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ABSTRACT: 
 
Mangroves have been protecting coastlines, nourishing wildlife, and capturing carbon for climate regulation. The decline of mangroves 
calls for action to rapidly and accurately monitor them. Remote Sensing makes it possible to remotely monitor mangroves from images 
captured from space. Sentinel-1 and Sentinel-2 are examples of remote sensing satellites and there is extensive research on their land 
cover mapping capabilities, including mangrove mapping. While machine learning is a popular methodology for mangrove mapping 
(e.g., the use of Random Forest) there exist simpler techniques, i.e., utilizing threshold segmentation-based indices that only use a 
formula and a specific threshold to extract mangrove extents from satellite imagery (mostly Sentinel imagery). This study compared 
the products and the accuracy of different threshold segmentation-based mangrove mapping indices in four study areas in the 
Philippines and one in Indonesia. Results showed that the Mangrove Vegetation Index (MVI), Automatic Mangrove Map and Index 
(AMMI), and the Optical and SAR images Combined Mangrove Index (OSCMI) subindex SWIRB (full name of this subindex here) 
were the superior indices with overall accuracies (OA) greater than 80% in all study areas and reaching a maximum of 90%, 91% and 
96%, respectively. By McNemar’s test showed that their results have insignificant differences. MVI, SWIRB, and AMMI only used 
Sentinel-2 optical imagery, which means the addition of Sentinel-1 SAR imagery was unnecessary. Since the validation data is a 
product of machine-learning classification, this shows that using threshold segmentation-based indices is promising as it is simpler, 
faster, and requires little skill compared to using classification techniques. 
 

1. INTRODUCTION 

Mangroves are coastal trees and shrubs that provide coastline 
support from surges, waves, currents, and tides (National 
Oceanic and Atmospheric Administration [NOAA], 2021). The 
root system of mangroves is home to marine organisms (NOAA, 
2021). These vegetation are also part of the blue carbon 
ecosystem as they capture and hold carbon for thousands of years 
faster than other forests, which is helpful against climate change 
(NOAA, 2013).  
 
However, Goldberg (2020) found that Earth lost 2.1% of 
mangrove area between 2000 and 2016, at an annual rate of 
0.13%. Mangroves are decreasing due to land conversion to 
agriculture and aquaculture (Gevaña et al., 2019; Goldberg, 
2020). The decrease of these forests may make countries that 
benefit from them more vulnerable to disasters, loss of 
biodiversity, and climate change. Thus, accurate and rapid 
monitoring of mangrove extent may prevent further deforestation 
of the mangroves. Remote Sensing makes this possible with 
satellite imagery. It is less expensive as free satellite imagery is 
available, e.g., Sentinel and Landsat imagery. Images captured 
years ago are also stored, allowing temporal analysis.  
 
To aid in mangrove extent extraction, researchers have developed 
indices that aim to improve the separability of mangroves from 
other land cover classes (Table 1). Many researchers used 
machine learning algorithms to accurately classify mangrove 
pixels (Goldberg, 2020; Kamal, 2020; Mondal et al., 2019; Pham 
et al., 2021). Proponents of some mangrove mapping indices 
claim that fusing or using their product image and applying 
machine-learning algorithms improves classification accuracy 

(Shi et al., 2016; Kumar et al., 2017; Gupta et al., 2018; Xia et 
al., 2018; Jia et al., 2018).  Xue and Qian (2022) recently 
developed the Generalized Composite Mangrove Index for 
Mapping Mangroves (GCMI). The index is built from several 
other indices and is imported to the Random Forest (RF) 
classifier. Its results were compared to other indices, including a 
threshold-segmentation based mangrove index, i.e., the 
Mangrove Vegetation Index (MVI) (Baloloy et al., 2020). CGMI 
has the highest overall accuracy, but it differs only by around 2% 
from MVI. Since machine learning algorithms like the RF can be 
computationally expensive, the slight extraction enhancement 
may not justify the significant additional efforts. Thus, 
researchers have developed threshold segmentation-based 
mangrove mapping indices that only require a specific threshold 
to separate it from non-mangroves (Huang et al., 2022; Baloloy 
et al., 2020; Jia et al., 2018; Suyarso, 2022; Zhang & Tian., 2013).  
 
