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ABSTRACT: 

Benthic habitats are coastal ecosystems that provide many benefits and play an important role in the diversity of nature. The maps are 
developed using random forest method on the Worldview-3 image. Optically shallow water around Nusa Lembongan was selected as 
the study area. Sunglint and water column correction were applied to surface reflectance data to produce deglint, depth invariant 
index, and deglint-depth invariant index band for random forest classification. In addition, tuning parameters, including the number 
of trees and the function to determine the number of randomly selected, are used in the classification. The benthic habitats 
classification scheme was constructed based on the variations of in situ data, which consisted of coral reefs, seagrass, macroalgae, 
and substrate. The confusion matrix was used to analyze the accuracy, and the McNemar test to evaluate the level of statistical 
significance between different processing scenarios. The best benthic habitats map is determined based on the accuracy and spatial 
distribution of the object. Meanwhile, the random forest algorithm produced 62.72% – 73.00% overall accuracy and these accuracy 
variations were not statistically significant. According to the findings, surface reflectance data with the parameter setting comprising 
500 trees and square root function yielded the best random forest scenario for mapping benthic ecosystems. 

1. INTRODUCTION

Benthic habitats are coastal ecosystems that beneficial in many 
ways and play a significant role in food security, tourism, and 
coastal protection (Kritzer et al., 2016; Henseler et al., 2019). 
Based on SNI 7716:2011 issued by the Geospatial Information 
Agency, mapping shallow marine bottom habitats, also known 
as benthic habitats, is classified into four main categories, 
namely macroalgae, seagrass, substrate, and reefs (BSN, 2011). 
Remote sensing is one of the mapping techniques that can be 
applied because it has spectral values which penetrate water and 
can be used to comprehend benthic habitats (Hochberg et al., 
2003). This method's challenge is the accuracy level due to the 
limitation of remote-sensing sensors and benthic habitats 
environmental complexities (Hedley et al., 2012; Hedley et al., 
2016). 

According to Bukata (1995) and Hedley et al. (2016), accuracy 
is affected by several processes, including atmospheric 
correction, sunglint, and water column, supported by 
Tamondong et al. (2013), Anggoro et al. (2016), and Siregar et 
al. (2018). However, the opposite is shown by Zhang et al. 
(2013), Wicaksono and Lazuardi, (2018), and Ginting and 
Arjasakusuma (2021). It is necessary to conduct a 
comprehensive analysis regarding the effect of correction of 
input data on the accuracy of the mapping, which is the first 
objective of this study. 

Benthic habitats mapping may benefit from the advancement of 
computing and remote sensing technology. One of that 
advancements is the emergence of machine-based processing 
technology (UNEP, 2020). Random forest algorithm is part of 
these machine learning techniques. This technique creates 
multiple decision trees using random vectors with 
independently taken samples, resulting in the averages of 
various tree numbers (Salford Systems, 2014; Genuer and 

Poggi, 2020). Therefore, the random forest can show more 
complex relationships and process images with a high spatial 
resolution (Zhang dan Xie, 2012; Zhang et al., 2013; 
Effrosynidis et al., 2018; UNEP, 2020), and enabling the 
method to classify remote sensing data effectively (Maxwell, 
2018). The application of random forest for benthic mapping 
has produced successful results  (Ariasari et al., 2019; Hartoni et 
al., 2022) but these research have not been analyze two main 
random forest parameters. The paramaters are the number of 
trees and various functions used to determine the randomly 
selected features (Genuer and Poggi, 2020). Wicaksono and 
Lazuardi (2019) researched these two parameters and concluded 
that random forest is a reliable and consistent classification 
algorithm. This is demonstrated by the insignificant difference 
in accuracy values between the two parameter settings and the 
almost similar spatial distribution of benthic habitats. Even 
though there is no significant difference between the accuracy 
values in the two input data scenarios, different parameter 
settings are evident. Therefore, the second goal is to analyze the 
effect of parameter settings on different input data. 

This study focuses on how the input data and tuning parameters 
affecting the random forest method mapping benthic habitats. 
They are mapped using the random forest method on 
WorldView-3 imagery with varying degrees of correction. This 
study is expected to provide a comprehensive understanding for 
accurately mapping benthic habitats. 

2. METHODOLOGY

The study location is Nusa Lembongan, Klungkung Regency, 
Bali Province. It is a part of the Nusa Penida Waters 
Conservation Area, which has a wide variety of seagrasses and 
is part of the coral triangle known for its richness of reefs 
(Kabupaten Klungkung, 2012). According to Prasetia et al. 
(2017), Nusa Lembongan has a distribution of reefs with 
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fringing reef formations and seagrass beds covering an area of 
250 ha and 108 ha with sand and mud substrate types  
(Negara et al., 2020). The location is shown in Figure 1. 

