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ABSTRACT: 
 
Currently there is a public awareness to protect the environment especially forest ecosystems and the forest fire dilemma has become a 
topic of intense research around the world. In this setting, this study evaluates forest fire susceptibility (FFS) in northern Morocco using 
three geographic information system (GIS) based on machine learning algorithms: XGBoost (XGB), Random Forest (RF), and Support 
Vector Machine (SVM). To this effect, a Geographic Information System (GIS) database was developed involving ten independent causal 
factors (elevation, aspect, slope, distance to roads, distance to residential areas, land cover, normalized difference vegetation index 
(NDVI), rainfall, temperature and wind speed) and 345 fire pixels. The 345 pixels were split into two sets for training (70%) and 
validation (30%) and the spatial relationships between factors affecting FFs and fire pixels was analyzed using XGB, RF, and SVM 
models to generate the FFS maps. The effectiveness of the models was evaluated using the receiver operating characteristic curve, the 
area under the curve (AUC), and several statistical measures. The results of the three models hinted that XGBoost had the highest 
performance (AUC = 0.856), followed by RF (AUC) = 0.827), and SVM (AUC = 0.803) in the forecasting of the forest fire. The resulting 
FFS maps areas can provide crucial support for the management of Mediterranean forest ecosystems and can enhance the effectiveness 
of planning and management of forest resources and ecological balances in these areas. 
 
 

1. INTRODUCTION 

In the natural world, forest fires seem to be inevitable and they 
play an important role in vegetation succession and landscape 
transformation (Tien Bui et al., 2019). Nevertheless, 
uncontrolled forest fires may bring about negative impacts on 
the environment and the local communities. These fires do not 
only damage human life and properties but also threaten the 
stability of ecosystems (Rajan1 et al., 2018). In the past decade, 
there has been an increasing trend in both number and severity 
of forest fires occurred across the globe (Catry et al., 2009; 
Jaafari et al., 2017; Robinne et al., 2016). This notable trend is 
spurring public concerns about the ecological and 
socioeconomic impacts of forest fires (Molina et al., 2018; 
Valdez et al., 2017). 
 
Due to the impact of forest fires on socio-economic conditions 
and ecosystems, the prevention and suppression of forest fires 
have become a common interest of governments and researchers 
around the world (Nami et al., 2018) . To establish an effective 
fire prevention, it is necessary to construct the fire susceptibility 
maps at the regional scale. Such maps do not only facilitate the 
reasonable allocation of resources needed for fire prevention and 
suppression but also tremendously support the tasks of land use 
planning (Bax and Francesconi, 2018). Various methods have 
been proposed to model forest fire behaviors and they can be 
classified into three groups including physics-based method, 

statistical method, and machine learning methods (Tien Bui et 
al., 2017). Effective management requires the use of new 
technologies using remote sensing and geographic information 
systems (GIS) (Sunar and Özkan, 2001). In fire damage 
assessment, satellite sensor images combined with ground-based 
observations are the main source of information from which to 
determine the condition of vegetation cover (Hua and Shao, 
2017). These technologies have proven their effectiveness and 
achieved successful results as they enable the monitoring and 
analysis of fires in large areas in a timely and cost-effective 
manner using satellite sensor imagery along with spatial analysis 
as provided in Geographical Information Systems (GIS) as 
reported by (Adab et al., 2013; Kanga and Singh, 2017; Sunar 
and Özkan, 2001). Recently, machine-learning approaches have 
achieved priority as an alternative to traditional field survey 
methods for predicting forest fire susceptibility by elucidating 
the relationship between historical fire events and various 
explanatory variables in order to predict future fires (Pham et al., 
2020). Based on the performance comparison, it has been found 
that computational intelligence methods are able to provide more 
accurate prediction results than those of traditional statistical 
approaches (Tien Bui et al., 2019). There are many researches 
on the proposed machine learning methods used to predict forest 
fires that have proven their effectiveness and success, including 
decision tree based classification and regression (Mohajane et 
al., 2021), Artificial Neural Network (ANN) (Tien Bui et al., 
2018), Multivariate Adaptive Regression Splines(MARS) (Tien 
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Bui et al., 2019), Multivariate Logistic Regression(MLP) (Pham 
et al., 2020), Mixture Discriminant Analysis(MDA) 
(Pourghasemi et al., 2020), Multilayer Perceptron Neural 
Network (MLP-Net) (Ngoc Thach et al., 2018), Support Vector 
Machine (Syifa et al., 2020), and Random Forest (Mohajane et 
al., 2021). 
 
