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ABSTRACT 

The classifying of hyperspectral images (HSI) is a difficult task given the high dimensionality of the space, the huge number of spectral 
bands, and the small number of labeled data. As such, we offer a unique hyperspectral image classification methodology to address 
these issues based on sophisticated Multi-Layer Perceptron (MLP) algorithms. In this paper, we propose using MLP-Mixer to classify 
HSI data in three data benchmarks of Pavia, Salinas, and Indian Pines. Based on the results, the proposed MLP-Mixer achieved a high 
level of classification accuracy and produced noise-free and homogenous classification maps in all study areas. For the classification 
of HSI data in Salinas, Indian Pines, and Pavia, the proposed MLP-Mixer achieved an average accuracy of 99.82%, 99.81%, and 
99.23%, respectively.  

1. INTRODUCTION

Advances in image acquisition techniques have resulted in
higher spatial-spectral image resolutions, more efficient image 
processing models, and the continuous creation of large
amounts of high-quality data. As a result, low-cost, high-
quality data from sensors, combined with the availability of
advanced computing resources, including graphics processing
units (GPUs), has resulted in superior computer models that
allow researchers to better understand the morphological
changes, ground surface, and human processes with greater
precision and detail (Fu et al., 2017). Image classification and
semantic segmentation are both well-studied sub-domains of
computer vision that have been used in RS image analysis (A.
Jamali et al., 2022; Jamali et al., 2021; Jamali and
Mahdianpari, 2022), image segmentation and face recognition,
among other applications. Image classification groups and
categorizes all objects in an image into a single class, whereas
semantic segmentation assigns each pixel in an image to a set
of predetermined labels/classes, where the same labels share
certain properties (Kemker et al., 2018).

Land cover mapping and change detection (Akar and Tunc
Gormus, 2021; Q. Li et al., 2021), soil carbon prediction
(Meng et al., 2022), vegetation classification (Gao et al.,
2022), forest biomass understanding, and tree species
identification/mapping (Vangi et al., 2021), urban monitoring
and understanding (Wambugu et al., 2021), and other
applications benefit from the rich spatial-spectral data gained
from Hyperspectral (HIS) data. However, labeling HSI data is
expensive and labor-intensive due to the various sensors
utilized to gather the data and the domain expertise required.
This explains why there are so few labeled HSI benchmark
datasets, causing HSI classification to lag behind other vision-

based and image-processing areas due to the scarcity of 
annotated labels and the intricate nature of HSI data (X. Cao 
et al., 2018). As such, the use of deep learning models such as 
deep and very deep Convolutional Neural Networks (CNNs) 
is a challenge in HSI data classification. 

On the other hand, conventional classifiers, such as random 
forest and support vector machines, have had remarkable 
achievements in HSI classification (Belgiu and L. Drăguţ, 
2016), but they only use spectral data, limiting their maximum 
efficiency. Furthermore, the high dimensionality of spatial-
spectral data, combined with a small number of training 
examples, makes it difficult to increase classification 
performance (Z. Zhong et al., 2018). As such, to improve the 
classification accuracy of HIS data, in this paper, we will 
investigate the use of Multi-Layer Perceptron (MLP)-Mixer as 
one of the current advanced MLP algorithms for the 
classification of HSI data. It should be noted that the MLP-
Mixer considers both spectral and spatial information in the 
classification process. 

2. METHODS
2.1. MLP-Mixer

The architecture of the MLP-Mixer (Tolstikhin et al., 2021) is
shown in Figure 1. CNNs are the computer vision model of
choice at the moment. Moreover, attention-based networks,
such as the Vision Transformer, have recently gained
popularity. Although, the MLP-Mixer demonstrated that,
while convolutions and attention are both effective for decent
performance, neither is required. MLP-Mixer takes as input a
succession of linearly projected image patches (also known as
tokens) shaped as a "patches-channels" table and preserves this 
dimensionality. Mixer employs two sorts of MLP layers:
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channel-mixing and token-mixing. MLPs that blend channels 
enable communication between them (Tolstikhin et al., 2021). 
They function independently on each token and take individual 
rows of the table as input. Token-mixing MLPs enable 
communication between distinct spatial locations (tokens); 

they work independently on each channel and accept specific 
table columns as inputs. Interleaving these two types of layers 
allows interaction of both input dimensions (Tolstikhin et al., 
2021).

Figure. 1. The architecture of the MLP-Mixer. Per-patch linear embeddings, Mixer layers, and a classifier head comprise MLP-Mixer. 
One token-mixing MLP and one channel-mixing MLP, each with two fully connected layers and a GELU nonlinearity, are present in 
the mixer layers. Other features are skip-connections, dropout, and channel layer norm (Tolstikhin et al., 2021). 

