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ABSTRACT: 
 
Water quality monitoring is compulsory to maintain and preserve aquatic ecosystem health, especially for the phytoplankton community. 
Phytoplankton abundance relies greatly on the condition of water, it is important to assess the water quality parameter (WQP) to estimate 
the abundance of PP. However, obtaining WQP using conventional methods (water sampling and laboratory assessment) requires more 
time and cost of operation. Therefore, Geographical Information System (GIS) and remote sensing (RS) approaches are becoming popular 
methods of measuring water quality parameters (turbidity, total suspended solids (TSS), temperature, pH, etc). This paper aims to review 
the assessment of WQP in relation to PP abundance and other interchangeable factors from the recent studies and efforts on WQP assessment 
using geospatial technologies approaches. Methods, algorithms, and accuracies established from the GIS and RS techniques are discussed. 
From ten (10) extended review research articles, it is revealed that most WQP has an indirect and direct effect on human activities, seasonal 
changes, fish production, water pollution, and especially PP abundance. In addition, about nine (9) previous research articles revealed the 
use of various satellite image sensors to estimate WQP from Landsat 8 is the most common, to Landsat 7 ETM+, 5, Sentinel MSI, and the 
least used is RapidEye. Further research also finds that the three most common types of WQP estimated via the geospatial analysis method 
are turbidity, pH, and Secchi depth with the highest R2 value equal to 0.810,0.947, and 0.990 respectively.  
 
 

1.      INTRODUCTION 

Phytoplankton (PP) is a prokaryotic or eukaryotic species of 
plankton that normally comes in a form of a single cell, colony, 
chain or in a form of filamentous that is usually recognized as an 
element of the marine food cycle in nature, as well as a native 
source of food and oxygen for humans (Shams et al., 2012). 
Their abundance composition can be utilised to evaluate the 
ecological integrity of aquatic habitats. Their primary function in 
the biological clock is serving as an essential source of livestock 
to a range of aquatic animals, including molluscs, herbivorous 
fish, crustacean larvae, and zooplankton. The phytoplankton 
abundance is commonly found in almost every waterbody 
including fresh water, salt water and even in brackish water. As 
a result of the highly dynamic nature of the estuarine 
environment, phytoplankton production and species traits may 
vary significantly (da Costa Santana et al., 2018). As a bio-
indicator of its surrounding environment, PP relies greatly on its 
habitat which is the quality of the water body itself.  
 
The physio-chemical characteristics of the water and the 
productivity of the coral reef depend on the plankton density and 
variety (Payra et al., 2013). Prior research founds that the 
concentration of phytoplankton decreased as the salinity rose 
(Harris, 2012). Not only that, because the phytoplankton is 
aquatic flora that performs photosynthetic processes and serves 
as a source of dissolved oxygen (DO) in the waters, there is 

mutual interaction between DO and phytoplankton (Veronica, 
2014). Numerous factors were found to be significant in 
evaluating the quality of water including temperature, nitrate, 
electrical conductivity (EC), phosphorus, DO and potassium 
(Bhateria & Jain, 2016). However, a few common WQPs often 
used by researchers to relate to phytoplankton abundance are 
water depth, turbidity, pH, temperature, chlorophyll-a (chl-a), 
and EC (Nkwuda, 2018; Veronica, 2014; Wang et al., 2017). 
 
The most common practice for water assessment is using in-situ 
sampling and laboratory testing. However, a large-scale 
waterbody may not be sufficiently examined by laboratory 
methods based on sampling points since they are frequently 
labour-intensive, expensive, and time-consuming (Gholizadeh et 
al., 2016; Ouma et al., 2020). This is because each of the WQPs 
(turbidity, dissolved oxygen, temperature, pH) needs a specific 
instrument in assessing and collecting data via in-situ sampling. 
For instance, a mercury thermometer is used to measure water 
surface temperature, a refractometer is used to measure salinity 
and a pH meter to measure the pH level of water (Shoaib et al., 
2017). Thus, the water quality assessment is required with the 
integration of the latest technologies (GIS and RS) to overcome 
time-consuming and high-cost issues when dealing with ground 
sampling.   
 
