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ABSTRACT 
With the wide use of UAVs in urban scenes making image acquisition easier, processing large-scale 3D reconstruction problems have 
become a basic need of the Structure from Motion(SfM) community. Because of high memory consumption and computation 
complexity, bundle adjustment (BA) is a significant bottleneck in large-scale 3D reconstruction problems. Distributed strategy is a 
current research direction. Recent research cut the view graph to optimize sub-scenes in small size and average common cameras 
and/or 3D points to align them into one in the end. Yet, those methods tried to simply average cameras and/or 3D points, which lack 
mathematical rigor and tend to get a sub-optimal result. This paper first cuts the view graph and expands it. Then we use the strategy 
of motion averaging instead of simply averaging points to obtain a robust result. Finally, refined results are achieved by optimizing 
reprojection errors in the overlapping area. We conduct experiments on UAV data, check the validity of graph cut and expansion, and 
analyze whether graph size influences the precision computation time. Visualization results show that our method preserves scenes 
well; precision and visualization of un-expanded scenes prove the necessity of graph expansion; statistical results also indicate the 
negative infect of large sub-scene size. 
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1. INTRODUCTION

Wide use of UAVs in urban scenes has made image acquisition 
easier. Today, processing large-scale image-based 3D 
reconstruction problems has become an essential demand in 
Structure from Motion(SfM) community . As the last step of SfM, 
bundle adjustment has been a bottleneck in solving large-scale 
optimization problems because of memory usage and 
computational complexity. When BA problems are too enormous, 
the effects of standard solutions using Levenberg-Marquardt(LM) 
algorithm seem to be relatively weak.  

Researches in recent years tried to split the problem by cutting 
view graph to solve sub-scenes in a much smaller scale and 
merge them in the end. Eriksson et al. (2016) used common 3D 
points to merge sub-scenes and proved feasibility of consensus-
based methods mathematically. Natesan Ramamurthy et al. 
(2017) used both cameras and points and introduced Alternating 
Direction Method of Multipliers (ADMM) which is one of 
consensus-based methods. Zhang et al. (2017) adopted ADMM 
and used cameras only to ease communication consumption. 
Mayer (2019) improved the method of Eriksson et al. (2016) by 
adjust points with fixed cameras instead of averaging them. After 
optimizing sub-scenes locally, common elements are used to 
align scenes. During alignment, information from common 
elements is mixed to get a transformation between sub-scenes. 
But their methods all have a shortcoming of simply trying to 
exchange and average cameras and/or 3D points. This averaging 
strategy has defects that lack mathematical rigor and a tendency 
to obtain sub-optimal results (Cin et al., 2021).  
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Based on former research, we try to optimize large-scale scene 
faster than standard solution. On the other hand, we choose a 
mathematical-strict way to merge all sub-problems to get a robust 
result. 

2. METHOD

Bundle adjustment is generally modelled as a least square 
problem as: 

{I, E, X} = argmin��𝑥𝑥𝑖𝑖,𝑗𝑗 − 𝑓𝑓�𝐼𝐼𝑖𝑖 ,𝐸𝐸𝑖𝑖 ,𝑋𝑋𝑗𝑗��2
𝑖𝑖,𝑗𝑗

(1) 

where I, E, X and x represent intrinsic parameters, extrinsic 
parameters, coordinates of 3D points, and coordinates of 2D 
feature points, respectively; i and j represent indexes of cameras 
and 3D points. After splitting problem, the new cost function 
should consider projections from other graphs as   

G = argmin� ��𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘 − 𝑓𝑓(𝐼𝐼𝑖𝑖 ,𝐺𝐺𝑘𝑘(𝐸𝐸𝑖𝑖),𝐺𝐺𝑙𝑙(𝑋𝑋𝑗𝑗,𝑙𝑙))�
2

𝑙𝑙,𝑙𝑙≠𝑘𝑘𝑘𝑘

(2) 

where G present the global transformations of sub-graphs 
aligning them to a unified coordinate system, k and l represent 
indexes of sub-scenes. 
The workflow chart is presented in Figure 1. We take a complete 
scene as input data and establish a view graph based on matching 
feature pairs. Edges in the graph contain relative transformations 
between images, Normalized Cut (NC) is used to cut the graph 
into multiple sub-scenes. Graph expansion is executed to increase 
common 3D points number between scenes. We carry out local 
bundle adjustment for every sub-scene.  
Having cut sub-scenes, we could build a cluster graph whose 
nodes denote sub-scenes and edges contain relative 
transformations between sub-scenes. Former researches average 
common 3D points to calculate global transformations for sub-
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scenes implicitly. Firstly, we use common points to update 
relative transformations with errors due to mismatches or 
insufficient elements. Secondly, we adopt the strategy of motion 
averaging and separate estimation of rotations, scales, and 
translations for more robust global transformations. Estimations 
are formulated as: 

𝐴𝐴𝑇𝑇𝜑𝜑𝐴𝐴∆𝜔𝜔𝑔𝑔𝑙𝑙𝑔𝑔𝑔𝑔𝑔𝑔𝑙𝑙 = 𝐴𝐴𝑇𝑇𝜑𝜑𝜔𝜔𝑗𝑗𝑇𝑇𝜔𝜔𝑖𝑖,𝑗𝑗𝜔𝜔𝑖𝑖  (3) 
log(𝑆𝑆𝑖𝑖) − log�𝑆𝑆𝑗𝑗� = log�𝑆𝑆𝑖𝑖,𝑗𝑗� (4) 