Optical and SAR images Combined Mangrove Index (OSCMI) 
is one of the latest threshold segmentation-based mangrove 
extracting indices (Huang et al., 2022). The proponents showed 
that the addition of synthetic aperture radar (SAR) imagery 
produced higher accuracy than MVI. Thus, this study compared 
the accuracy of existing threshold segmentation-based mangrove 
extraction indices with several study sites and used a machine-
learning algorithm to validate the results. This study will also 
include Automatic Mangrove Map and Index (AMMI) by 
Suyarso (2022), which markets itself as an index that captures 
and traces mangroves extent, and simultaneously displays the 
relative index of mangroves canopy density. Furthermore, 
Mangrove Forest Index (MFI), was also included even though it 
is primarily for separating submerged mangroves from water to 
also test its capability in general mangrove extraction.  The 
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findings of the study will provide mangrove mappers insight on 
what index is best to use and some guidelines on the specific 
threshold values used in separating mangroves from non-
mangrove vegetation. 
 

Index Proponents Data Used 
Classification algorithm-based 

Normalized Difference Mangrove 
Index (NDMI) 

Shi et al. (2016) Landsat 

Mangrove Probability Vegetation 
Index (MPVI) 

Kumar et al. (2017) EO-1 Hyperion 

Combine Mangrove Recognition 
Index (CMRI) 

Gupta et al. (2018) Landsat-8 

Submerged Mangrove Recognition 
Index (SMRI) 

Xia et al. (2018) GF-1 

Mangrove Forest Index (MFI) Jia et al. (2018) Sentinel-2 
Generalized Composite 
Mangrove Index (GCMI) 

Xue & Qian (2022) Sentinel-2 

Threshold segmentation-based 
Mangrove Recognition Index (MRI) Zhang and Tian 

(2013) 
Landsat TM 

Mangrove Forest Index (MFI) Jia et al. (2018) Sentinel-2 
Mangrove Vegetation Index (MVI) Baloloy et al. 

(2020) 
Landsat or 
Sentinel-2 

Automatic Mangrove Map and Index 
(AMMI) 

Suyarso (2022) Landsat 5,7, 8 or 
Sentinel-2 

Optical and SAR images Combined 
Mangrove Index (OSCMI) 

Huang et al. (2022) Sentinel-1 and 
Sentinel -2 

Table 1. Indices for Mangrove Mapping 

1.1 Study Area 

In Southeast Asia and Asia-Pacific, the Philippines is considered 
one of the primary hotspots for mangrove deforestation and 
Indonesia is secondary (Gandhi & Jones, 2019). It is important 
for these countries to monitor mangrove covers to reduce the 
deforestation rate. Palawan, Surigao del Norte and Sur, and Tawi-
Tawi are four of the top provinces in the Philippines with largest 
mangrove cover at percentages of total national area 22.2%, 
6.8%, and 4.4%, respectively (Viray-Mendoza, 2017). Puerto 
Princesa City and Busuanga of Palawan, Siargao Island of 
Surigao del Norte, and Languyan, Bongao, Panglima Sugala, 
Sapa-Sapa, Tandubas, and South Ubian of Tawi-Tawi are 
selected as study areas of this research. To test the indices in a 
different country, the researchers chose Karimunjawa and 
Kemujan Islands, Indonesia as additional study areas. The 
researchers chose subsites, represented by the footprints of the 
images, for validation (Figure 1).  
 
 
 
 
 
 
 

 

 

 
Figure 1. Google Earth maps of selected study areas with PlanetScope true color image and its footprint overlaid. (A) Puerto 

Princesa City, Palawan, Philippines; (B) Busuanga, Palawan, Philippines; (C) Siargao Island, Surigao del Norte, Philippines; (D) 
Province of Tawi-Tawi, Philippines; (E) Karimunjawa-Kemujan Islands, Indonesia.  

(A) (B) 

(C) (D) 

(E) 
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2. DATA AND METHODS 

The workflow of this study is presented in Figure 2. The study 
used three types of satellite imagery. Sentinel-1 and Sentinel-2 
are free and open access imagery, while the commercial 
PlanetScope Imagery at a higher resolution was provided by 
Planet for free for this study. The PlanetScope imagery was 
classified to serve as the validation data for the accuracy 
assessment of the threshold segmentation-based indices. Before 
using it as validation data, it also underwent accuracy assessment 
using several reference data. Since MVI and OSCMI (including 
subindices) required thresholding to produce the optimal results, 
it was also applied to other indices to see the variability of the 
indices, especially in different study areas. 

 
Figure 2. General workflow of the study 

 
2.1 Satellite data and pre-processing  

Google Earth Engine (GEE)—a cloud-computing platform that 
houses satellite image collections and allows processing and 
analysis of large geospatial datasets—was used throughout this 
study (Gorelick et al., 2017).  
 
Sentinel-2 MSI: MultiSpectral Instrument, Level-2A image 
collection provides orthorectified and atmospherically corrected 
surface reflectance data. Temporal median reduction is applied to 
all images of Puerto Princesa in this collection throughout 2020, 
with a cloud cover of less than 20%. However, the cloud cover 
requirement is extended to 30% for Siargao as half of the island 
does not have Sentinel-2 imagery meeting the 20% requirement 
throughout the year. 
 