In the last decade, the use of geospatial technologies (GIS and 
RS) has been used to find out the capability of the methods in 
WQP prediction in relation to the phytoplankton (Gernez, 2017; 
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González-márquez et al., 2018; Hasab et al., 2015). The most 
common methods for data acquisition are via satellite imagery 
with the integration of the GIS platform (Avdan et al., 2019; 
Gong et al., 2014; Shoaib et al., 2017). With a variety type of 
sensors such as Landsat-7 (TM/ETM+), Landsat-8 (OLI), 
Sentinel, Interferometric Synthetic Aperture Radar (IFSAR), 
RapidEye, and Moderate Resolution Imaging Spectroradiometer 
 
(MODIS) where each sensor has a specific algorithm for WQP 
estimation. For example, statistical equation models for Landsat-
8 were used to estimate salinity by integrating ground sampling 
salinity data with the normalized difference vegetation index 
(NDVI) (Hasab et al., 2015). Landsat 8 OLI/TIRS and Sentinel 
MSI are often preferred among researchers for WQP estimation 
because of their wide range of hyperspectral bands as compared 
to other lower spectral resolution images. On top of being open 
access data, both Landsat-8 and Sentinel-2 satellite imageries 
have the ability to give an estimation for quite a few of the WQP 
such as water surface temperature, turbidity, pH salinity, chl-a 
and suspended particular matter (SPM) (Gernez, 2017; Hasab et 
al., 2015; Ouma et al., 2020) 
 
Hence, this study will discuss the RS approaches and regression 
equation models used to acquire and estimate the 
phytoplankton’s WQP relates to the other interchangeable 
factors from about 19 of the previous review articles. This study 
will benefit the researchers in assessing and estimating the 
several WQP using geospatial technologies with or without 
water sampling. 
 

2. MATERIALS AND METHODS 

This review paper uses a total of 19 gathered previous research 
papers as a reference from online scientific publications. Some 
of the keywords that were used to search for related papers are 
‘Phytoplankton’, ‘water quality’, ‘Remote Sensing’ and ‘GIS’. 
Each publication then was reviewed and discussed to find 
similarities and correlations with each keyword.  
  

3. DISCUSSIONS 

3.1 PP Abundance and Interchangeable Factors in 
Relation with WQP 

The ever-changing state of the WQP mainly depends on seasonal 
change, weather conditions, tides, anthropogenic activities and 
marine pollution (El Gammal et al., 2017; Gupta et al., 2005; 
Rosa et al., 2022). Table 1 shows five (5) different factors that 
were almost consistently mentioned by prior research papers 
which are an abundance of PP, seasonal changes, human 
activities, fish production, and water pollution. With PP being 
the most consistent factor related to the WQP, it is indisputable 
how crucial their roles are in affecting WQP.  Recent correlation 
studies found that 63.8% of phytoplankton occurrence is 
influenced by pH, DO, salinity, total phosphate (PO3), nitrate 
(NO3), and Ammonia (NH3), while the remaining 36.2% is 
influenced by other variables  (Veronica, 2014).  Aside from that, 
seasonal changes are the second strong relation with WQP. 
About 7 out 0f 10 of the reviewed previous papers have acquired 
WQP sampling and analysed the biochemical of water quality 
based on different seasons (Harris, 2012; Nkwuda, 2018). This 
is because the water temperature of tropical rivers can fluctuate 
as much as almost 10 ̊ C in between seasons (rainy season and 

dry season). The temperature was recorded to be from 25.5 ̊ C 
during the rainy season to 34.3  ̊ C during the dry season 
(Nkwuda, 2018). On top of that, the water quality index of lake 
water is more impacted during the summer than it is during the 
winter which might be a result of the fact that cold temperatures 
inhibit microbial activity, maintaining the DO level in a fairly 
good range throughout the entire winter season (Bhateria & Jain, 
2016). Hence, seasonal research on water quality in relation to 
phytoplankton abundance is crucial to comprehend the pollution 
and stressed environmental conditions, which will ultimately be 
useful for gaining information about fishery production. The 
least related factors mentioned but cannot be ignored by previous 
papers are the effects of human activities, fish production, and 
water pollution on the WQP.  
 
Due to a variety of anthropogenic activities, water quality had 
deteriorated in modern times (Bhateria & Jain, 2016). Not only 
that, certain types of land use (mangroves, industries, mooring 
activities, ponds, settlements, and intensive ponds have the 
potential to negatively impact the dynamics of the current 
ecosystem and influence river flow (Guntur et al, 2018). These 
listed human activities often affect the condition of WQP and can 
indirectly affect the PP abundance. As a cause of effect, the 
differential impact of hydrographical conditions on PP species 
causes its distribution to exhibit significant spatio-temporal 
fluctuations. Not to mention that they are extremely useful 
indicators of water quality, including pollution (Payra et al., 
2013). 
 