In Morocco, forests extend over an area of approximately 9 
million hectares, or 12.7% of Moroccan territory at altitudes 
ranging from 0 to 2,700 meters, according to the latest 2021 
report from the Department of Water and Forests under the 
Ministry, of Agriculture, Rural Development and Water and 
Forests (Flanagan,n.d.). As a result of the expansion of economic 
activities and climate change in recent years, forest fires in this 
country have become a serious natural hazard that destroyed vast 
amounts of natural resources, degraded the soil, and caused air 
pollution. Besides the activities of human in landuse altering, 
prolonged dry weather with exceptionally high temperature 
increases the number of fires in a large number of provinces of 
Morocco. Moreover, these phenomena are also observed in 
many other counties (Assali et al.). For example, the exceptional 
heat wave from July 9 to 11, 2021, favored the outbreak of 20 
concomitant fires across the Kingdom and which burned 1,200 
ha of forests in 10 provinces (M. Diao, n.d.). 
 
In this study, research was conducted for northern Morocco as the 
most fire-affected case study nationwide. The study will assess and 
predict forest fire susceptibility in our area based on machine 
learning algorithms, GIS tools and remote sensing. The main 
objectives of this study are: (a) to explore the effectiveness of three 
forest fire forecasting models in the study area. (b) produce spatial 
sensitivity maps using the proposed models to identify critical areas 
requiring emergency response. Thus, the conclusions of this study 
should be a useful and effective tool to provide crucial guidance for the 
management of the forest ecosystem in the Tetouan region. 
 

2. MATERIALS 

2.1 Study Area 

The study area is located in the region of Tanger-Tetoun-Al Hociema, in 
the north of Morocco (Fig. 1), it’s precisely in the province of 
Tetouan which is located in the extreme north of the Kingdom. It is 
bordered to the north by the Prefecture of M’diq- Fnideq and the 
Province of Fahs-Anjra, to the west by the Prefecture of Tanger-
Asilah, to the south by the provinces of Larache and 
Chefchaouen and to the east by the Mediterranean Sea (“DRATT”, 
2015). Its territory covers an area of 2,541 km², representing 0.36% of 
the total area of the national territory (710,850 km²). 

 
Figure. 1. Location of the study area and forest fire inventory points 

 
Tetouan Province belongs to a region with a Mediterranean 
climate, marked by the existence of two different seasons. The 
area generally records an annual cumulative rainfall exceeding 
700 mm on average. As for the temperatures, they are influenced 
on one side, by the action of the Mediterranean Sea and the 
Atlantic Ocean, and on the other side, by the altitude and the 
winds, in particular Chergui. In general, temperatures vary 
between 5.3° in cold periods and 32.9° in hot periods (HCP, 
2014). The region is mainly crossed by Oued Martil and Oued 
Laou whose flows vary between 15 and 70 l/s. It includes two 
dams, one of which is large, namely the Nakhla dam (HCP, 
2014). Precipitation is the highest there and varies between 800 
and 1,400 mm/year sometimes reaching 2,000 mm/year with 
snowfall. In the Tanger- Tetoun-Al Hociema region, forests 
cover an area of 506,442 ha, which represents 31.63% of the 
forest area of the region. Therefore, the study area covers a forest 
area of 86,360 ha, which represents 33.98% of the area of the 
Tetouan province (“Regional Directorate, 2018,”n.d.) (Table 1). 
 

Table 1. Forest cover surfaces in northern Morocco (2017): 
 
2.2 Data 

2.2.1 Historical forest fires: The forest fire sensitivity model 
analyzes the correlation between relevant conditioning factors 
and past events. (Tehrany et al., 2019). The first step in forest 
fire modeling is to establish the forest fire inventory map that 
corresponds to past events exhibiting the target variable. In this 
research, information on 345 fire pixels that occurred from 

 
Provinces Coverage 

area (Ha) 
Forest Area 
(Ha) 

% of total 
forest area 

Al Hoceima 355 000 105 290 29.65 % 
Chefchaouen 333 900 210 540 63.05 % 
Fahs Anjra 73 300 5 710 7.78 % 
Larache 268 300 66 070 24.62 % 
Ouezzane 21 300 20 192 94.798 % 
M’diq-Fnideq 199 900 * * 
Tanger-Assilah 95 200 12 280 12.98 % 
Tetouan 254 100 86 360 33.98 % 
Tanger-Tetoun-Al 1 601 000 506 442 31.63 % 
Hociema region    

Morocco 71 085 000 9 000 000 12.7 % 
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January 2008 to May 2021 is used as a database of historical 
forest fires. These fire pixels were extracted using a fire 
information system for resource management (FIRMS), 
https://firms.modaps.cosdis.na sa.gov/, Most of the fires in the 
studied area occurred in months from March to August, 
September, and October. To improve the quality of historical 
forest fire data (Table 2). 
 