Sentinel-1 SAR GRD: C-band Synthetic Aperture Radar Ground 
Range Detected, log scaling image collection provides calibrated 
and ortho-corrected product with GRD border noise and thermal 
noise removed. Temporal median reduction is again applied to all 
Interferometric Wide Swath (IWS) images of Puerto Princesa in 
this collection throughout 2020. The image composite is then 
reprojected to the Sentinel-2’s image composite’s map 
projection.  
 
Mangroves are coastal vegetation where elevations are relatively 
low. Thus, a vegetation mask and an elevation mask of values 
less than 35 meters were applied to Sentinel-2 and Sentinel-1 

using Sentinel-2 Level 2A Scene Classification Layer (SCL) and 
NASA SRTM Digital Elevation, respectively, to all image 
collections used in the study.  
 
PlanetScope imagery for each study site in 2020 with low cloud 
cover was utilized and classified for accuracy assessment 
purposes. The images have eight (8) bands and are in surface 
reflectance that is harmonized to Sentinel-2 values. However, 
Tawi-Tawi does not have an available 8-band image for that year. 
The researchers settled with a 4-band image, instead. Clear 
masking was then applied to remove the cloud, cloud shadow, 
haze, and snow. 
 
All images are clipped to each study area’s administrative 
boundaries.  
 
2.2 Threshold segmentation-based mangrove indices  

This study used mangrove extracting indices that only require a 
specific threshold to separate mangroves from other land cover 
classes and do not require tidal data. These indices are Mangrove 
Recognition Index (MRI), Mangrove Forest Index (MFI), 
Mangrove Vegetation Index (MVI), Optical and SAR images 
Combined Mangrove Index (OSCMI), and Automatic Mangrove 
Map and Index. 
 
However, Mangrove Recognition Index (MRI) was developed 
using multi-temporal Landsat TM images with different tide 
levels (Zhang & Tian, 2013). The index requires tidal data which 
is counterproductive to the goal of rapid mangrove mapping. 
Hence, it was excluded from this study.  
 
To aid in optimizing threshold values for mangrove extraction, 
stratified sampling of the classified validation image with 50 
samples each for mangroves and non-mangroves for each study 
area, following Olofsson et al. (2014). The corresponding 
threshold segmentation-based index values were then extracted 
from those samples. The data was then visualized through box 
plots to show the distribution of index values for mangroves and 
non-mangroves. 
 
2.2.1 Mangrove Forest Index (MFI) 
 
MFI is the first index to address the mangrove mapping limitation 
of needing multi-tide imagery. It was developed to separate 
submerged mangrove forests from water by using red-edge bands 
using Sentinel-2 imagery (Jia et al., 2019).  
 
𝑀𝑀𝑀𝑀𝑀𝑀 = [(𝜌𝜌𝜆𝜆1 − 𝜌𝜌𝐵𝐵𝜆𝜆2) + (𝜌𝜌𝜆𝜆2 − 𝜌𝜌𝐵𝐵𝜆𝜆2) + (𝜌𝜌𝜆𝜆3 − 𝜌𝜌𝐵𝐵𝜆𝜆3) + (𝜌𝜌𝜆𝜆4

− 𝜌𝜌𝐵𝐵𝜆𝜆4) 
(1) 

 
where the ρλi is the reflectance of the band center of λ, and i 
ranged from 1 to 4; λ1, λ2, λ3, λ4 represent the center 
wavelengths at 705, 740, 783 and 865 nm, respectively. ρBλi is 
the baseline reflectance in λi. ρ665 and ρ2190 are the reflectance of 
band 4 (centered at 665 nm) and 12 (centered at 2190 nm), 
respectively.  
 
𝜌𝜌𝐵𝐵𝜆𝜆𝐵𝐵 =  𝜌𝜌2190 +  ( 𝜌𝜌665 −  𝜌𝜌2190 )  ×  (2190 −  𝜆𝜆𝜆𝜆)/(2190 −  665) (2) 

 
The Sentinel-2 bands used in this index have different spatial 
resolutions. When performing analysis in GEE, the bands 
ingested are automatically resampled to the band with the highest 
resolution.   
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The minimum threshold for submerged mangrove mapping of 
MFI is 0 (Jia et al., 2019). However, the proponents did not 
examine mangrove extraction from other vegetation types.  
 
2.2.2 Mangrove Vegetation Index (MVI) 
 
MVI was developed to separate different land cover and land use 
classes from mangroves using single-tide imagery. It was 
formulated from the common usage of NIR and SWIR in several 
mangrove mapping indices. Both Sentinel-2 and Landsat-8 
imagery are tested with MVI. The recommended range threshold 
is 4.5 to 16.5 (Baloloy, 2020).  
 