2.2 Study area and remote sensing data 
We conduct experiments on three different HSI data 
benchmarks to assess the efficacy and performance of the 
proposed classifier: 

• The Airborne Visible/ Infrared Imaging
Spectrometer (AVIRIS) sensor gathered the Indian
Pines HSI, which represents northwestern Indiana.
It has 145 by145 pixels with a spatial resolution of
20 m per pixel and 220 spectral bands. The ground
truth data is divided into 16 classes.

• The AVIRIS sensor captured the Salinas image over
Salinas, California, which consists of 512 by 217
pixels with a spatial resolution of 3.7 m per pixel and 
224 spectral bands. The ground truth data is divided
into 16 classes.

• The final HSI is Pavia University data taken using
the Reflective Optics System Imaging Spectrometer
(ROSIS-03) sensor, which has 610 by 610 pixels and 
115 spectral bands, with a spatial resolution of 1.3
m. There are nine classes in the ground truth data.

2.3 Accuracy assessment 

The classification results of the MLP-Mixer are evaluated in 
terms of overall accuracy, kappa index, and average accuracy 
(see Equations 1-3). 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = (𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇)
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

× 100     (1) 

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 =  𝑝𝑝0−𝑝𝑝𝑒𝑒
1 −𝑝𝑝𝑒𝑒

, 𝑝𝑝0  =  ∑𝑥𝑥𝑖𝑖𝑖𝑖
𝑁𝑁

, 𝑝𝑝𝑒𝑒  =  ∑𝑥𝑥𝑖𝑖+𝑥𝑥𝑖𝑖+
𝑁𝑁2    (2) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = ∑ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑛𝑛
𝑖𝑖=1

𝑛𝑛
, 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =

True positive
(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

     (3) 

3. RESULTS AND DISCUSSION

To better understand the performance of the proposed MLP-
mixer for HSI classification, its predicted classification maps 
are presented in Figure. 2. Moreover, statistical results of the 
MLP-Mixer in terms of average accuracy, kappa index, and 
overall accuracy are shown in Table 1. As seen in Figure 2 and 
Table 1, the proposed classifier illustrated great capability in 
the classification of HSI data in all three data benchmarks of 
Indian Pines, Salinas, and Pavia. For the Indian Pines dataset, 
the MLP-Mixer achieved kappa index, overall accuracy, and 
average accuracy of 99.78%, 99.8%, and 99.81%, 
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respectively. Moreover, average accuracy, kappa index, and 
overall accuracy of 99.23%, 99.49%, and 99.62% were 
obtained by the MLP-Mixer, respectively, for the Pavia 
dataset. In addition, the MLP-Mixer obtained kappa index, 

overall accuracy, and average accuracy of 99.7%, 99.73%, and 
99.82%, respectively, for the Salinas dataset. 

Figure. 2. Ground truth data and results of the MLP-Mixer; a) Indian Pines reference data, b) Classified Indian Pines HIS data c) Pavia 
reference data d) Classified Pavia HIS data e) Salinas reference data f) Classified Salinas HIS data. 

Table 1. Classification results of HIS data by the MLP-Mixer 
(KI= Kappa Index, OA= Overall Accuracy, AA= Average 
Accuracy) 

Data MLP-Mixer 

Indian Pines 

KI (%) 99.78 

OA (%) 99.8 

AA (%) 99.81 

Pavia 

KI (%) 99.49 

OA (%) 99.62 

AA (%) 99.23 

Salinas 

KI (%) 99.7 

OA (%) 99.73 

AA (%) 99.82 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W6-2022 
Geoinformation Week 2022 “Broadening Geospatial Science and Technology”, 14–17 November 2022, Johor Bahru, Malaysia (online)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W6-2022-179-2023 | © Author(s) 2023. CC BY 4.0 License.

 
181



4. CONCLUSIONS

This paper proposes a novel approach for spatial-spectral 
classification of HSI data based on the current state-of-the-art 
MLP algorithms. The proposed classifier of MLP-Mixer 
demonstrated excellent capability in the classification of HSI 
data in three data benchmarks of Pavia, Indian Pines, and 
Salinas. The presented MLP-Mixer achieved an average 
accuracy of 99.82%, 99.81%, and 99.23% for the classification 
of HSI data in Salinas, Indian Pines, and Pavia, respectively. 
Our method can be compared to other MLP classifiers in future 
works. 
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