Data pre-processing was performed to exclude anomalous points 
based on the extent of the presence of severe collateral damage 
and the occurrence of the fire. Of the 345 pixels, 241 pixels 
(70%) were randomly selected and used for model training, and 
the remaining 104 pixels (30%) were used for model validation. 
Since the forest fire risk modeling in this study is done as a binary 
classification, i.e. Fire class and non-fire class. The probability 
that a pixel belongs to a fire class was used as the fire hazard 
index. AS a result, the same number of fire-free spots were 
randomly detected. Therefore, the training data was created with 
482 samples and the validation data was 207 samples. Finally, a 
sampling procedure was performed to derive the values of the 10 
influential factors. 
 

Month Total number of forest fire 

March 7 
April 11 
May 11 
June 42 
July 77 
August 84 
September 76 
October 37 

Table 2. Total number of forest fires that occurred during the 
period 2008–2021. 
 
2.2.2 Explanatory Factors: Another key step in forest fire 
mapping and modeling is collecting a set of independent 
explanatory variables known as fire causative factors in 
accordance with their potential relationship with the local 
characteristics of the area being investigated, historical fires, and 
data availability. Based on previous research, there are four 
categories of variables that can explain forest fire modeling: 
topography, climate, vegetation and anthropogenic activities 
(Jaafari et al., 2018; Mohajane et al., 2021; Pham et al., 2020; 
Tehrany et al., 2019). These include; slope angle, aspect, 
elevation, distance to roads and residential, rainfall, temperature, 
wind speed, Land use, and NDVI (Table 3). 
 
Topographic data rate is one of the most important factors to 
include in the fire exposure model. The effects of slope degree, 
aspect, and elevation on fire behavior have been covered 
extensively (Nami et al., 2018; Tehrany et al., 2019). 
Topography plays an important role as it can control the 
distribution of vegetation and wind speed as well as it has an 
important role in the velocity of rainfall and soil moisture 
(Mohajane et al., 2021; Nami et al., 2018; Tehrany et al., 2019). 
In this study, the Digital Elevation Model (DEM) obtained from 
ASTER Global Digital Elevation Model (ASTGTM) with a pixel 

size of 30 m, sourced from the United States Geological Survey 
(USGS) archive (http://earthexplorer.usgs.gov), was used to 
derive topography data including slope, aspect, and elevation. 
 

Table 3. Explanatory factors used in this study 
 
All topographic characteristics were calculated using Surface 
tool in spatial analyst tools available in ArcGIS 10.3 software. 
Slope (Fig. 2c) was calculated and divided into five groups 
including (1) 0–1.5◦, (2) 1.5◦–3◦, (3) 3◦–4.5◦, (4) 4.5◦–6◦, and (5) 
6◦–8.5◦, (6)8.5◦–10◦, (7) >10◦. Up-slope areas are more affected 
by intensive fires whereas down slopes areas are less affected. 
Aspect (Fig. 2d) of FFS is also an important factor. (Tien Bui et 
al., 2017). It indicates the orientation of a slope, which influences 
soil moisture, sunlight, wind and precipitation (Tien Bui et al., 
2017), the main conditions that influence the behaviors of FFs in 
the study area. The aspect was calculated and classified into five 
classes such as flat zones, north, east, south and west. The 
elevation (Fig. 2a) was composed of five classes as 0–5 m, 5–
485 m, 485–966 m, 966–1446 m, and 1446–1926 m, 
respectively. 
 