Author/ 
Year 

Interchangeable factors that relate to WQP 

PP Seasons Human 
activities 

Fish 
production 

Water 
pollution 

(Medupin, 
2011) / / /   

(Harris 
2012) / /   / 

(Payra et 
al., 2013) / /  /  

(Veronica, 
2014) / / / /  

(He et al., 
2016) / /    

(Bhateria & 
Jain, 2016) / / / / / 

(El 
Gammal et 
al., 2017) 

/  /   

(Guntur et 
al, 2018) /  /  / 

(Nkwuda, 
2018) / / /  / 

(Udeme 
Jonah, 
2020) 

/  /  / 

Table 1. Interchangeable factors in relation to WQP based on 
prior studies. 

3.2 Geographical Information System and Remote 
Sensing in Estimating WQP 

Satellite imageries can be access through open-source website 
such as United States Geological Survey (USGS) 
https://www.usgs.gov/, and Copernicus, 
https://www.copernicus.eu/en makes it stand out from the other 
data collecting approaches. These websites provide numerous 
satellite imageries obtained from many types of sensors from all 
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over the world such as MODIS, Landsat, Sentinel and IFSAR. 
Resolutions for each type of sensor have been categorized into 
spatial, spectral, temporal, radiometric, and geometric 
resolutions. These four resolutions are correspondingly 
important in estimating WQP. However, images with 
hyperspectral resolution are often in favour by researchers 
because its wide range of different bands allows us to estimate 
more than one WQP at once. Table 2 shows several satellite 
imageries that frequently used in water quality assessment are 
Sentinel MSI and Landsat-8 OLI/TIRS due to its capability of 
estimating PO3, EC, TSS, turbidity, chl-a, Secchi depth, salinity 
and water pH (González-márquez et al., 2018; Hasab et al., 2015; 
Shoaib et al., 2017) while only a few researchers use Landsat-7 
ETM+ on assessing SSM, chlorophyll-a, pH, Secchi depth and 
total PO3 (Alparslan & Aydöner, 2014; Pereira et al., 2020).  
Another driven factor of varying sensor preferability in 
estimating types of WQP is the temporal resolution. As 
mentioned before, WQP strongly relates to seasonal changes 
(Harris, 2012; Medupin, 2011; Payra et al., 2013). Hence the 
variability in time difference is often sought after in assessing 
WQP. 
 
Satellite image pre-processing is the initial step in image 
processing that deals with removing radiometric, atmospheric, 
and geometric distortions that are present in the raw image data. 
these terms can also be defined as radiometric, atmospheric, and 
geometric corrections (Ratnaparkhi, 2020).  The sole purpose of 
radiometric correction is to convert the relative values of the 
digital number or the image’s pixels to an absolute measurement 
of reflectance. While the atmospheric correction is done to 
remove the atmospheric effects and convert the radiometric data 
into radiation or surface reflectance (González-márquez et al., 
2018). These corrections were applied by several prior 
researchers during the pre-processing phase before extracting the 
WQP (Gernez, 2017; Ouma et al., 2020; Pizani et al., 2020). 
With that, it is safe to say that these corrections are compulsory 
initial steps before extracting WQP from any satellite images. In 
some occasional cases, some researchers use Dark Object 
Subtraction (DOS) during the atmospheric correction for 
Landsat 8 OLI and sentinel-2B images (Siregar et al., 2019). The 
DOS serves as a measure in a "clean-up" procedure that also 
accounts for air dispersion, or haze (Chavez, 1998). 
 
Table 2 shows that turbidity is the most common WQP extracted 
across several types of satellite images (Alparslan & Aydöner, 
2014; Avdan et al., 2019; González-márquez et al., 2018; Ouma 
et al., 2020; Shoaib et al., 2017). In assessing the turbidity, only 
required a wavelength ranging between 0.45 to 0.69 micrometres 
which are commonly had in every satellite image. This certain 
wavelength is used in bands 2 and 3 in Landsat-8 OLI and bands 
3 and 4 in Sentinel MSI (Ouma et al., 2020). The only drawbacks 
of using the GIS and RS methods are the limitation to extracting 
other biological properties of WQP such as Ammonia, nutrients, 
nitrogen and dissolved oxygen. These other parameters can’t be 

overlooked in predicting the abundance of PP since it has a 
strong correlation with the total of ammonia and nitrogen as per 
conducted in previous research (Wang et al., 2022).  
 