𝑀𝑀𝑀𝑀𝑀𝑀 =
𝑁𝑁𝑀𝑀𝑁𝑁 −  𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺

𝑆𝑆𝑆𝑆𝑀𝑀𝑁𝑁1 −  𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺
 (3) 

 
NIR, Green, and SWIR1 are the reflectances for bands 8, 3, and 
11, respectively for Sentinel-2. For Landsat-8, they are bands 5, 
3, and 6, respectively. 
 
However, a recent assessment of the index by Neri et al. (2021) 
found that misclassification occurred in fishponds, croplands 
near mangrove sites, and areas in or near coastal regions with 
palm trees due to the similarity of spectral signatures with other 
vegetation in these areas. Thus, the optimal threshold for a large 
site may not be the same for its subsites (Neri et al., 2021).  
  
2.2.3 Automatic Mangrove Map and Index (AMMI) 
 
Suyarso (2022) developed a mangrove vegetation index that 
simultaneously extracts mangroves and computes canopy density 
precisely using optical satellite imagery, e.g., Sentinel-2 and 
Landsat-5, Landsat-7, and Landsat-8. The algorithm is the 
product of two equations. The first equation should separate the 
land and vegetation from water features. The second equation 
should map the extent of mangroves and display the canopy 
density. The proponent did not provide a threshold range but 
from his results, it was between 5 to 10. 
 

𝐴𝐴𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑅𝑅𝑅𝑅
𝑁𝑁𝑅𝑅𝑅𝑅 + 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁1

 ⋅ 𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁1
𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁1−0.65∗𝑁𝑁𝑅𝑅𝑅𝑅

 (4) 

 
NIR, Red, and SWIR1 are the reflectances for bands 8, 4, and 11, 
respectively for Sentinel-2. For Landsat 5 and 7, they are bands 
4, 3, and 5, respectively. For Landsat 8, they are bands 5, 4, and 
6, respectively. 
 
2.2.4 Optical and SAR images Combined Mangrove  
 Index (OSCMI) 
 
Other than the two problems addressed by MFI and MVI, Huang 
et al. (2022) consider the vulnerability of optical images to clouds 
and fog as another problem in mangrove mapping. Hence, they 
introduced Synthetic Aperture Radar (SAR) imagery to solve this 
problem. This index can be computed by fusing SAR and optical 
imagery, i.e., Sentinel-1 and Sentinel-2 imagery. The formula is 
as follows: 
 

𝑂𝑂𝑆𝑆𝑂𝑂𝑀𝑀𝑀𝑀 =
𝑆𝑆𝑀𝑀

𝑁𝑁𝑀𝑀𝑁𝑁𝑁𝑁 +  𝑆𝑆𝑆𝑆𝑀𝑀𝑁𝑁𝑁𝑁 + 𝑀𝑀𝑀𝑀
 (5) 

 
where WI is the sum of NDWI and MNDWI; NIRB is the sum of 
the reflectance of Sentinel-2 B6, B7, B8 and B8A; SWIRB is the 
sum of the reflectance of Sentinel-2 B11 and B12; VV is the 
backscatter coefficient of Sentinel-1 VV polarization mode 
(Huang et al., 2022). WI, NIRB, and SWIRB are not acronyms. 
 

𝑁𝑁𝑁𝑁𝑆𝑆𝑀𝑀 =
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 −  𝑁𝑁𝑀𝑀𝑁𝑁
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 +  𝑁𝑁𝑀𝑀𝑁𝑁

 
 

(6) 

𝑀𝑀𝑁𝑁𝑁𝑁𝑆𝑆𝑀𝑀 =
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 −  𝑆𝑆𝑆𝑆𝑀𝑀𝑁𝑁1
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 +  𝑆𝑆𝑆𝑆𝑀𝑀𝑁𝑁1

 (7) 

 
Green, NIR, and SWIR1 are the reflectances for bands 3, 8, and 
11, respectively for Sentinel-2. For Landsat-8, they are bands 3, 
5, and 6, respectively. 
 
OSCMI and its subindices WI, NIRB, and SWIRB were found to 
be more accurate than MVI in distinguishing mangrove from 
other vegetation (Huang et al., 2022). The threshold ranges from 
0.04 to 0.07, -0.50 to -0.30, 0.95 to 1.10, and 0.15 to 0.20 for 
OSCMI, WI, NIRB, and SWIRB, respectively (Huang et al., 
2022). However, its reliance on optical imagery does not solve 
the cloud and fog cover problem. 
 
2.3 Accuracy Assessment 

PlanetScope images captured in 2020 were classified into two 
classes, i.e., Mangroves and Non-Mangroves. The products were 
used for the accuracy assessment and comparison of the selected 
mangrove indices in this study.  

