31.43 206.67 

1742100000000588 18.83 24.73 18.83 24.65 127.7 156.32 

Table 10. Some outliers in computation of thematic surface areas. 

Figure 5. 2D and 3D representation of building with Pand ID 1742100000001657 (highlighted in bold in Table 1). 
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3. ENERGY DEMAND COMPUTATION

The set of results from both methods were used as input to 

estimate the energy demand of residential buildings in the 

municipality of Rijssen-Holten. For this purpose, a beta version 

of the energy model Hestia was used. Hestia is an energy 

simulation model, currently under development at the 

Netherlands Organisation for Applied Scientific Research (TNO) 

and the Netherlands Environmental Assessment Agency (PBL). 

It allows to evaluate effects of policy measures and other external 

influences on the built environment. One of the key 

functionalities is to calculate the energy demand of a building as 

a product of varying circumstances. Although, at the time of 

writing, there is still no documentation publicly available, its 

model architecture is based on the predecessor Vesta MAIS, for 

which its functional design is available (van der Molen et al., 

2021). 

Hestia performs a yearly heat balance calculation, where the sum 

of a diversity of heat losses and heat gains result in the yearly 

energy demand. Herein, thermal transmittance through building 

unit surface areas plays a key role, which allows to compute the 

aggregated values of yearly energy demands for all residential 

buildings in Rijssen-Holten. In order to perform simulation runs 

in Hestia – and consequently assess the energy demand for 

dwellings as a result for the two approaches detailed in this study 

– the thematic surface areas as a result of the earlier exercise are

altered in a number of ways in order to facilitate its use in the

Hestia model. Firstly, wall and at places roof surface areas are

further detailed by identifying additional thematic surface areas,

such as window and door surface areas. These thematic surface

areas have been semi-randomly processed, based either on

average values or the distribution according to the relation

between the total building envelope and these individual thematic

surfaces, depending whether or not a trend is observable between

these factors. This processing was applied for various dwelling

types separately and were based on via the 2D & 3D hybrid

approach computed values. Thereby, a slight bias is introduced

for the fully 3D approach computed values, though we estimated

this effect would be marginal. Secondly, the surface area data is

disaggregated from building unit to residence unit level. This

disaggregation is especially relevant for buildings that house

multiple dwellings, such as apartment buildings. This

disaggregation is executed by means of an algorithm that

systematically divides a compound residential building into a

plausible division of individual residential units, based on data

available in the VBO database regarding the composition of these

buildings. The resulting division details the location along

vertical and horizontal axes of individual residential units,

dictating the amount of adjacent dwellings above, under or next

to a given residential unit. The relative location of residential

types provides information regarding the relative amount of

diabatic and adiabatic surface area of its building envelope.

Thirdly, for each thematic surface area, a measure for its thermic

resistance is assumed. The values assumed for thermic resistance

is based on an analysis of the Statistics Bureau of the

Netherlands’ dataset “WoON 2018” – a dataset that is

representative for the Netherlands as a whole (CBS, 2019). From

the WoON 2018, the distribution of thermal resistance values is

mapped for various dwelling building types and “energy labels”

– an overarching measure of a dwelling’s energy performance.

This distribution is reproduced for the entire residential building

sector, by randomly assigning each dwelling of a given dwelling

type and energy label in such a way that it results into a plausible

set of thermal resistances for each thematic surface that reflects

the distribution found in the WoON 2018.

In the end, the energy demands calculated with Hestia is the 

theoretical energy demand for space heating as a result of heat 

transmittance through the sum of the diabatic thematic surface 

areas (i.e. roof, ground and exterior wall surfaces, in our case). 

Thereby, the resulting energy demand does not account for 

factors such as a measure of efficiency of a space heating 

installation. As reference year, the year 2020 was selected in 

Hestia to determine the theoretical energy demand. 

Consequently, the absolute energy demand is subject to 

meteorological conditions of that year, though the relative energy 

demand between dwellings should be mostly unaffected by this 

choice. 

3.1 Comparison of the energy demand results 

Results, this time in terms of energy demand, were compared and 

analysed at different levels. The goal is to understand whether 

(and, to which extent) the differences in terms of party wall area 

influence the energy estimation by an energy model such as 

Hestia. By default, energy demand is met in Hestia completely 

by gas usage, hence the two terms are used interchangeably in 

this results section. 

Figure 6 show the differences in gas usage in GJ/a for 

buildings, derived from both approaches, as calculated by 

Hestia. Overall, the energy demand as a result of two different 

datasets for thematic surface areas are similar – with an overall 

difference of 0.05% for Rijssen-Holten as a whole. Beyond that, 

the graph in Figure 6 shows a tendency for the hybrid approach 

to estimate a higher energy demand as compared to the fully 

3D methodology. This is likely a result of the on larger average 

estimate of the external wall surface by the hybrid approach. 