3.3 Regression Models to Extract Water Quality 
Parameter from Sensor 

The estimation regression models were often created by the 
statistical approach that measures the correlation between 
dependent and independent variables. The essential step in 
creating a regression is to assess the correlation by using a 
statistical approach which includes the Pearson correlation 
coefficient (R) and coefficient of determination (R2). The value 
of R2 uses to express the linear relationship between variables 
(Schober & Schwarte, 2018). Table 3 shows five (5) different 
classes of R2 values (Bazgeer et al., 2012; Yang et al., 2011). In 
Numerous studies have been established to identify the 
significance of regression in assessing the WQP.  
 
Table 4 indicates several numbers of equation regression models 
in linear or multiple regression which are established to estimate 
WQP relates to the band of satellite imageries and ground 
sampling datasets. The regression indicates the conditions and 
distribution of water quality of the site survey which will reduce 
the water sampling procedures if the R and R2 present in a good 
relationship. In 2008, Mokhtar and Mohd (2008) has introduced 
estimating WQPs (turbidity and Total Suspended Solids (TSS)) 
using digital camera bands in different resolution. Alparslan & 
Aydöner (2014) estimates WQP using four (4) different bands of 
Landsat-7 images. The value of WQP was derived by using 
regression analysis. The estimated WQP was then compared 
with in-situ sampling WQP. The highest R2 is at 0.955 which is 
a correlation between Total Suspended Solid (TSS) and band 6 
of Landsat-8 OLI (González-márquez et al., 2018) using 
MATLAB software. A publication by Hasab et al. (2015) found 
a relation between salinity and the normalized difference 
vegetation index (NDVI) (Equation 1) of a Landsat 8 using the 
SPSS software. Not limited to salinity, Gernez (2017) focused 
on chl-a and SPM with ground sampling data to the Sentinel MSI 
images. Research has been extended by applying the RapidEye 
sensor to retrieve WQP using Pearson’s correlation coefficient 
(Avdan et al., 2019). Multiple linear regression (SMLR) has been 
tested on using Landsat TM, Landsat 7 ETM+, and Landsat 8 
OLI (Pereira et al., 2020). A comparison of the capability of the 
Landsat sensor and Sentinel sensor has been tested on WQP 
determination (Pizani et al., 2020; Ouma et al., 2020). 
 
               NDVI = (Band5-Band4) / (Band5+Band4)               (1) 
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Author/Year WQP Sensor 

(Alparslan & Aydöner, 2014) SPM, chl-a, Secchi depth, turbidity and total phosphate (TP) Landsat-7 ETM 

(Hasab et al., 2015) Salinity Landsat-8 
(OLI/TIRS) 

(Avdan et al., 2019) EC, total dissolved soils (TDS), suspended particular matter, water transparency, 
water turbidity, depth and chl-a 

RapidEye 

(Gernez, 2017) Turbidity and chl-a Sentinel MSI 

(Pereira et al., 2020) Water pH Landsat 5 TM, 7 
ETM+, and 8 OLI 

(Ouma et al., 2020) Chl-a, total suspended solids, and turbidity Sentinel-2A MSI 
and Landsat-8 OLI 

Shoaib et al., 2017) Chl-a, turbidity, Secchi disk depth and temperature Landsat-8 OLI, 
Sentinel-2 MSI 
and Landsat-8 TIR 

(González-márquez et al., 
2018) 

Conductivity, total suspended solids, turbidity, and water pH Landsat-8 OLI 

Table 2. Types of sensors and list of extracted WQP from previous research. 
 

R2 Interpretation 
0 - ±0.10 Negligible correlation 
±0.11 - ±0.39 Weak correlation 
±0.40 - ±0.69 Moderate correlation 
±0.70 - ±0.89 Strong correlation 
±0.90 - ±1.00 Very strong correlation 

Table 3. Correlation of Coefficient and its interpretation (Schober & Schwarte, 2018) 
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Author/ 
Year 

Type of 
sensor/ data 
acquisition 

Parameter Regression 
Coefficients of 
Determination (R2) 
and Accuracy 

Mokhtar 
and Mohd 
(2008) 

 

Digital 
Camera, 
Water 
sampling 

Turbidity, 
TSS 
 
 

Turbidity = 3.364(TSS) – 33.320 
 
TSS = a0 + a1R + a2G + a3B + a4(R/G)2 + a5(R/B)2 + 
a6(G/B) 

 
Where;   
a0, a1, a2...... - Correlation Coefficient 
R, G, B - DN of Red, Green and Blue bands 

