
SPATIAL DOWNSCALING OF GPM IMERG V06 GRIDDED PRECIPITATION USING 
MACHINE LEARNING ALGORITHMS

Manikandan Sathianarayanan1, Pai-Hui Hsu2 * 
1 Department of Civil Engineering, National Taiwan University, Taiwan-10617-d06521026@ntu.edu.tw, 

2 Department of Civil Engineering, National Taiwan University, Taiwan-10617-hsuph@ntu.edu.tw. 

Commission IV, WG 7 

Abstract 
According to recent studies, Remote sensing data plays a significant role in filling gaps in the poor gauge station, particularly at high 
elevations and with complex underlying surface features. In order to provide high-resolution precipitation estimates over the poor 
gauge and with complex terrain areas, downscaling low-resolution satellite precipitation estimates using various environmental 
variables. In this paper, we tried to downscale the GPM IMERG V06 with a resolution of (0.1° ×0.1°) nearly 10km to (1km × 1 km) 
using four machine learning algorithms namely, Decision Trees, Multiple Linear Regression, Support Vector Regressor and random 
forest. Vegetation indices Normalized difference in vegetation index (NDVI), Topography, Land Surface Temperature (LST), and 
latitude and longitude. This framework can downscale the 0.1° resolution of the GPM IMERG precipitation product to 1 km, by 
determining the importance of features, and automatically optimizing the model parameters. Additionally, ground recorded data from 
rain gauge stations have validated downscaled precipitation products. Spatial downscaling can generally increase the accuracy of 
GPM IMERG gridded precipitation data and results reveal that spatial downscaling is an acceptable way of investigating the 
precipitation over Taiwan. 
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1. INTRODUCTION

The global hydrological cycle cannot function without 
precipitation, which is crucial for maintaining the hydro-climate 
balance and ecosystem activities. Even while the data from rain 
gauges can yield precise point-based measurements, it is 
difficult to extrapolate the data to create precise maps at the 
basin scale, particularly when the distribution of rain gauges is 
uneven or for ungauged basins (Luo et al., 2019; Zhang et al., 
2019) and rain gauges serves as an evaluation tool for various 
precipitation products. Over the last few decades, rapid 
developments in remote sensing techniques provide an 
opportunity to estimate spatial continuous precipitation on a 
global scale. Satellite-based precipitation products (SPPs) are 
openly available to the public to understand the precipitation 
characteristics for hydrometeorological applications, especially 
over sparse rain gauge areas (Belabid et al., 2019; Pellet et al., 
2019). Various SPPs are available in recent decades namely, 
Tropical Rainfall Measuring Mission (TRMM) Multi-satellite 
precipitation analysis (TMPA), Climate Prediction Center 
Morphing technique (CMORPH), Precipitation Estimation from 
Remotely Sensed Information using Artificial Neural Network 
(PERSIANN), and Integrated Multi-satellitE Retrieval for 
Global Precipitation Measurement (IMERG). However, these 
SPPs are relatively low resolution varying from 0.1° to 0.5°, and 
these products are too coarse for analysis. An efficient strategy 
required to close the spatial scale gap between low/coarse 
resolution and high/fine resolution is to use spatial downscaling 
techniques. There are two major downscaling techniques 
available for SPPs, statistical downscaling (construct the 
empirical relationship between object and auxiliary variable) 
and dynamical downscaling (mathematical representation of the 
complex physical phenomenon of atmosphere, ocean, and land) 
(Sachindra & Perera, 2016). A critical step in the downscaling 
method is to select appropriate environmental variables and 
methods for downscaling precipitation, variables can be divided 

between dynamical (variable can change over spatially and 
temporally) and static variables (variables remain constant). 
Numerous downscaling models has been developed recent 
decades using Univariate Regression (UR), multivariate 
regression (MR), and Geographic Weighted Regression 
(GWR) and it fails to reflect spatial heterogeneity between 
precipitation and land surface characteristics. In this study 
we employed non-parametric machine learning algorithms 
(Decision Trees, Multiple Linear Regression, Support 
Vector Regressor and random forest) to downscale the 
IMERG satellite estimation using various environmental 
variables.