𝑡𝑡𝑗𝑗 − 𝑆𝑆𝑖𝑖,𝑗𝑗𝑅𝑅𝑖𝑖,𝑗𝑗𝑡𝑡𝑖𝑖 = 𝑡𝑡𝑖𝑖,𝑗𝑗 (5) 
where subscript (i, j)  means global relations. Estimation of 
rotations is divided into two steps. Optimization is implemented 
with Formula (3) without weight matrix 𝐴𝐴𝑇𝑇𝜑𝜑 noted as L1 least 
squares (L1LS) followed by iteratively reweighted least squares 
(IRLS) to refine. While optimizing translation, rotations and 
scales are used.  
Finally, we project 3D points to images in other sub-scenes able 
to see them. Distance between projected point and 2D feature is 
termed overlapped error. Final global transformation is obtained 
by minimizing sums of overlapped errors. 

Fig 1. Workflow chart 

3. RESULTS AND DISCUSSION

This paper conducts experiments on UAV data whose shooting 
scenes include city and country. For the experiments, we use a 
computer with Intel i7-10700KF and 32GB of memory.

3.1 Statistical and visualization results  
In this part, we choose re-projection error to measure precision. 
Results are shown in table 1.  Figure 5 shows visualization 
examples. After distributed BA, shooting scenes are well 
preserved.  

Table 1. Statistical results 
Data image number rmse/pixel time used/s 

AHMAS 5449 0.930526 258.38 
GDZH-1 5043 0.449989 51.9 
GDZH-3 3767 0.893410 202.2 
HBWX 5706 0.987734 523.9 

a) GDZH-1 b) GDZH-3

c) AHMAS
Fig 2. Visualization results 

3.2 Graph cut and expansion 

This part aims to check the validity of graph cut and graph 
expansion. We run experiments using the same setting as 3.1 
which gives result with best precision only without graph 
expansion. After graph cut, sub-scenes have neat shapes to keep 
inside consistency. Meanwhile, overlapped areas between 
adjacent sub-graph grow larger after expansion which helps 
preserve conformity between verges of graphs. Skipping 
expansion makes some rise on rmse. While rmse decreases on 
AHMAS data, there are holes in scene, as shown in Figure 3. 
Comparison of rmse is listed in Table 2. 

Table 2. Comparison of rmse with or without graph 
expansion(GE) 

Data with GE without GE 
AHMAS 0.930526 0.812362 
GDZH-1 0.449989 1.199 
GDZH-3 0.893410 0.91641 
HBWX 0.987734 1.42939 

Fig 3. Comparison of results with or without graph expansion 

3.3 Influence of graph size 

In this part, we compare reprojection error and computational 
time in the same data with different maximum sizes of sub-scene. 
Results are shown in Figure 6. Rmse doesn’t have a clear trend 
to grow or descend with increasing sub-graph size, except a too 
big size could result in decreasing precision. As listed in Table 3, 
internal rmse denotes error in the non-overlap area, while overlap 
denotes overlapped error. Error accumulates bigger on the verge 
of scene, leading to more considerable overlapped error, so most 
data reach the best precision with a relatively small size. GDZH-
1 has a much bigger size as an exception, but it simultaneously 
has a remarkably better overlap rmse, which means its error 
accumulation is moderate. On the other hand, increasing 
maximum size lower computational time. Therefore, medium 
size and a comparatively big overlap ratio may be a wise choice. 
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a) Rmse with different size of sub-graph 

 
b) Time with different size of sub-graph 

Fig 4. Rmse and time with different size of sub-graph 
 

Table 3. Best rmse and its corresponding scene size 
data internal 

rmse/pixel 
overlap 

rmse/pixel 
scene size 

AHMAS 0.308041 1.072553 50 
GDZH-1 0.274357 0.593139 500 
GDZH-3 0.279860 1.050771 100 
HBWX 0.293848 1.138938 150 

 
 

REFERENCES 

[1] Eriksson, A., Bastian, J., Chin, T. J., & Isaksson, M. (2016). 
A consensus-based framework for distributed bundle adjustment. 
In Proceedings of the IEEE Conference on Computer Vision and 
Pattern Recognition (pp. 1754-1762). 
 
[2] Natesan Ramamurthy, K., Lin, C. C., Aravkin, A., Pankanti, 
S., & Viguier, R. (2017). Distributed bundle adjustment. In 
Proceedings of the IEEE International Conference on Computer 
Vision Workshops (pp. 2146-2154). 
 
[3] Zhang, R., Zhu, S., Fang, T., & Quan, L. (2017). Distributed 
very large scale bundle adjustment by global camera consensus. 
In Proceedings of the IEEE International Conference on 
Computer Vision (pp. 29-38). 
 
[4] Mayer H (2019) RPBA - robust parallel bundle adjustment 
based on covariance information. 
 
[5] Cin, A. P. D., Magri, L., Arrigoni, F., Fusiello, A., & 
Boracchi, G. (2021). Synchronization of Group-labelled Multi-
graphs. In Proceedings of the IEEE/CVF International 
Conference on Computer Vision (pp. 6453-6463). 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W6-2022 
Geoinformation Week 2022 “Broadening Geospatial Science and Technology”, 14–17 November 2022, Johor Bahru, Malaysia (online)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W6-2022-379-2023 | © Author(s) 2023. CC BY 4.0 License.

 
381


	1. Introduction
	2. Method
	3. Results and discussion
	3.1 Statistical and visualization results
	3.2 Graph cut and expansion
	3.3 Influence of graph size

	References