 
TSS regression:  
R2 = 0.955  
RMSE ± 7.942 

(Alparslan 
& 
Aydöner, 
2014) 

Landsat- 7 
ETM+, 
Water 
sampling 
 

SPM, chl-a, 
secchi 
depth, 
turbidity 
and total 
phosphorus 
(TP) 

Regression: 
1. Chl-a = 44.7869 − 0.2908(x1) − 0.6905(x2) + 

0.1019(x3) + 0.4843(x4) 
2. TP = 6662.498 − 65.7467(x1) − 65.3952(x2) + 

1.8(x3) + 96.2487(x4) 
3. SPM = 42.2672 − 0.8694(x1) − 0.3716(x2) + 

1.05(x3) + 0.1247(x4) 
4. Secchi depth = −10.408 + 0.0542(x1) + 

0.2703(x2) + 0.01(x3) − 0.3093(x4) 
 
Where, X1 = Band 1, X2 = Band 2, X3 = Band 3 X4 = 
Band 4 

Chl-a regression:   
R2 = 0.91 
SE = 0.4885 
TP regression:  
R2 = 0.99 
SE = 21.3537 
SPM regression:  
R2 = 0.99 
SE = 0.0085 
Secchi depth 
regression:  
R2 = 0.99 
SE = 0.0155 

(Hasab et 
al., 2015) 

Landsat-8 
(OLI/TIRS)  

Salinity Regressions: 
1. Linear = 17159 x (NDVI) - 42.57 ± SE 
2. Power = 7578.7 x (NDVI) 0.672 ± SE 
3. Exponential = 507.7 x (e)10.176 *(NDVI) ± SE 

 
Where; 
NDVI = (Band5-Band4) / (Band5+Band4) 
SE = Standard Error of observed salinity. 
 

Linear regression:   
R2 = 0.7343 
SE = 94.33 
Power regression:  
R2 = 0.6975 
SE = 71.56 
Exponential 
regression:  
R2 = 0.8524 
SE = 51.25 

(Gernez, 
2017) 

Sentinel MSI,  
Water 
sampling 

SPM and 
chl-a 
 
 

Regressions: 
1. Est chl-a = 1.02(chl-a sampling) – 0.07 
2. Est SPM = 0.93(SPM sampling) + 0.32 

 

Chl-a and water 
sampling:   
R2 = 0.92 
RMSE = 3.05 
SPM and water 
sampling:  
 R2 = 0.96 
RMSE = 56.26 

(González-
márquez et 
al., 2018) 

Landsat- 8 
OLI, 
Water 
sampling 
within 3 
different 
season (May 
2015, 
December 
2015, and 
June 2016)  

Phosphate 
(PO), EC, 
TSS, 
turbidity, 
and water 
pH 
 
 

Regressions:  
1. Log (PO) = − 14.383 + 107.32 x Log(B5) − 

36.249 x Log(B6) − 82.972 x Log(B7) + 
33.252 x (Log(B5))2 − 34.867 x (Log(B7))2 

2. TSS = 276.44 − 18960 x B6 
3. Log (Turbidity + 15) = 1.4562 + 42.333 x (B4 

− B2) + 1527.6 x (B4 − B2)2 
4. pH = 7.4059 + 0:25376 x (B1/B5) 
5. EC = 52.412 + 157.56 x (B1 − B2) + 

0.0044809 x (1/ (B1 − B3)) − 0.36922 x ((B1 
− B6) / (B1 − B3)) − 2.2498 x ((B2 − B3) / 
(B2 − B5)) 

 
Where, B1, B2, …, B7 is number of bands in Landsat 8. 
 

PO regression:   
R2 = 0.755 
RMSE = 0.060 
TSS regression:  
R2 = 0.955 
RMSE = 3.480 
Turbidity regression: 
R2 = 0.784 
RMSE = 0.108 
pH regression:   
R2 = 0.947 
RMSE = 0.037 
EC regression:  
R2 = 0.884 
RMSE = 0.445 
 

(Avdan et 
al., 2019) 

RapidEye, 
 

EC, TDS, 
SPM, 

Regression (top 3):  I8 regression:   
R2 = 0.88 
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Water 
sampling   

turbidity, 
depth and 
chl-a 
 
 

1. I8 = 0.46(turbidity sampling)2 – 1(turbidity 
sampling) + 0.24 

2. I4 = -0.01(depth sampling)2 + 0.14 (depth 
sampling) + 1.28 

3. I7 = 0.19(turbidity sampling) + 0.53 
 
Where; I4, I8, and I7 is types if indices used in 
retrieving WQP from RapidEye sensor. 