2. STUDY AREA & DATASET

2.1 Study Area 
The study area located in East Asia, on the western side 
of the Pacific Ocean and it consists of main land of 
Taiwan as well as small distant islands. The Pacific 
Ocean, Bashi channel, Taiwan Strait and East China sea 
are all located to east, south, west and north of Taiwan 
mainland respectively. Study area stretching from 120E to 
122E and from 22N to 25N that covers 36197 km2 
which mainland dominated by mountain ranges in East 
and gently sloping plains in the West, approximately 
394km long from North to South and 144 km broad 
from West to East. 

2.2 Datasets 
This study utilized satellite-based precipitation estimates 
(GPM IMERG V06), vegetation indices (NDVI, EVI), 
digital elevation model (SRTM), landcover (MCD12Q1), 
and Land Surface Temperature (LST) with their spatial 
and temporal resolution characteristics are given below in 
the Table.1. 

2.2.1  Integrated Multi-satellitE Retrievals for GPM (IMERG)
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Figure1. Study area with Elevation and Rain gauge station 
locations  

Data Spatial & Temporal 
Resolution  

IMERG 0.1°×0.1°/daily 

NDVI/MOD13A2 1 km/16 days 

DEM/SRTM 90 meters 
Land surface  

Temperature/MOD11A1 1 km/daily 

Landcover/MCD12Q1 500 meter/ yearly 

LST data can be downloaded from USGS website for about one 
complete year from 1 st January 2018 to 31st December 2018 
(https://e4ftl01.cr.usgs.gov/MOLT/MOD11A1.006//). 
Annual mean LST data were calculated by averaging daily LST 
data in a given month/year. 

2.2.3. NDVI and Landcover 

In this study,16-day NDVI product (MOD13A2) from Moderate 
Resolution Imaging Spectroradiometer (MODIS) aboard Terra 
sensor with a spatial resolution of 1km by 1km which can be 
downloaded from NASA Land Processes Distributed Active 
Achieve Center 
(https://lpdaac.usgs.gov/products/mod13a2v006/). Annual mean 
NDVI were calculated by averaging 16-day NDVI data in a 
given year. Anomalous pixels (snow cover, urban areas and 
water bodies) should be removed from NDVI pixels which was 
influenced by vegetation growth(Wang et al., 2019). Anomalous 
pixels were removed from original NDVI data based on Land 
cover data (MCD12Q1) from MODIS onboard Terra sensor at 
500m by 500m spatial resolution.  

2.2.4    Elevation and Geographic locations 

Digital elevation model with a spatial resolution of 90m from 
the Shuttle Radar Topography Mission provided the elevation 
data which was used in this study and it can be downloaded 
from USGS website (EarthExplorer (usgs.gov)). 90 m elevation 
data were resampled to 1km and 10 km spatial resolution by 
using pixel averaging methods. Latitude and Longitude data 
utilised in this study were derived using elevation data as well 
and it serves as a common feature to combine all data for further 
processing and analysis. 

3. METHODOLOGY

3.1 Machine learning algorithms 

In this study, we used Four machine learning algorithms of the 
scikit-learn python(Pedregosa et al., 2011) that contains 
Random Forest, Decision Tree, Support Vector Machine and  
Multiple Linear Regression, along with other model called 
Adaptive Network-based Fuzzy Inference System (ANFIS) 
utilised to model the complex relationship between IMERG 
precipitation and environmental parameters for downscaling the 
precipitation products. In order to categorize the input variables 
into an m-dimensional feature space with a maximal margin, 
which may be determined by solving a quadratic problems 
depends upon on an optimization theory that employs a 
hyperplane(Smola & Schölkopf, 2004). Most widely used SVM 
tools called libsvm that developed by (Chang & Lin, 2011) and 
it is available freely in online that  is being adopted for this 
study. libsvm includes all important parameters such as kernel 
function, capacity parameter cost. Random Forest is an 
improved technique which is integrating a large number of 
Classification and Regression Tree (CART) methods in to an 
ensemble. It has been widely utilized for numerous remote 
sensing applications, including regression and 
classification(Rhee et al., 2014).RF employs a bootstrap 
aggregating method in contrast to CART algorithm to enhance 
model performance. The aggregate output from numerous trees 
may smooth the variance between trees and produce more 
accurate prediction results since each tree is constructed using a 
random subset of training data and a random subset of predictor 
variables(Breiman, 2001). According to Zhang et al. 
(2017),conventional method of Multiple Linear Regression 