Many potential sources of ignition created by human activity can 
affect the vulnerability of forest fires (Tehrany et al., 2019). 
Also, land use was chosen as a conditioning factor. Land cover 
information is widely recognized as a fuel proxy (Tien Bui et al., 
2016). The land cover was extracted with the Sentinel 2A 
Multispectral Instrument (MSI) and consists of 13 bands with a 
resolution of 10 m extracted from the archives of the European 
Space Agency (ESA). (https://scihub.copernicus.eu/dhus/). 
Random Forest Supervised Classification Method Using 
Sentinel Application Platform (SNAP, version 8.0.x) applied to 
classify images into five class categories: water bodies, forests, 
croplands, building and vacant lands. The produced land cover 
achieved an overall accuracy of 92% (Fig. 3b).\ 
 

Conditioning 
factor 

Unit Source 

Elevation Meters(m) DEM 30 m from, 
Slope Degrees(◦) http://earthexplorer.usgs.gov 
Aspect -  

Land cover - Sentinel-2A at a resolution of 10m 
NDVI Ratio https://scihub.copernicus.eu/dhus 
Rainfall (mm)  

Temperature Degree https://crudata.uea.ac.uk/cru/data/ 
 Celsius hrg/ 

Wind m/s https://globalwindatlas.info/ 
Road distance km Roads map 
Residential km Land use map of the study 
distance   
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Figure 2. Fire conditioning factors (a. Elevation; b. Land Cover; 
c. Slope; d. Aspect). 
 
The normalized difference vegetation index (NDVI) constituted 
the assessment of the vegetation cover. NDVI is the most popular 
index for assessment of live fuel moisture levels. The NDVI 
factor was calculated using the near-infrared (NIR) and visible 
red bands through the following equation (1). 
 
NDVI = (NIR - RED) / (NIR+RED)   (1) 
 
The NDVI index varies between -0.996 to 0.999, the higher 
values representing the vegetation cover, and the lower values 
indicate non-vegetative cover. In our case, the NIR and RED 
bands are band 8 (842 nm) and band 4 (665 nm), respectively. 
We applied an NDVI thresholding to classify NDVI image 
(Fig.3e) and we generated five groups: (-0.996 – (-0.267)), (-
0.267 - 0.295), (0.295 - 0.498), (0.498 - 0.710), and (0.710 - 
0.999). Fires are more noticeable in forest ecosystems near roads 
and in populated areas due to traffic accidents and the impact of 
living beings on natural ecosystems which have become 
uncontrollable (Tien Bui et al., 2019, 2016). Therefore, in this 
study, we considered the distance from roads and residential 
areas. The distance to roads and residential areas was assessed 
by measuring the location FF against the vector of the street and 
residential areas using the distance function tool in ArcGIS. The 
distance to the roads (Fig. 4j) was calculated and classified into 
five groups including (0–120 m), (120.1–240 m), (240.1–480 m), 
(480.1–840 m), and (840.1–8988 m). The residential areas were 
extracted from the land use map and used to generate the distance 
to the residential areas (Fig. 4i) into five groups including (0–
1000 m), (1000–2000 m), (2000–3000 m), (3000–4000 m) and 
(4000–20000 m). 
 

 
Figure 3. Fire conditioning factors (e. NDVI; f. Temperature; g. 
Rainfall; h.Wind Speed) 
 
Weather conditions such as rainfall, temperature, and wind are 
considered the main factors that strongly affect the behavior of 
forest fire, in which, forest fire is more possible to occur under 
hot, windy and dry weather conditions (Ngoc Thach et al., 2018). 
In this study, thematic maps were created using meteorological 
data from 2011 to 2021. The wind speed map (Fig. 3h) was 
classified into five classes including: (0.89–3.49 m/s), (3.49–
4.59 m/s), (4.59–5.59 m/s), (5.59– 6.58 m/s), (6.58 –7.85 m/s), 
(7.85–9.58 m/s), and (9.58 –16.15 m/s). The rainfall map (Fig. 
3g) was created with six classes as (399–410 mm), (410–421 
mm), (421–432 mm), (432–443 mm), (443–454 mm), and (454–
465 mm). The mean temperature map (Fig. 3f) was created and 
classified as (16.9– 17.4 ◦C), (17.4– 18.9 ◦C), (19.1– 19.6 ◦C), 
(19.7– 20.2 ◦C), (20.3– 20.8 ◦C), and (20.9– 21.4 ◦C). 
 

 
Figure. 4. Fire conditioning factors (i. Distance to Residential; j. 
Distance to Road). 
 

3. THEORETICAL BACKGROUND OF THE 
MODELS 

Based on the data collected and generated, the forest fire 
occurrence probability model was generated for each cell of the 
polygonal grid for the territory of the Tetouan province. 
 