I4 regression:   
R2 = 0.85 
I7 regression:  
R2 = 0.84 
 
 

(Pereira et 
al., 2020) 

Landsat 5 
TM, Landsat 
7 ETM+, and 
Landsat 8 
OLI  
 
Water 
sampling 

pH 
 
 

Regressions: 
1. GP pH = 0.9471(pH) + 0.2957 
2. SMLR pH = 0.8752(pH) +0.8272 

 
Where; GP (genetic programming) and SMLR (stepwise 
multiple linear regression) is an analysis method to 
establish regressions. 

GP Ph regression: 
R2 = 0.85  
RMSE = 0.55 
SMLR pH 
regression: 
R2 = 0.74 
RMSE = 0.85 
 

(Ouma et 
al., 2020) 

 Landsat-
8/OLI and 
Sentinel-
2A/MSI 
(S2A)  

Chl-a, total 
suspended 
solid 
(TSS), and 
turbidity 

Regressions (sentinel): 
1. Chl-a = 395763(B3-B11)2 – 44991(B3-B11) + 

1288.2  
2. TSS = 93011((B4 + (B8/B4))/2)2 − 82773((B4 

+ (B8/B4))/2) + 18442 
3. Turbidity = 367.82(B2/B3)2 – 976.42(B2/B3) 

+ 649.13 
 
 
Regression (Landsat 8): 

1. Chl-a = 4050.2(B3) − 170:43 
2. TSS = 2454.1(B3/B2) – 1584.4  
3. Turbidity = 102.56 (B3+B4) – 5.5003 

 
where, B2 = Band 2, B3 = Band 3, B4 = Band 4, B8 = 
Band 8, B11 = Band 11 

Chl-a regression:   
Sentinel  
R2 = 0.7015 
RMSE = 12.8408 
Landsat-8 
R2 = 0.8581 
RMSE = 2.5596 
 
TSS regression:   
Sentinel  
R2 = 0.6133 
RMSE = 8.3845 
Landsat-8  
R2 = 0.9249 
RMSE = 0.0349 
 
Turbidity regression:   
Sentinel  
R2 = 0.8004 
RMSE = 0.0349 
Landsat-8  
R2 = 0.8125 
RMSE = 0.4024 

(Pizani et 
al., 2020) 

Sentinel-2 
MSI and 
Landsat-8 
OLI  

Chl-a, 
turbidity, 
secchi disk 
depth and 
temperature 

Regressions top 2(sentinel-2 MSI): 
1. pH = 12.2621 + (-246.4698 x B1) + (29.4987 
x B3) + (300.0727 x B6) + (-140.2648 x B8) 
2. Secchi depth = 396.3 x (22408.6 x B1) + (-
16290.6 x B3) 
 
Regressions top 2(Landsat-8 OLI): 

1. Secchi depth = 511.9 + (21335 x B1) + (-
17343.6 x B3) 

2. R2 = 0.81 
3. Turbidity = 0.2294 + (-59.2739 x B1) + 

(48.0012 x B3) 
4. R2 = 0.80 

pH regression:   
Sentinel  
R2 = 0.89 
RMSE = 0.04 
 
Secchi Depth 
regression:   
Sentinel  
R2 = 0.84 
RMSE = 49.48 
Landsat-8  
R2 = 0.81 
RMSE = 54.15  
 
Turbidity regression:   
Sentinel  
R2 = 0.8004 
RMSE = 42.9 
Landsat-8  
R2 = 0.80 
RMSE = 42.7 

Table 4. Method and Regressions to acquired WQP from multiple Satellite Imageries Sensors 
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4. CONCLUSIONS 

From the extended review of the previous related research 
papers, the three main sensors often used by researchers to 
estimate WQP are Landsat 8 OLI/TIRS, Sentinel MSI and 
Landsat 7. The most common WQP that were managed to be 
extracted from the listed sensors are turbidity, pH, and secchi 
depth. Although geospatial analysis and RS approaches on 
estimating WQP is only limited to a few selected WQP, it is 
undeniably cost less time and money as compared to in-situ 
sampling method. From this research, it is beyond doubt how the 
development of regression models helps us in seeing how much 
each spectral band of each sensor are correlates with the WQP 
and most importantly enabling us researchers to estimate the 
WQP itself. However, each regression cannot be use for an 
accuracy assessment of WQP since there are still other factors 
that may affected its credibility such as the abundance of PP, 
changes of weather, places, type of water bodies etc.  
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