Table 1. Dataset required for this study

GPM mission, an international constellation of satellites 
consisting of one major observatory satellite and ten partner 
satellites that offers the next-generation global precipitation 
measurement, which was started by Japan Aerospace 
Exploration Agency (JAXA) and United States National 
Aeronautics and Space Administration (NASA) (Lu et al., 
2018). IMERG has a multi-channel GPM Microwave Imager 
(GMI) that is combined with first space-borne Ku (13GHz) and 
Ka (35GHz) bands which can able to detect light rain (<0.5 
mm/hr) (Hou et al., 2014).
Final Run IMERG products were utilised in this study out of 
other two products (early run, late run) as suggested by data 
provider and it can be downloaded approximately four months 
after real time observation from (https://gpm.nasa.gov/data/
directory). Guo et al. (2016) suggested that PrecipitationCal 
performs better than PrecipitationUnCal over Taiwan since it 
has very less bias with Rain gauge station observations.

2.2.2   MODIS Land Surface Temperature (LST)
MOD11A1 version 6 daily product from Terra MODIS-LST 
product were used in this study at 1km spatial resolution. Daily
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relies on regression coefficient matrix that may depict the 
correlation between dependent and independent variables. 
Multiple Linear Regression has been used frequently to predict 
the values of dependent variable from a collection of predictor 
variables. In this study. We tried to build a Multiple Linear 
Regression function between satellite precipitation products and 
the numerous environmental variables.  

3.2 Adaptive Network-Fuzzy Inference System 

Zadeh (1965) made first attempt to prepare fuzzy set approach 
which is basically a combination of neural network (NN) and 
the concept of fuzzy logic (FL). Sugeno’s system is one of the 
most widely used in fuzzy systems to create model with scarce 
or ambiguous data. Fuzzy Logic has a stronger capacity for 
condition adjustment during learning process. Thus, by using 
NN, it is possible to reduce the error rate according to FL rules 
and have membership function (MFs)vary naturally. ANFIS 
model developments has two main components, (i) during 
learning process, membership function (MF) is used to convert 
input values to fuzzy values from 0 to 1 and, (ii) using some IF-
THEN rules in ANFIS model to describe the non-linear 
relationship between input and output space.
Membership function is the primary factor influencing the 
ANFIS model’s predictability performance, hence choosing the 
right MF is one of the predefined modelling steps. Fig.2 shows 

about structure of ANFIS model with 6 input variables(x1 to 
x6) and five different layers: fuzzification, product, 
normalization, de-fuzzification and output(Moosavi et al., 
2013). The most common MFs are triangular, trapezoidal, 
generalized bell-shaped and Gaussian, Gaussian MF is used in 
this study.Jang et al. (1997) developed a hybrid teaching for the 
neuro-fuzzy model to calculate the model parameters more 
quickly and accurately than back-propagation method which is 
based on gradient reduction.  

3.3   Downscaling 

The main goal of statistical spatial downscaling is to establish, 
an empirical statistical relationship between the object variable 
and the relevant auxiliary variables to low/coarse spatial 
resolution, High/fine spatial resolution is thought to be 
appropriate to the empirical statistical relationship. The 
downscaled object variable at fine spatial resolution is then 
produced by applying the established empirical statistical 
relationship to the auxiliary variables at fine spatial resolution. 