Principal Component Analysis (PCA) reduces spectral 
information dimensionality by a linear transformation of the 
variation in a multiband image into a set of uncorrelated image 
bands (L3Harris, n.d.). The technique helps in visualizing 
patterns in a dataset (Powell, n.d.). Additionally, PCA is found to 
improve the classification process and results in Land Use Land 
Cover Mapping (LULC) compared to using the original dataset 
applied with mangrove as the interpretation error is minimized 
with better visualization of patterns (Abdu, 2019). The same was 
observed with mangrove differentiation from other vegetation 
(Green, 1998). Therefore, PCA was applied to the pre-processed 
PlanetScope images. The resulting Principal Component (PC) 
bands with high variance were selected as a guide in training the 
algorithm.  

Different classification algorithms were compared in mangrove 
cover change monitoring and found that Random Forest (RF) 
machine learning algorithm performed the best (Elmahdy et al., 
2020; Toosi et al., 2019). Thus, RF was utilized in this study to 
classify the PlanetScope images. 

Stratified random sampling was employed for the validation of 
the classified PlanetScope images with 50 samples each for 
mangroves and non-mangroves classes. Sentinel-2 and 
PlanetScope False Color Combinations, and mangrove maps 
from previous studies were used as references. Accuracy 
assessment was performed. The metrics for accuracy used in this 
study are producer’s accuracy (PA), user’s accuracy (UA), 
overall accuracy (OA), and Kappa coefficient (κ).  

To assess the mangrove extraction of the threshold segmentation-
based indices, their image results and the classified PlanetScope 
image were concatenated into one multiband image. Stratified 
random sampling was employed again with 50 samples per class 
of the classified PlanetScope images.  Accuracy assessment was 
then repeatedly performed to optimize the quality of the 
mangrove extracting indices with the classified PlanetScope 
image as reference.  

McNemar’s test is a statistical test for comparing two 
classification methods. It follows a chi-square distribution with 
one degree of freedom (Raschka, 2018): 
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𝜒𝜒2 =
(𝑁𝑁 − 𝑂𝑂)2

𝑁𝑁 + 𝑂𝑂
 (8) 

 
Where B is the number of misclassified samples from index 1 but 
classified correctly by index 2. Meanwhile, C is the number of 
misclassified samples from index 2 but classified correctly by 
index 1.  
 
The p-value is computed and compared to the set significance 
level, i.e., 0.05. The null hypothesis is index 1 and index 2 

produce statistically similar results. We reject the null hypothesis 
if the p-value exceeds the set significance level. 
 

3. RESULTS AND DISCUSSION 

3.1 Random Forest (RF) Mangrove Extraction 

Table 2 shows the accuracy assessment results of the classified 
PlanetScope images using RF classifier. The metric values are 
greater than 80% (or 0.8 κ) in most study areas. The good results 
make them a valid reference for the accuracy assessment and 
thresholding of the indices.

 

Metric Puerto Princesa City, 
Palawan, Philippines 

Busuanga, Palawan, 
Philippines 

Siargao, Surigao del 
Norte, Philippines 

Tawi-Tawi Province, 
Philippines 

Karimunjawa-Kemujan 
Islands, Indonesia 

OA (%) 94.00 92.00 91.00 89.00 96.00 
κ 0.88 0.84 0.82 0.78 0.92 
 NM M NM M NM M NM M NM M 
UA (%) 92.00 96.00 96.00 88.00 92.00 90.00 80.00 98.00 94 98 
PA (%) 95.83 92.31 88.89 95.65 90.20 91.84 97.56 83.05 97.92 94.23 

Table 2. Accuracy Assessment Results of Random Forest (RF) Classified PlanetScope Images. 
 

Figure 4 provides insights into the separability of mangroves and 
non-mangroves. In Huang et al (2022), MVI showed poor 
separability from non-mangrove samples, unlike OSCMI and its 
subindices. However, in this study, it can be observed that MVI 
showed good and consistent separability in the five study areas. 
Meanwhile, OSCMI and its subindices, excluding SWIRB, 
showed poor to fair separability. Like MVI, SWIRB and AMMI 
showed good separability with the interquartile range (IQR) (or 
the boxes) of each class having separate values. Despite that, all 
indices have intersecting  mangrove and non-mangrove index 
values, as seen in the box plots’ whiskers. This result is different 
to the study of Baloloy et al. (2020) which showed no intersection 
between mangroves’ and non-mangroves’ MVI values. While 

possibly minimal for MVI, SWIRB, and AMMI, it can still affect 
the accuracy of the extraction. 
 