The on average considerably larger estimate for party walls are 

in this exercise inconsequential, since adiabatic surfaces are 

not considered at all in Hestia. 

Figure 6. The distribution of the difference in percentage 

between the by Hestia calculated yearly energy demand in GJ, 

as a result of subtracting energy demand associated with 

the fully 3D approach results in from the energy demand 

associated with 2D & 3D hybrid approach results. 

Looking at the difference between energy demand results 

for various dwelling types reveals that the error margin between 

the two results is not homogenous among dwelling types (Table 

11). The results for semi-detached, corner and terrace houses 

are on average overestimated using the hybrid approach, while 

detached houses are on average underestimated. When the 

distribution of the difference in energy demand is taken into 

account, it becomes 
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apparent that the underestimation of energy demand for detached 

houses by the hybrid approach is caused by a series of outliers 

(Figure 7). Multi-residential unit compound buildings – in this 

section also referred to as apartment buildings – have a very 

similar energy demand, regardless of which approach is used for 

computing thematic surface areas 

At building level, a similar analysis (both quantitative and visual) 

was carried out in a similar way a described before in order to 

spot the major discrepancies in terms of energy demand between 

the two approaches. Figure 8 presents an excerpt of the map 

(obtained in QGIS) representing such differences between the 

two approaches. 

Energy demand (GJ/a) 

Avg SD-H CH AB TH DH 

Hybrid 90.43 96.51 73.24 54.56 59.43 155.28 

Fully 3D 90.47 95.49 72.54 54.61 57.95 157.99 

Diff. 0.05% -1.07% -0.96% 0.09% -2.54% 1.72% 

Table 11. Comparison of the yearly energy demand values 

(in GJ/a) from Hestia for semi-detached houses (SDH), 

corner houses (CH), apartment buildings (AB), terraced 

houses (TC) and detached houses (DH). 

Figure 7. Distribution of the differences (in %) between 

yearly energy demand of the five dwelling types. 

Differences are between the hybrid and the fully 3D 

approaches. 

Figure 8. 2D visualisation of the energy demand deviations (in 

%) between hybrid and fully 3D approach. 

4. CONCLUSIONS

In the context of Urban Energy Modelling (UEM), first steps 

were done in this paper towards a deeper understanding of the 

role played by party walls when performing city-wide energy 

demand estimations. Two methodologies to compute party walls 

were implemented and compared using the 3D city model of a 

Dutch municipality as test area. The goal was, among the rest, to 

gather insight in the process and the results before scaling up the 

methodology to the whole country. 

The results so far show that: 

● Both approaches result in negligible differences among floor

and roof surface area estimates

● The 2D & 3D hybrid approach results in a limited

overestimation of the external wall surface area, as compared

to the fully 3D methodology

● The 2D & 3D hybrid approach results in a non-negligible

underestimation of the party wall surface area, as compared

to the fully 3D methodology

● The resulting energy demand from the Hestia model as a

result of the two different approaches is highly comparable,

largely due to the difference in party wall surface area not

being taken into account by the model. This is however a

current limitation of the Hestia model and other simulation

software tools might lead to difference results.

● The differences in energy demand that can be found differ

among dwelling types, where terraced houses, corner houses

and semi-detached houses deviate more among the two

approaches than detached houses and multi-residential unit

compound buildings.

Therefore, we can say that: 

● If the total exterior building envelope is the most relevant

object of investigation, both approaches provide similar

results. However, if the party walls are relevant, a substantial

underestimation by the hybrid approach is to be expected.

● Though seemingly minimal, both approaches result in

slightly different energy demand according to the Hestia

model. Furthermore, this difference is heterogeneously

distributed among dwelling types, with a potential bias as a

result.

● The less computationally intensive 2D & 3D hybrid approach

might be preferred once its limitations are clear.

● However, the fully 3D approach has the advantage of

delivering more accurate results. Additionally, all results are

directly integrated back into the 3D city model, therefore they

can be reused more easily for other applications that might be

energy-related, or not.

Given the current results from this first set of first experiments, it 

is clear that more tests, especially with other UEM simulation 

tools, need to be carried out and compared. This is also the reason 

why the 3D city model of Rijssen-Holten is being prepared to be 

released as an open-data benchmark dataset (León Sánchez et al., 

2022), in order to offer, also to other colleagues in the energy 

community, the possibility to test, compare and assess their tools 

in a more homogeneous way. 
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