The detailed flow of work involved in downscaling satellite 
precipitation in the Fig.3.In our study IMERG annual satellite 
precipitation data serve as an object variable that has to 
downscaled from 0.1° (nearly 10 km) resolution to high 
resolution of 1km. six auxiliary variables are NDVI,  Latitude, 
Longitude, Elevation, LST, Landcover selected from the past 
literatures. Initially monthly based auxiliary variables have been 
prepared with a spatial resolution of 10 km and 1km and then it 
converts in to yearly composition by averaging the monthly 
values and auxiliary variables have resampled from 1 km and 
10km by the method of nearest neighbour method. Waterbody 
and urban built-up areas to be masked out from vegetation 
indices and landcover dataset due to negative impact on the 
downscaling model. To get rid of the impacts of different scale, 
standardize the variables by use of their means and standard 
deviation at scikit-learn library. Non-parametric machine 
learning regression models (SVR, Decision Trees, MLR, 
Random forest and ANFIS) has created between IMERG 
precipitation and six variables with 10km resolution. Residual 
errors can be calculated from predicted 10km precipitation with 
IMERG precipitation products. Resampled the residual error 
from 10 km to 1 km using spline interpolation and findings that 
have been downscaled using residual correction and are 1 km 
resolution might be attained by combining the residual errors 
from the interpolated the results after scaling without residual 
rectification. 

In this study, six environmental variables that include three 
static variables (elevation, longitude and latitude) and three 
dynamical variables (either NDVI or EVI, LST and Land cover) 
with a spatial resolution of 10km and 1km are created. Initially 
annual composite values were calculated for all the 
environmental variables from averaging monthly values. By 
employing the nearest neighbour method to resample the 
environmental variables at 10km and 1km spatial resolution. To 
prevent a detrimental impact on the downscaling model, 
Negative values in the vegetation indices as well as urban, built-

Figure 3. The process involved in Spatial downscaling of 
IMERG precipitation products.

3.3.1  Data Preparation and Pre-Processing 

Figure 2. Architecture of ANFIS model equivalent to the 
inference system.
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up areas and water bodies should be eliminated through 
Landcover dataset. 

3.3.2 Data Normalization 

All input environmental variables are normalized and scaled in 
the same order, in order to improve the evaluation accuracy and 
speed when working with raw input data and it has been 
collected from different sources. We adopted min-max 
normalization in this study to linearly rescale all the 
environmental variables in to (0 to 1) interval. 

Where xi indicates that normalized data and xmin and xmax are 
minimum and maximum value of that data. 

3.3.3 Hyper-Parameter Optimization 

Hyper-Parameter optimization plays an important role in 
machine learning algorithms to improve its performance. We 
used scikit-learn GridSearchCV algorithm with 10-fold cross-
validation to identify the best hyper-parameters to construct 
optimal prediction model (Table.2). 

Downscaling 
algorithms Parameters Parameter 

set 

SVM 

Kernel Type Radial basis 
function 

Cost 20 
Gamma 0.0003 
Epsilon 0.008 

Random 
Forest 

Number of 
estimators 100 

Max depth 20 
Min sample leaf 1 
Min sample split 2 

Decision 
 Tree 

Max depth 10 
Min sample leaf 5 

ANFIS 
Epoch 100 
Membership function Gaussian 
FIS type sugeno 

Table.2 Parameters setting for machine learning methods-based 
downscaling 

3.3.4   Statistical indices 

Two assessment indices were adopted for this study to compare 
the performances of  downscaling machine learning models that 
includes correlation of determination(R2) and mean squared 
error(MSE)(Shi et al., 2015). 

Where, S represents original IMERG and P predicted IMERG 
precipitation. 

4. RESULT AND DISCUSSION

4.1 Downscaling model evaluation 

Table 3 shows about the results of various downscaling models 
that adopted for this study to simulate IMERG precipitation data 
at 1km spatial resolution. Table.3 provides the information 
about annual IMERG precipitation data predicted by use of five 
machine learning models with different input variables 
combinations and shows better consistency with original 
IMERG data. Validation results revealed that ANFIS model 
performed well with highest R2 (0.9736) with combination of all 
input variables and MSE value of 0.05244 mm/year followed by 
Random forest, SVR, Multiple Linear Regression and Decision 
Tree. Hence, ANFIS model was used for the downscaling 
analysis of IMERG precipitation data for the year 2018. 