This study agrees with Huang et al. (2022) that box plots are not 
enough to assess the reliability of these mangrove indices. 
However, they helped optimize the index threshold for the best 
extraction of mangroves. Table 3 shows each index's optimized 
extraction threshold and accuracy for every study area. Only 
SWIRB had an optimized threshold that was consistently within 
the recommendation of the proponents, except in Puerto Princesa 
with a slight difference. This may indicate that, like in Neri et al. 
(2021), the other indices’ optimal mangrove extracting threshold 
may differ per location. 

 

(A) 

 

(B) 

 

(C) 
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Figure 4. Box plots of the mangrove indices’ values from the validation data for each study area. (A) Puerto Princesa City, Palawan, 

Philippines; (B) Busuanga, Palawan, Philippines; (C) Siargao Island, Surigao del Norte, Philippines; (D) Select municipalities of 
Tawi-Tawi, Philippines; (E) Karimunjawa-Kemujan Islands, Indonesia. NM = Non-Mangrove, M = Mangrove.

 
Mangrove Extent 
Extraction Index 

Optimal Mangrove 
Threshold 

Recommended 
Mangrove Threshold 

MVI M > [2.7, 5.0] M > 4.5 
OSCMI M < [0.055, 0.55]  M < [0.04, 0.07] 
MFI M > [0.15, 0.25]  n/a 
AMMI M > [2.0, 5.0] M > [5.0, 10.0] 
WI M > [-1.25, -1]  M > [-0.50, -0.30] 
NIRB M < [1.13, 1.30]  M < [0.95, 1.10] 
SWIRB M < [0.15, 0.21] M < [0.15, 0.20] 

Table 3. The optimal mangrove threshold of each mangrove 
index vs the recommended threshold by the proponents. 

 
Neri et al. (2021) concluded that the MVI optimal threshold 
varies by land cover classes, climatic conditions, or tidal 
conditions. Mangrove health may also be an additional factor to 
lower thresholds for MVI (Baloloy et al., 2020; Martinez et al., 
2022). The same reasons may apply to the other indices, but 
further testing of the other indices with smaller areas such as 
aquaculture lands, irrigated croplands, and sites with palm trees, 
may provide more insights. It is also possible that the high 
variation of the optimal threshold is caused by the accumulation 
of the individual variability of the reflectance bands. 

 
Area (A) MVI  (M > 2.7) OSCMI (M < 0.24) MFI (M > 0.16) AMMI (M > 2.0) WI (M > -1.15) NIRB (M < 1.15) SWIRB (M < 0.21) 
Metric NM M NM M NM M NM M NM M NM M NM M 

UA (%) 90.91 82.14 78.94 67.74 60.87 53.25 84.00 84.00 71.05 62.90 60.00 68.57 95.45 85.71 
PA (%) 80.00 92.00 60.00 84.00 28.00 82.00 84.00 84.00 54.00 78.00 78.00 48.00 84.00 96.00 
OA (%) 86 72.00 55.00 84.00 66.00 63.00 90.00 
κ 0.72 0.44 0.1 0.68 0.26 0.26 0.80 
Area (B) MVI  (M > 2.9) OSCMI (M < 0.055) MFI (M > 0.15) AMMI (M > 2.0) WI (M > -1.25) NIRB (M < 1.4) SWIRB (M < 0.16) 
Metric NM M NM M NM M NM M NM M NM M NM M 

UA (%) 90.00 90.00 66.07 70.45 53.57 51.39 91.49 86.79 71.43 65.52 63.16 58.06 88.68 93.62 
PA (%) 90.00 90.00 74.00 62.00 30.00 74.00 86.00 92.00 60.00 76.00 48.00 72.00 94.00 88.00 
OA (%) 90.00 68.00 52.00 89.00 68.00 60.00 91.00 
κ 0.8 0.24 0.04 0.78 0.36 0.20 0.82 
Area (C) MVI  (M > 5.0) OSCMI (M < 0.55) MFI (M > 0.25) AMMI (M > 5.0) WI (M > -1.00) NIRB (M < 1.3) SWIRB (M < 0.20) 
Metric NM M NM M NM M NM M NM M NM M NM  

UA (%) 78.57 78.57 72.55 73.47 53.23 55.26 78.57 86.36 63.63 76.47 61.40 65.12 94.74 77.42 
PA (%) 88.00 76.00 74.00 72.00 66.00 42.00 88.00 76.00 84.00 52.00 70.00 56.00 72.00 96.00 
OA (%) 82.00 74.00 54.00 82.00 68.00 63.00 84.00 
κ 0.64 0.48 0.08 0.64 0.36 0.26 0.68 
Area (D) MVI  (M > 3.5) OSCMI (M < 0.22) MFI (M > 0.20) AMMI (M > 3.3) WI (M > -1.15) NIRB (M < 1.15) SWIRB (M < 0.15) 
Metric NM M NM M NM M NM M NM M NM M NM M 