Figure 1. Nusa Lembongan, Bali (WorldView-3) 
 
The field data is secondary data obtained from Kumara (2018). 
The data was collected in Nusa Lembongan between June 12 
until June 19 2017. The data contains information related to 
object type and location, comprising 760 points (Figure 2). 
Some samples have been omitted due to the accuracy of GPS, 
and additional samples are based on expert adjustment with a 
total data of 861 points. The field data is divided into two, with 
a percentage of 60% for training data to build a model and 40% 
for data to test the accuracy of the classification results. 
 

 
Figure 2. In-situ data  

 
WorldView-3 imagery data was acquired on July 27, 2016. The 
data have 8 multispectral bands, 1.24 m spatial resolution, and 
11-bit radiometric resolution (Table 1). The classification 
process only uses visible bands, and the data were corrected to 
produce four data levels, namely surface reflectance, deglint, 
depth invariant index, and deglint-depth invariant index band. 
For benthic mapping, these bands are used as the input data. 

Band 
 

Wavelength 
(nm) 

Band 
 

Wavelength 
(nm) 

Coastal 400 - 450 Red 630 - 690 

Blue 450 - 510 Red 
edge 

705 - 745 

Green 510 - 580 Near-
IR1 

770 - 895 

Yellow 585 - 625 Near-
IR2 

860 - 1040 

Spatial 
resolution 1.24 m 

Radiometric 
resolution 11-bit 

Temporal 
resolution Daily 

Table 1. Specification of WV3 image 
 
2.1 Image masking 

Image masking is a technique for removing extraneous 
components. The NIR band threshold value, which can 
distinguish between pixels on land and water, is used for this 
concept. Deep water pixels were masked using the threshold 
value of the water column corrected image (Wicaksono et al., 
2021). 
 
2.2 Radiometric correction 

The standard data on the WorldView-3 imagery is the relative 
radiometric correction value on the sensor (Digital Globe, 
2012). Radiometric corrections are used to convert digital 
values into TOA reflectance. 
 
2.3 Atmospheric correction 

The surface reflectance value was obtained after atmospheric 
correction, and the dark object subtraction (DOS) method was 
employed (Chavez, 1996). Pixels in deep water are used as dark 
targets, and this method shows correction results that can be 
compared with other, more robust algorithms (Wicaksono and 
Hafizt, 2018). The surface reflectance band is used in sunglint 
and water column correction 
 
2.4 Sunglint correction  

The sunglint correction method is based on Hedley et al. (2005). 
The linear relationship between the visible and NIR bands in the 
training area is the foundation for this method. Based on 
Hochberg et al. (2003), the selected training area is one or more 
pixels with sunglint but consistent spectral brightness. In this 
study, Blue, Green, and Red bands correlated with the NIR1, 
while Coastal, Yellow, and Red Edge bands were correlated 
with the NIR2.  
 
2.5 Water column correction 

The water column significantly impact benthic habitats mapping 
using satellite imagery (Mumby et al., 1998). Water column 
corrections are needed to determine the reflection of the bottom 
of the water. Lyzenga (1978) used two channels in the 
formulation to perform water column correction. The 
reflectance of the sand object located at different depths is used 
to normalize the effect of water column energy. 
 
2.6 Random forest classification 

The classification method used is the random forest, and this is 
a supervised classification machine learning. This study used a 
scenario based on input data and tuning parameters. The number 
of trees (ntree) and functions to determine the number of 
randomly selected features (mtry) are used as tuning 
parameters. The selected number of the trees are 100 and 500, 
and the functions to determine the number of randomly selected 
features are square root (sqrt) of all features and log of all 
features based on Wicaksono and Lazuardi (2018). The final 
result is the selection of the best scenario, characterized by the 
highest accuracy and representative benthic habitats 
distribution. 
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2.7 Accuracy assessment 

The accuracy of benthic habitats map is determined by 
calculating the confusion matrix. The overall accuracy is the 
percentage of validation samples correctly classified relative to 
all validation samples, regardless of class. Additionally, the 
McNemar test was processed to determine the degree of 
significance of the variation in classification accuracy (Foody, 
2004). The accuracy is statistically significant when McNemar's 
z value exceeds 1.96 at the 95% confidence level (Zhang et al., 
2013a). 
 

3. RESULTS AND DISCUSSION 

3.1 Tuning parameter 

The random forest scenario produced 62.72% – 73.00% overall 
accuracy (Table 2). The difference in accuracy between 100 and 
500 trees is less than 0.5% in each of the four input data, which 
shows an insignificant difference. Based on the number of trees, 
500 trees have the highest accuracy among the four input data. 
This is consistent with Wicaksono and Lazuardi (2018) and 
Genuer and Poggi (2020), which found that the classification 
accuracy increased with the number of trees. 