Predictors Downscaling 
methods 

R-Square MSE 

LC+ NDVI+DEM 

Random Forest 0.147779 0.379764 
SVR 0.058532 0.419544 
Decision Tree 0.2180377 0.34848 
Multiple Linear 
Regression 

0.10983 11.9502 

ANFIS 0.2881 0.1701998 

NDVI+DEM 

Random Forest 0.1477797 0.3797892 
SVR 0.058532 0.4194 
Decision Tree 0.218037 0.3456 
Multiple Linear 
Regression 

0.109836 11.9502 

ANFIS 0.27 0.2295648 

NDVI+DEM+LC+ 
Longitude + Latitude 

Random Forest 0.931656 0.0304571 
SVR 0.61831 0.170064 
Decision Tree 0.5774924 0.18828 
Multiple Linear 
Regression 

0.61984 7.8084 

ANFIS 0.9584 0.2382057 

NDVI+DEM+LC+LST+ 
Longitude + Latitude 

Random Forest 0.89956 0.0447588 
SVR 0.650343 0.15552 
Decision Tree 0.38498 0.274068 
Multiple Linear 
Regression 

0.60618 7.948692 

ANFIS 0.9736 0.0524488 
Table.3 Downscaling model validation results for year 2018 

4.2 Feature Importance 

As ANFIS model has been selected for further downscaling 
analysis of IMERG precipitation and it is hard to identify the 
rate of influencing individual variable on prediction result in 
conventional regression model. However this can accomplish by 
analysing SHapely Additive exPlanations(SHAP) values. 
According to game theory-based presumptions, SHAP enables 
evaluation of the extent and nature of each explanatory 
variables impact on the outcome of any machine learning or 
deep learning model(Lundberg & Lee, 2017).Figure.4 depicts 
the summary plot of SHAP values on downscaling model which 
can explain the connection between input variables and 
prediction results. Positive or negative SHAP values indicates 
the positive or negative correlation and the higher values tends 
to affect the accuracy of prediction. Fig.4 shows that higher 
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latitude and longitude affects the prediction result negatively, 
while lower values affect it favourably. 

Fig.4 Summary plot of the SHAP values on downscaling model 

Fig.5 Feature importance plot of mean SHAP values on 
downscaling model 

Fig.5 display the feature importance plot of the mean SHAP 
values on the ANFIS downscaling model, bar graph has 
been generated by averaging absolute value of SHAP value of 
each feature. Latitude and longitude have a most influencing 
factor followed by NDVI, LST and elevation, while land 
cover has least one in the list that impact the downscaling 
model.
Figure.6 explains about waterfall plot of predicted results 
of features with largest contribution in SHAP value. X 
axis represents value of target variable (ie., Precipitation) and 
E[f(x)] provides the expected value of precipitation 
prediction. Longitude and latitude have the highest impact 
followed NDVI and LST and landcover was least one.

4.3 Annual downscaled precipitation products 

Figure 7 represents the original IMERG precipitation products 
and the predicted precipitation based on six input variables 
using ANFIS machine learning algorithm. Predicted results 
revealed that spatial pattern of downscaled IMERG as same as 
the original IMERG precipitation products. Annual mean of 
downscaled products are very close to original IMERG while 
slight difference in spatial distribution. Results indirectly proves 
that ANFIS algorithm performs well for downscaling the 
satellite precipitation. 

Fig.7 Annual mean original IMERG precipitation product (a), 
downscaled annual mean IMERG precipitation (b). 

5. CONCLUSION

The main objective of this framework is to correct way for 
downscaling the IMERG precipitation products along with 
various static and dynamical variables (Elevation, Land cover, 
LST, NDVI, latitude and longitude) using suitable machine 
learning algorithms (SVR, MLR, Decision Tree, Random forest 
and ANFIS). The machine learning based algorithms provides 
smallest residual errors than conventional parametric models on 
downscaling with sufficient spatial details for meteorological 
analysis. Our results revealed that Adaptive Network-based 
Fuzzy Inference system (ANFIS) regression algorithm 
performed better and significant statistical metrics in 
downscaling the precipitation. Future studies will involve 
validation of downscaled precipitation against rain gauge 
observation values. 