UA (%) 80.39 81.63 83.33 60.53 45.90 45.10 78.18 84.44 61.36 58.93 70 63.33 93.02 82.46 
PA (%) 82.00 80.00 40.00 92.00 44.00 46.00 86.00 76.00 54.00 66.00 56.00 76.00 80.00 94.00 
OA (%) 81.00 66.00 45.00 81.00 67.00 66.00 87.00 
κ 0.62 0.32 -0.10 0.62 0.20 0.32 0.74 
Area (E) MVI  (M > 3.3) OSCMI (M < 0.15) MFI (M > 0.22) AMMI (M > 2.5) WI (M > -1.17) NIRB (M < 1.13) SWIRB (M < 0.20) 
Metric NM M NM M NM M NM M NM M NM M NM M 

UA (%) 87.04 93.48 59.65 62.79 70.97 59.42 88.68 93.62 71.43. 70.59 75.86 85.71 97.92 94.23 
PA (%) 94.00 86.00 68.00 54.00 44.00 82.00 94.00 88.00 70.00 72.00 88.00 72.00 94.00 98.00 
OA (%) 90.00 61.00 63.00 91.00 71.00 80.00 96.00 
κ 0.80 0.22 0.26 0.82 0.42 0.6 0.92 
Table 4. Accuracy assessment of mangrove extraction results using the indices with their respective mangrove extracting threshold.  

(A) Puerto Princesa City, Palawan, Philippines; (B) Busuanga, Palawan, Philippines; (C) Siargao Island, Surigao del Norte, 
Philippines; (D) Select municipalities of Tawi-Tawi, Philippines; (E) Karimunjawa-Kemujan Islands, Indonesia. Producer’s 

Accuracy (PA), User’s Accuracy (UA), Overall Accuracy (OA), Kappa coefficient (κ), Non-Mangrove (NM), Mangrove (M)
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Table 4 shows that only MVI, AMMI, and SWIRB produced 
consistently high OA that is greater than 80%, even 90% in 
certain study areas. The three indices did not produce many false 
positives or false negatives with a consistently high UA and 
PA.By Landis and Koch’s (1977) standards, the κ values of MVI, 
AMMI, and SWIRB have substantial to an almost perfect 
agreement with the reference data. These confirm great 
separability between the two classes from the box plots. 
Meanwhile, the other indices failed to get an OA of 80% in all 
study areas. It is notable that MFI got the lowest accuracies and 
poor κ, indicating that the index is not for mangrove extraction 
from vegetation pixels. A κ of 0 indicates that the classification 
agrees with actual data by random chance (McHugh, 2012). 
 
Table 5  shows maps of the mangrove extraction results using 
RF, and the six (6) threshold segmentation-based indices. The RF 
results were used for validation and accuracy assessment. By 
visual inspection, MVI, AMMI, SWIRB performed well in all 
study areas, showing similar extents to the RF map. OSCMI and 
WI performed visually well only in Siargao as expected from 
their box plots in Figure 4, which showed almost separate box 
values. The rest of the threshold segmentation-based index 
extraction results are noisy and may have overperformed or 
underperformed. 
 
The McNemar tests in Table 6 show that MVI, SWIRB, and 
AMMI mostly have insignificant differences from each other but 
are significantly different from the other index extraction results. 
Meanwhile, the other indices have statistically significant 
differences in certain areas. The consistency of the accuracy 
without significant differences between the three indices’ results 
implies that the two provide the best mangrove extraction results. 
 
 
 

Index Pairs A B C D E 
MVI OSCMI 0.008 0.000 0.013 0.014 0.000 
  MFI 0.000 0.000 0.000 0.000 0.000 
 AMMI 0.414 0.655 1.000 1.000 0.317 
  NIRB 0.001 0.000 0.002 0.016 0.059 
  SWIRB 0.102 0.763 0.637 0.134 0.034 
  WI 0.000 0.000 0.004 0.000 0.001 
OSCMI MFI 0.022 0.063 0.001 0.009 0.763 
 AMMI 0.040 0.000 0.029 0.022 0.000 
  NIRB 0.117 0.182 0.105 1.000 0.001 
  SWIRB 0.000 0.000 0.028 0.000 0.000 
  WI 0.014 1.000 0.197 0.221 0.025 
MFI AMMI 0.000 0.000 0.000 0.000 0.000 
 NIRB 0.365 0.317 0.122 0.023 0.001 
  SWIRB 0.000 0.000 0.000 0.000 0.000 
  WI 0.152 0.046 0.012 0.071 0.170 
AMMI NIRB 0.002 0.000 0.004 0.022 0.034 
 SWIRB 0.083 0.527 0.637 0.157 0.059 
 WI 0.004 0.000 0.008 0.001 0.000 
NIRB SWIRB 0.000 0.000 0.001 0.000 0.000 
  WI 0.622 0.194 0.384 0.289 0.061 
SWIRB WI 0.000 0.000 0.008 0.000 0.000 