3.1 Random Forest (RF) 

This method uses a large number of decision trees, which 
produce their predictions and combine them into a single, more 
prediction, accurate (Breiman, 2001). The RF algorithm applies 
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a bootstrap to a subset of the observed values to build a random 
binary tree. The original data is randomly sampled to generate 
training data to build the model. In the RF model, the tree 
expands from different subsets of training data for greater 
diversity (Breiman, 1996). A subset of the data not included in 
the training is called the out-of-bag, which classifies from that 
tree to evaluate accuracy and performance and provides an 
internal unbiased estimate of the generalization error based on 
the number of calculated trees (Breiman, 2001). 

3.2 XGBoost (XG) 

XGBoost is a flexible, optimized and efficient distributedgradient 
amplification system, which allows to generate a machine learning 
algorithm in the context of gradient boosting. XGBoost provides a 
parallel tree boosting (also known as GBDT, GBM) which solve huge 
data science problems accurately and quickly. It was built and developed 
by Tianqi Chen, Ph.D. student at the University of Washington. More 
details about XGBoost can be found here 
(http://dmlc.cs.washington.edu/xgboost.html). XGB algorithm has 
become a dominating algorithm in the field of applied machine learning. 
It is used over other gradient boosting machines (GBMs) due to its fast 
execution speed and model performance. 

3.3 Support Vector Machine (SVM) 

One of the most popular machine learning algorithms is SVM, a 
binary classifier for supervised learning based on the principle of 
structural risk minimization. (Yao et al., 2008). Developed by 
(Vapnik, 1995) at AT& T Bell Laboratories to find a linear 
hyperplane that separates two classes optimally, but it can be 
promoted to an n-class classifier (Belousov, 2002). Since the 
maximum separation margin between classes is recognized by the 
SVM, we build a classification hyperplane in the center of the 
maximum margin. (Chapelle et al., 1999). SVM minimizes an upper 
bound of generalization error by widening the distance of the 
hyperplanes separating the two classes (Karimi et al., 2019). This 
action guarantees a low generalization error, independent of data 
distribution (Karimi et al., 2019). The performance of the SVM 
algorithm depends on the appropriate kernel functions which are 
polynomial kernel, sigmoid kernel, radial basis function and linear 
kernel (Chapelle et al., 1999). Moreover, SVM prevents overfitting 
in the model and ensures good generalization and classification 
performance (Huang et al., 2020). Both continuous and categorical 
variables can be handled efficiently by SVM, and it can also handle 
nonlinear data, complex and noisy data with outliers (Karimi et al., 
2019). 

4. METHODOLOGY FOR MAPPING FOREST 
FIRE SUSCEPTIBILITY 

In calculating the forest fire susceptibility mapping, we followed these 
steps: A graph of the order of the systematic steps is also highlighted in 
(Fig. 5). Which is divided into three steps: 

-  Geospatial database and feature selection. 
-  Model Training, Layout, and Model Performance. 
-  Forest fire Sensitivity Maps. 
 

 
Figure. 5. Workflow of the methodology employed in this study 
 
4.1 Establishment of fire database 

As mentioned earlier, the historical forest fires and the ten 
variables have been collected from various sources. And 345 fire 
pixels was processed in ArcGIS 10.3 software. Therefore, a 
geographic processing has been employed to construct a GIS 
database for this research. The 10 adjustment variables have been 
converted to a raster format with a pixel size of 30. In addition, 
all categories of these maps have been converted to numeric 
format by the method developed by Tien Bui et al. (Tien Bui et 
al., 2017). Finally, a data normalization process was performed 
against 10 factors, and forest fires hedged the potential bias 
caused by the imbalanced magnitude of the factors. Given the 
fact that forest fire susceptibility represents a binary 
classification, the preparation of another dataset containing the 
non-fire pixels was required (Tien Bui et al., 2017) . The use of 
a dataset representing the absence of the phenomenon in the 
modelling process can also increase the performance of the 
applied methods (Costache et al.,2019). These non-fire points 
were placed outside on the forest zone these areas are 
characterized by negative NDVI values, which indicates the 
presence of water bodies and poor vegetation where forest fires 
are almost impossible. (Tien Bui et al., 2017). It should also be 
mentioned that the number of non-burnt spots is equal to the 
number of burnt spots. A value of “1” was assigned to the fire 
locations and a value of “0” was assigned to the non-fire 
locations. 