REFERENCES 

Belabid, N., Zhao, F., Brocca, L., Huang, Y., & Tan, Y. (2019). 
Near-Real-Time Flood Forecasting Based on Satellite 
Precipitation Products. Remote Sensing, 11(3), 252. 
https://www.mdpi.com/2072-4292/11/3/252  

Breiman, L. (2001). Random Forests. Machine learning, 45(1), 
5-32. https://doi.org/10.1023/A:1010933404324

Chang, C.-C., & Lin, C.-J. (2011). LIBSVM: A library for 
support vector machines. ACM Trans. Intell. Syst. 
Technol., 2(3), Article 27.
https://doi.org/10.1145/1961189.1961199  

Fig.4 Summary plot of the SHAP values on downscaling model

Fig.6 Waterfall plot for predicted results

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W6-2022 
Geoinformation Week 2022 “Broadening Geospatial Science and Technology”, 14–17 November 2022, Johor Bahru, Malaysia (online)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W6-2022-327-2023 | © Author(s) 2023. CC BY 4.0 License.

 
331

https://www.mdpi.com/2072-4292/11/3/252
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1145/1961189.1961199


Guo, H., Chen, S., Bao, A., Behrangi, A., Hong, Y., Ndayisaba, 
F., Hu, J., & Stepanian, P. M. (2016). Early 
assessment of integrated multi-satellite retrievals for 
global precipitation measurement over China. 
Atmospheric Research, 176, 121-133.  

Hou, A. Y., Kakar, R. K., Neeck, S., Azarbarzin, A. A., 
Kummerow, C. D., Kojima, M., Oki, R., Nakamura, 
K., & Iguchi, T. (2014). The Global Precipitation 
Measurement Mission. Bulletin of the American 
Meteorological Society, 95(5), 701-722. 
https://doi.org/10.1175/bams-d-13-00164.1  

Jang, J. S. R., Sun, C. T., & Mizutani, E. (1997). Neuro-Fuzzy 
and Soft Computing-A Computational Approach to 
Learning and Machine Intelligence [Book Review]. 
IEEE Transactions on Automatic Control, 42(10), 
1482-1484. https://doi.org/10.1109/TAC.1997.633847  

Lu, X., Wei, M., Tang, G., & Zhang, Y. (2018). Evaluation and 
correction of the TRMM 3B43V7 and GPM 
3IMERGM satellite precipitation products by use of 
ground-based data over Xinjiang, China. 
Environmental Earth Sciences, 77(5), 1-18.  

Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to 
interpreting model predictions. Advances in neural 
information processing systems, 30.  

Luo, X., Wu, W., He, D., Li, Y., & Ji, X. (2019). Hydrological 
Simulation Using TRMM and CHIRPS Precipitation 
Estimates in the Lower Lancang-Mekong River 
Basin. Chinese Geographical Science, 29(1), 13-25. 
https://doi.org/10.1007/s11769-019-1014-6  

Moosavi, V., Vafakhah, M., Shirmohammadi, B., & Behnia, N. 
(2013). A Wavelet-ANFIS Hybrid Model for 
Groundwater Level Forecasting for Different 
Prediction Periods. Water Resources Management, 
27(5), 1301-1321. https://doi.org/10.1007/s11269-
012-0239-2

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., 
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., 
Weiss, R., & Dubourg, V. (2011). Scikit-learn: 
Machine learning in Python. the Journal of machine 
Learning research, 12, 2825-2830.  

Pellet, V., Aires, F., Munier, S., Fernández Prieto, D., Jordá, G., 
Dorigo, W. A., Polcher, J., & Brocca, L. (2019). 
Integrating multiple satellite observations into a 
coherent dataset to monitor the full water cycle – 
application to the Mediterranean region. Hydrol. 
Earth Syst. Sci., 23(1), 465-491. 
https://doi.org/10.5194/hess-23-465-2019  

Rhee, J., Park, S., & Lu, Z. (2014). Relationship between land 
cover patterns and surface temperature in urban areas. 
GIScience & Remote Sensing, 51(5), 521-536. 
https://doi.org/10.1080/15481603.2014.964455  