Input data 
ntree 

100 500 

Surface reflectance 72.69 72.08 73.00 72.39 

Deglint 67.26 67.26 67.26 67.26 

Depth invariant index 68.82 68.51 69.13 67.59 

Deglint-Depth 
invariant index 

64.49 62.72 65.08 62.72 

 Sqrt  Log Sqrt  Log 

mtry 

Table 2. Summary of RF classification scenario overall 
accuracy. The values are in %. 

 
According to Table 2, the accuracy of the number of trees 
between 100 and 500 trees does not differ noticeably. Since 
there is little variation in the accuracy values, a range of 200–
500 trees can be selected to reduce computational time. Figure 3 
demonstrates that the error is stable from 200 to 500 trees. The 
surface reflectance band shows the input data with the highest 
accuracy based on the number of trees.  

 

 

Figure 3. Error with number of tree (Scenario 1 with ntree= 500 
and mtry=sqrt) 

 
Based on functions to determine the number of randomly 
selected features, the difference in the accuracy of the sqrt and 
log functions is 0 - 2.36%. This study shows that the functions 
to determine the number of randomly selected features increase 
the classification accuracy (Genuer and Poggi, 2020). The 
function with the highest accuracy is shown by the sqrt function 
in the four input data (Wicaksono et al., 2019). The input data 
with the highest accuracy based on functions to determine the 
number of randomly selected features is surface reflectance 
band. It showed the same result as the number of tree. Based on 
the accuracy assessment, it can be concluded that the best 
scenario is a surface reflectance band with tuning parameter, 
where ntree is 500 and mtry is sqrt. Therefore, the discussion 
regarding the benthic spatial distribution of the four data inputs 
focuses on ntree=500 and mtry=sqrt, which show the highest 
accuracy value in each scenario. 
 
3.2 Benthic spatial distribution and misclassification 
analysis 

Random forests classification with the best tuning parameter for 
benthic habitats mapping using WorldView-3 image produced 
overall accuracy of 65.08% - 73.00% (Table 3). Furthermore, 
Table 3 shows users and producer’s accuracies (UAs and PAs) 
in each input data of the WorldView-3 image for the benthic 
habitats map. User’s and producer’s accuracy can be used to 
analyze the distribution of each object. The overall accuracy for 
scenario 1 is 73.00%. The UAs are 83.33%, 71.94%, 0%, and 
69.84% for coral reef, seagrass, macroalgae, and substrate 
classes, respectively. The PAs are 56.45%, 87.36%, 0%, and 
57.14% for the classes in the same order. This accuracy is 
statistically high and acceptable based on the Indonesian 
Nasional Standard for Mapping (BSN, 2011), and the scenario 
produces an accurate result in the seagrass class. Coral and 
substrate were misclassified as seagrass, while macroalgae 
cannot be classified.  
 
Accuracy assessment in scenario 2 shows 67.26%, and the UAs 
for coral reef, seagrass, macroalgae, and substrate class are 
70.17%, 55.55%, 0%, and 79.16%, respectively. Meanwhile, the 
PAs are 68.96%, 62.50%, 0%, and 71.69% for the classes in the 
same order. This scenario can classify the substrate and coral 
class, and the seagrass class is misclassified as coral and 
substrate. In scenario 3, the overall accuracy is 69.13%, and the 
UAs are 66.67%, 68.83%, 0%, and 71.67% for coral reef, 
seagrass, macroalgae, and substrate classes, respectively. The 
PAs are 35.48%, 87.84%, 0%, and 56.57% for the classes in the 
same order, and this only shows the same results as scenario 1 
with a lower accuracy value. Overall accuracy in scenario 4 is 
65.08%, and the UAs for coral reef, seagrass, macroalgae, and 
substrate class are 65.51%, 54.83%, 0%, and 77.55%, 
respectively. Meanwhile, the PAs are 65.51%, 60.71%, 0%, and 
79.16% for the classes in the same order. This scenario only 
shows the same results as scenario 2 with a lower accuracy 
value. 
 
The four scenarios have accuracy above 60%, which has 
fulfilled the minimum requirement accepted for mapping 
benthic habitat maps based on SNI 7716:2011 (BSN, 2011). In 
the four scenarios, the distribution of coral and substrate class is 
underestimated and misclassified as seagrass, indicating that the 
spatial distribution of seagrass was overestimated. In contrast, 
the macroalgae class has not been able to be classified due to 
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the small sample data and the low cover distribution of 
macroalgae. 