4.2 Training and Validating dataset 

The validation is a mandatory step in the forecasting studies as it 
can be affected by a specific phenomenon. Accordingly, the fire 
and non-fire samples were split into one at a time of training data 
(70%) and one at a time of validation data (30%). (Pourtaghi et 
al., 2015; Tien Bui et al., 2017). Therefore, 482 fire and non-fire 
locations will be used to train the models, while another 207 fire 
and non-fire locations will be involved in the validation of fire 
susceptibility maps. 

4.3 Configuration of the susceptibility models 

The next step in the modeling process is to configure the model 
used to calculate the forest fire vulnerability. In this study, 
Python 3.8.8 was used to apply machine learning models. Hence, 
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a sampling procedure was performed to derive the values from 
the 10 influential factors. and the values of each fire and non-fire 
pixel were converted in tabular format in order to be read in 
Python. Then, different amounts of hyperparameters were 
defined, and by running the models multiple times, the best 
configuration was chosen to achieve the highest accuracy for 
each model. For RF model the number of trees equal to 500 and 
the random split variable equal to 1 leads to the highest accuracy 
with the minimum time to obtain the results. The advantage of 
RF over other models is the smaller number of hyperparameters 
to be set. For the XGBoost model the binary: logistic loss 
function and the number of trees was set to 100 to reach the 
highest accuracy. For SVM model, the radial basic function 
(RBF) kernel with the kernel width equal to 1 and the 
regularization value of 1000 had the highest accuracy. 
 
4.4 Validation of Metrics 

One of the important steps after developing a model is to evaluate 
its training and predictive performance (Pham et al., 2020). In 
this study, to evaluate and compare the models developed for 
forest fire susceptibility mapping we used the receiver operating 
characteristic (ROC) curve. Receiver operating characteristic 
(ROC) curves are used to evaluate the performance of forest fire 
sensitivity modeling. (Tehrany et al., 2019). The ROC curve 
used to visualize the performance of binary classification is 
plotted with sensitivity as the y-axis and 1-specificity as the x-
axis. (Tien Bui et al., 2017). The AUC score is the area below 
the ROC curve and its value ranges from 0 to 1. The highest AUC 
value indicates the ideal measure of separability, and the lowest 
AUC value indicates the lowest measure of separability. 
Additionally, we used several statistical measures like 
specificity, overall accuracy, precision, sensitivity, true positive 
(TP), true negative (TN), false positive (FP), false negative (FN), 
negative predictive value (NPV), and positive predictive value 
(PPV). The following equations provide a brief description of 
each metric: 

OverallAccuracy = TP + TN /TP + TN + FP + FN (2) 

Specificity = TN/ FP + TN    (3) 

Sensitivity = TP /TP + FN    (4) 

Precision = TP /TP + FP    (5) 

PPV = TP/ FP + TP     (6) 

NPV = TN/ FN + TN    (7) 

 
4.5 Fire susceptibility mapping and models performance 

Based on the results obtained, a model was adopted in the study 
area to describe the vulnerability to forest fires. To generate 
forest fire susceptibility maps, the resulting layers were then 
changed to a GIS environment. The five affect classes were very 
low, low, moderate, high and very susceptible to forest fire (Fig. 
7) were applied (Jaafari et al., 2019; Tien Bui et al., 2017) using 
Gaussian process in ArcGIS 10.3 (Tehrany et al., 2019).\ 

(NPV) = 0.804 meaning the probability of predicting pixels at 
non-forest fire is 80%. 80.4%. 

The forest fire susceptibility map was plotted by dividing the 
FSM-SVM values into five classes using the Gaussian process 
(Fig. 7). Very low fire sensitivity zones occur in approximately 
26.74% of the study area, the low susceptibility is spread on 
8.09% of the total analyzed territory, the medium FSM-SVM 
values are present on 11.09%, while about 54% of the study area 
represents high and very high susceptibility. 
 

