The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Download
Publications Copernicus
Download
Citation
Articles | Volume XLVIII-4/W6-2022
https://doi.org/10.5194/isprs-archives-XLVIII-4-W6-2022-363-2023
https://doi.org/10.5194/isprs-archives-XLVIII-4-W6-2022-363-2023
07 Feb 2023
 | 07 Feb 2023

SPATIAL PREDICTION OF FLOOD IN KUALA LUMPUR CITY OF MALAYSIA USING LOGISTIC REGRESSION

A. Tella, M. R. U. Mustafa, A. O. Balogun, C. J. Okolie, I. Bello Yamusa, and M. B. Ibrahim

Keywords: Urban Flooding, Logistic Regression, Malaysia, Flood Susceptibility, Flood Hazards

Abstract. Flooding is one of the most prevalent natural disasters affecting people worldwide. Flooding is a devastating natural disaster in Malaysia regarding the number of people affected, socioeconomic damage, severity, and scale of the impact. Urban flooding is currently a major concern due to the possible consequences and frequency with which it occurs in urban areas as urbanization and population increase. Due to the paved surfaces, paved roads, high population, and buildings that prevent water infiltration and movement to the nearby river, urban floods pose a significant threat to the sustainability of lives and properties in the city. The recent floods in Kuala Lumpur in December 2021 and January 2022 affected many buildings, infrastructure, and lives. As a result, this city needs to model the susceptibility of flood-prone areas for an early warning system against future flood hazards in Kuala Lumpur. This is because flooding can never be eradicated but can be minimized and managed. Therefore, this study integrates geospatial technology and a statistical model (logistic regression) to assess flood hazards in Kuala Lumpur. Ten flood conditioning factors such as altitude, slope, TWI, drainage density, distance to river, LULC, NDVI, NDWI, rainfall and MNDWI were used to predict the areas susceptible to flood. The prediction shows an overall accuracy of 0.84, precision of 0.91, recall of 0.72, and F1-score of 0.80. Distance to river, MNDWI, TWI, and LULC are the critical variables that showed high significance in the model prediction. Thus, stakeholders should prioritize urban planning and increase the drainage system to avoid flood effects.