Reference 

Map Class 
Scenario 1: Surface Reflectance WV-3 

Coral Seagrass Macroalgae Substrate Total Producer 
accuracy 

McNemar 
test 

(z-score) 
Coral 35 25 0 2 62 56.45 
Seagrass 7 159 0 16 182 87.36 NA 

Macroalgae 0 4 0 1 5 0 

Substrate 0 33 0 44 77 57.14 
Total 42 221 0 63 326 
User accuracy 83.33 71.94 0 69.84 OA=73.00 

Scenario 2: Deglint WV-3 
Coral 40 16 0 2 58 68.96 

Seagrass 13 35 0 8 56 62.50 

Macroalgae 0 1 0 0 1 0 0,17 

Substrate 4 11 0 38 53 71.69 

Total 57 63 0 48 168 
User accuracy 70.17 55.55 0 79.16 OA=67.26 

Scenario 3: DII WV-3 
Coral 22 37 0 3 62 35.48 

Seagrass 8 159 0 14 181 87.84 

Macroalgae 0 5 0 0 5 0 0.18 

Substrate 3 30 0 43 76 56.57 
Total 33 231 0 60 324 
User accuracy 66.67 68.83 0 71.67 OA=69.13 

Scenario 4: Deglint-DII WV-3 
Coral 38 17 0 3 58 65.51 
Seagrass 14 34 0 8 56 60.71 

Macroalgae 6 1 0 0 7 0 0.013 

Substrate 0 10 0 38 48 79.16 
Total 58 62 0 49 169 
User accuracy 65.51 54.83 0 77.55 OA=65.08 

Table 3. Confusion matrix of benthic habitat classification using random forests classification 

Figure 4a is the classification result with the highest accuracy 
compared to the other scenarios. Spatially, the distribution of 
benthic habitats has shown the formation of fringing reefs. It is 
important to note that there is still a misclassification of 
seagrass objects marked as coral. A similar distribution is 
shown in Figures 4b and 4d, specifically in the appearance of 
the fringing reef. However, the sunglint correction process 
causes the loss of pixel values, specifically in seagrass/coral 
objects on the coast. The loss of pixel value is caused by tidal 
conditions, which affect the class of objects above the water 
surface. This causes the number of samples to be reduced in 
scenarios 2 and 4. Different results are shown in Figure 4c, 
where the fringing reef formation is misclassified as seagrass 
objects. The classification error is caused by the type of water 
with insignificant change in depth, and water column correction 
is unnecessary. Therefore, in mapping benthic habitats, it is 
necessary to understand the physical conditions of the waters.  
Based on the accuracy assessment in Table 2, the surface 
reflectance and deglint band as a data input show more stable 
results than the depth invariant index and the depth invariant 
index. However, the spatial distribution of benthic habitats 
shows that the deglint band and deglint-depth invariant index 
eliminate seagrass information due to the sunglint correction 

process. The depth invariant index performs many misclasses, 
specifically on fringing reefs. This indicates that surface 
reflectance is the best input data in benthic mapping compared 
to the other three input data. This is in accordance with 
Wicaksono et al. (2019) that the surface reflectance band is the 
most standard input data with low variability for a random 
forest.  

The accuracy was lower than the previous works using random 
forest (Zhang et al. 2013b) because of the different spatial and 
spectral resolutions. It was considered lower than Wicaksono et 
al. (2019), using a similar image due to in situ data. Wicaksono 
et al. (2019) used an important step in preparing these data 
before being used as training/validation data, which is the key to 
the random forest approach. However, the accuracy is higher 
than the previous work by Ariasari et al. (2019) and Zhafarina 
and Wicaksono (2019). This statement shows that there is still 
room for improvement in producing a more accurate 
classification, including the representation of field conditions 
and the balance of the distribution of each object. However, this 
study strengthens the previous studies by Wicaksono and 
Lazuardi (2018) and Wicaksono et al. (2019) regarding the best 
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parameter tuning and input data for benthic mapping using the random forest method. 

Figure 4. Benthic spatial maps  (a) Scenario 1,  (b) Scenario 2, (c) Scenario 3, dan (d) Scenario 4 

3.3 McNemar Test 

To assess the significance level of the accuracy between 
scenarios, the McNemar test method was used. The McNemar 
test compares the highest accuracy scenario to others (Table 3). 
Based on the test result, the z-score has a value of less than 
1.96, therefore, it can be concluded that the accuracy is not 
statistically significant between scenarios (Table 3).  

4. CONCLUSIONS

The accuracy of benthic habitats is 62.72 - 73.00%, where 500 
trees and the sqrt function indicate the highest in the tuning 
parameter. The input data in the random forest method is very 
important in mapping benthic habitats in terms of accuracy and 
spatial distribution. The surface reflectance band shows the best 
input data based on the experimental results. The random forest 
method from the map can show the distribution of benthic 
habitats well, specifically in coral and seagrass classes. 
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