5. RESULTS AND DISCUSSION 

5.1 Fire susceptibility mapping and models performance 

5.1.1 Random Forest (RF): The prediction power of the RF 
model was assessed using the validation dataset that was not used 
during the training phase (Table 4). The following values for the 
statistical metric were obtained: Accuracy = 0.80, Precision = 
0.891, Sensitivity = 0.713, Specificity = 0.891, Positive 
predictive value (PPV) = 0.891 meaning that the probability of 
predicting pixels to forest fires is 89.1%, and Negative predictive 
value (NPV) = 71.3% meaning that the probability of predicting 
pixels to non-forest fires is 71.3%. It should be mentioned that 
overall the RF model achieved the second-best performance after 
XGBoost model. The fire sensitivity map was derived from the 
RF model (FSM-RF) after evaluating the model performance 
(Fig. 7). The values of FSM-RF were grouped into five classes 
using the Gaussian process. The first class, highlighting the areas 
with very low susceptibility, accounts around 22.48% of the 
study area, the low fire susceptibility is presented at 
approximately 22.70%, while the medium class of FSM-RF 
occupies a surface equal to 23.90% of the research zone. High 
fire susceptibility and very high fire susceptibility represent a 
total of 30.92% of the study area 

5.1.2 XGboost (XG): After the training of the XGBoost model, 
its performance was measured with the help of several statistical 
metrics (Table 4). Thus, in terms of training sample, the accuracy 
of 0.859 was the highest between all the applied models. The 
involvement of validating sample in the assessment of models 
performance revealed that XGBoost model achieved also the 
best results highlighted by the following values: Accuracy = 
0.827, Precision = 0.816, Sensitivity = 0.832, Specificity = 
0.821, Positive predictive value (PPV) = 0.815 meaning that the 
probability of predicting pixels to forest fires is 81.5%, and 
Negative predictive value (NPV) = 0.837 meaning that the 
probability of predicting pixels to non-forest fires is 83.7%. Once 
the model performance was assessed, the mapping of the Fire 
Susceptibility Index was performed (Fig. 7). Thus, the very low 
susceptibility has 16.11% of the total study area, the low 
susceptibility is present on 26.31% of the analyzed zone, the 
medium values are encountered on approximately 25.57%, while 
the areas exposed in a high and very high degree to fire 
occurrence can be found on around 32.01% of the study area. 
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Table 4. Model performances estimated with validating samples. 
 
5.1.3 Support Vector Machine (SVM: The application of 
SVM model is characterized by the following performances in 
terms of validating dataset (Table 4): 
 
Accuracy = 0.802, Precision = 0.80, Sensitivity = 0.792, 
Specificity = 0.812, Positive Predictive Value (PPV) = 0.80 
meaning the probability of predicting pixels at forest fire is 80%, 
and Negative Predictive Value. 
 
5.2 Results validation 

The results validation was done by using the ROC Curve. In this 
regard, the validating data were employed and their plots are 
shown in Fig. 6. Thus, the highest AUC value (0.856) was 
achieved by XGBoost model followed by RF (0.827), and SVM 
(0.803). Given the fact that all the models, achieved AUC values 
higher than 0.7, we can assume that the applied algorithms were 
performant concerning the identification of areas susceptible to 
forest fire occurrence. 

 

 

Figure. 6. ROC Curve (a. SVM; b. RF; c. XGBoost) 
 
5.3 Importance of conditioning factors 

Machine learning models have recently become the focus of intense 
interest of researchers in several environmental hazards studies. 

Modeling of Forest fire is a complex issue (Tien Bui et al., 2017). 
These models classify the study area into 5 levels of risk. The 
outcomes from this study could be served as a benchmark to identify 
areas, which require emergency intervention. 
 
One of the advantages of RF method is its ability to estimate the 
importance of the features used for modeling (Table 5). Fig.8 shows 
the result of evaluating the conditioning factors for fire forest 
modeling in the study area using RF method. It is obvious that NDVI 
is the most important conditioning factor, following by elevation, 
rainfall, distance to residential areas, wind speed, temperature and 
aspect. Distance to roads has the least importance among the 
conditioning factors. This finding support other previous studies (e.g. 
Holsinger et al., 2016; Tien Bui et al., 2019, 2017, 2016). However, 
(Pham et al., 2020) suggested that proximity to roads and residence 
areas, land use, elevation, and annual temperature intensifies the 
likelihood and frequency of fire ignitions. Similar to this finding, in a 
study developed by (Pourghasemi et al., 2020) the most important 
factors were land cover, slope, annual mean rainfall, and elevation for 
forest fire susceptibility. 

 

 
Figure. 7. Forest Fire Susceptibility using the 3 ensemble 
models. 