Sachindra, D. A., & Perera, B. J. C. (2016). Statistical 
Downscaling of General Circulation Model Outputs 
to Precipitation Accounting for Non-Stationarities in 
Predictor-Predictand Relationships. Plos One, 11(12), 
e0168701. 
https://doi.org/10.1371/journal.pone.0168701  

Shi, Y., Song, L., Xia, Z., Lin, Y., Myneni, R. B., Choi, S., 
Wang, L., Ni, X., Lao, C., & Yang, F. (2015). 
Mapping Annual Precipitation across Mainland China 
in the Period 2001–2010 from TRMM3B43 Product 
Using Spatial Downscaling Approach. Remote 
Sensing, 7(5), 5849-5878. 
https://www.mdpi.com/2072-4292/7/5/5849  

Smola, A. J., & Schölkopf, B. (2004). A tutorial on support 
vector regression. Statistics and Computing, 14(3), 
199-222.

https://doi.org/10.1023/B:STCO.0000035301.49549.8
8  

Wang, L., Chen, R., Han, C., Yang, Y., Liu, J., Liu, Z., Wang, 
X., Liu, G., & Guo, S. (2019). An improved spatial–
temporal downscaling method for TRMM 
precipitation datasets in Alpine regions: A case study 
in northwestern China’s Qilian Mountains. Remote 
Sensing, 11(7), 870.  

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 
338-353.
https://doi.org/https://doi.org/10.1016/S0019-
9958(65)90241-X

Zhang, H., Wu, P., Yin, A., Yang, X., Zhang, M., & Gao, C. 
(2017). Prediction of soil organic carbon in an 
intensively managed reclamation zone of eastern 
China: A comparison of multiple linear regressions 
and the random forest model. Science of The Total 
Environment, 592, 704-713.  

Zhang, Z., Tian, J., Huang, Y., Chen, X., Chen, S., & Duan, Z. 
(2019). Hydrologic Evaluation of TRMM and GPM 
IMERG Satellite-Based Precipitation in a Humid 
Basin of China. Remote Sensing, 11(4), 431. 
https://www.mdpi.com/2072-4292/11/4/431  

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W6-2022 
Geoinformation Week 2022 “Broadening Geospatial Science and Technology”, 14–17 November 2022, Johor Bahru, Malaysia (online)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W6-2022-327-2023 | © Author(s) 2023. CC BY 4.0 License.

 
332

https://doi.org/10.1175/bams-d-13-00164.1
https://doi.org/10.1109/TAC.1997.633847
https://doi.org/10.1007/s11769-019-1014-6
https://doi.org/10.1007/s11269-012-0239-2
https://doi.org/10.1007/s11269-012-0239-2
https://doi.org/10.5194/hess-23-465-2019
https://doi.org/10.1080/15481603.2014.964455
https://doi.org/10.1371/journal.pone.0168701
https://www.mdpi.com/2072-4292/7/5/5849
https://doi.org/10.1023/B:STCO.0000035301.49549.88
https://doi.org/10.1023/B:STCO.0000035301.49549.88
https://doi.org/https:/doi.org/10.1016/S0019-9958(65)90241-X
https://doi.org/https:/doi.org/10.1016/S0019-9958(65)90241-X
https://www.mdpi.com/2072-4292/11/4/431

	1. introduction
	2. STUDY AREA & Dataset
	2.1 Study Area
	This study utilized satellite-based precipitation estimates (GPM IMERG V06), vegetation indices (NDVI, EVI), digital elevation model (SRTM), landcover (MCD12Q1), and Land Surface Temperature (LST) with their spatial and temporal resolution characteris...
	2.2.1 Integrated Multi-satellitE Retrievals for GPM (IMERG)
	2.2.2   MODIS Land Surface Temperature (LST)
	2.2.3. NDVI and Landcover

	2.2.4    Elevation and Geographic locations

	3. methodology
	3.1 Machine learning algorithms
	3.2 Adaptive Network-Fuzzy Inference System

	4. Result and discussion
	4.1 Downscaling model evaluation
	4.2 Feature Importance
	4.3 Annual downscaled precipitation products

	5. conclusion
	References