Evaluation Metrics XGBosst RF SVM 

True Positive 84 83 80 
True Negative 87 80 86 
False Positive 19 9 20 
False Negative 17 35 21 
Accuracy 0.827 0.80 0.802 
Precision 0.816 0.891 0.80 
Sensitivity 0.832 0.713 0.792 
Specificity 0.821 0.891 0.812 
Positive predictive value % 81.5 89.1 80 
Negative predictive value % 83.7 71.3 80.4 
AUC 0.856 0.827 0.803 
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Figure. 8. The feature importance factors. 

 
Factors Scores 

NDVI 0.159624 

Elevation 0.120555 

Rainfall 0.115202 

Distance to residential 0.110238 

Slope 0.109800 

Wind Speed 0.098787 

Temperature 0.093133 

Aspect 0.088099 

Land Cover 0.059420 

Distance to roads 0.045141 

Table 5. Scores of importance conditioning factors. 
 
In this research, the XGBoost model achieved the highest accuracy 
among other models, and these results are consistent with previous 
research (Ghatkar et al., 2019; Zamani Joharestani et al., 2019). 
These authors stated that the XGBoost has better control against 
overfitting by using more regularized model formalization, in 
comparison to prior algorithms. The outperformance of XGBoost is due 
to its advantages in parallelization in tree building through the use of the 
CPU cores during training. Indeed, eXtreme Gradient Boosting 
algorithm has been employed with promising results in other prior 
research related to natural hazards, for example for Prediction of 
gully erosion susceptibility mapping (Arabameri et al., 2021), in 
their paper proved that XGBoost achieved high accuracy among other 
algorithms applied in their case study. 

 
As discussed above, XGBoost is followed by RF model in term 
of accuracy. The RF can be applied for both classification and 
regression task, and it is fast, easy to use and processing large 
dataset (Zamani Joharestani et al., 2019). Another essential advantage 
for RF is that it can handle and deal with nonlinearities between 
variables (Mohajane et al., 2021). RF has been widely used in natural 
hazards assessment proving successful results. For example, flood 
mapping (Thanh Son et al., 2021) and landslide susceptibility 
(Taalab et al., 2018). 

 
SVM has numerous advantages such as its capacity to fix complexity 
of overfitting and its applicability to handle smaller dataset with 
high dimensionality (Chen et al., 2017). Due to these advantages, 
SVM has shown successful results in several fields like flood mapping 
(Tehrany et al., 2014). Also, (Mohajane et al.,2021; Tien Bui et al., 

2017) reported the predictive performance for both RF and SVM for 
forest fire prediction. Selecting an appropriate ML algorithm for forest 
fire models as for any other environmental risk assessment is a 
complex task as each model has its advantages and disadvantages (Tien 
Bui et al., 2017). Therefore, all the models mentioned above in this 
study are recommended for forest fire sensitivity studies. 
 
A number of natural and anthropogenic disturbances significantly 
affects forest ecosystems in northern Morocco, for example, in a recent 
research, (Salhi et al., 2021) reported the fragility of soil quality, thus, 
the situation requires anti-erosion activities. In addition, the most 
landscape areas in northern Morocco are exploited for cannabis 
plantations (El Motaki et al., 2019) due to their economic value. All 
these factors increase the spread of forest fire disaster. This research 
highlights the urgent need for government agencies to work towards 
preserving forest ecosystems and planning mitigation strategies, as 
well as the need to implement a public warning system to secure the 
urgent status of the forest ecosystem. 

6. CONCLUSION 

In many parts of the world governments’ policy on forest protection 
and management is challenging to meet their goals. With these issues in 
mind, this research is motivated by the need for preparation predictive 
models of the forest fire risk and identification of areas requiring 
immediate management actions with a goal of to assist forest 
managers and local authorities in forest management and fire 
suppression. In this study , three models have been developed namely, 
RF, SVM, and XGBoost for forest fire modelling based on 345 forest 
fire locations and a total of 10 forest fire conditioning factors (elevation, 
aspect, slope, distance to roads, distance to residences, normalized 
difference vegetation index (NDVI), precipitation, temperature, wind 
speed and land cover). The results of the proposed model show 
that XGBoost has high performance (AUC = 0.856), followed 
by RF (AUC = 0.827), and SVM (AUC = 0.803), When 
predicting forest fires, or given the results obtained, the maps created 
here can be very useful management tools for developing and analyzing 
forest fire strategies and management. In addition, this methodology 
may be compatible with other fields that present similar 
problems. 
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