Table 6. McNemar Test p-values between all index pairs. Bold 
values signify significantly different extraction results (at p < 

0.05). (A) Puerto Princesa City, Palawan, Philippines; (B) 
Busuanga, Palawan, Philippines; (C) Siargao Island, Surigao del 

Norte, Philippines; (D) Select municipalities of Tawi-Tawi, 
Philippines; (E) Karimunjawa-Kemujan Islands, Indonesia 

 
4. CONCLUSION 

With the alarming deforestation of mangroves comes the need for  
rapid and accurate mangrove mapping. Researchers have 
developed methodologies to aid in this enterprise. One promising 
method is the use of threshold segmentation-based mangrove 

mapping indices that uses only a simple formula to extract 
mangroves from images. The most recently developed ones are 
the Automatic Mangrove Map and Index (AMMI) by Suyarso 
(2022) and the Optical and SAR images Combined Mangrove 
Index (OSCMI) by Huang et al. (2022). The OSCMI proponents 
claimed their index as the superior mangrove mapping index 
when compared to its subindices WI, NIRB, and SWIRB, and 
another threshold segmentation-based mangrove mapping index, 
the Mangrove Vegetation Index (MVI) by Baloloy et al. (2020). 
However, the results of this study were found to be the opposite 
of the findings of Huang et al. (2022).  
 
This study assessed the different threshold segmentation-based 
indices using Sentinel imagery in five (5) study areas. The 
researchers used principal component analysis (PCA) as a 
training guide and Random Forest (RF) Machine Learning 
algorithm as the classifier on PlanetScope Imagery. Other than 
OSCMI, its subindices, and MVI, the Automatic Mangrove Map 
and Index (AMMI) by Suyarso (2022) and Mangrove Forest 
Index (MFI) by Jia et al. (2018) were included in the assessment. 
MVI, AMMI, and SWIRB showed consistently high accuracy 
(greater than 80%) in all study areas. The other indices struggled 
in separating mangroves from non-mangroves. Furthermore, the 
results show that threshold segmentation-based indices produce 
similar results to machine-learning mangrove extraction.  
 
Using the McNemar test, MVI, SWIRB, and AMMI produced 
insignificant differences from their results but significant 
differences are found when paired with other indices, proving 
further their superiority. These three indices only used Sentinel-
2 optical imagery. The results refute the postulations of Huang et 
al. (2022) that the introduction and fusion of SAR imagery 
(specifically, the VV polarization mode from Sentinel-1) with 
Sentinel-2 imagery improve mangrove extraction accuracy and 
the mode is a necessity for mangrove mapping.  
 
The findings were expected from the box plot analysis as only 
MVI, SWIRB, and AMMI showed good separability between 
mangroves and non-mangroves. It is notable that box plot results 
were opposite to that of Huang et al. (2022), with MVI showing 
weak separability. Neri et al. (2021) did mention that the 
threshold for MVI is site-specific as it is variable to the 
environmental conditions and mangrove health (Baloloy et al., 
2020; Martinez et al., 2022). Regardless, MVI still reached 
accuracies of greater than 80% in Huang et al. (2022) in four 
study areas in China but its statistical significance is yet to be 
assessed with the other indices’ results for that country.  
 
While the results between MVI, AMMI, and SWIRB are similar, 
SWIRB produced the most accurate results overall. Still, the 
McNemar test indicates that three indices will provide 
satisfactory mangrove extraction results without significant 
difference. The same can be seen in the maps they produced. 
However, the simplicity of SWIRB (sum of the Sentinel-2’s 
SWIR Bands) may be slightly preferable to MVI and AMMI. 
Additionally, the optimized threshold of SWIRB is found to 
correspond with the proponent’s recommendation (0.15 to 0.20) 
in four (4) out of five (5) study areas. If we include the accurate 
results of SWIRB having the same optimized threshold range in 
another four (4) study areas in Huang et al. (2022), this implies 
that SWIRB is the least variable compared to the other indices 
whose optimized threshold varies per study area and does not 
match within the range recommendation of their respective 
proponents. Regardless, MVI and AMMI have other features 
other than mangrove extraction. MVI seems to correspond with 
mangrove health (Baloloy et al., 2020; Martinez et al., 2022) 
while AMMI provides insights into mangrove canopy density 
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(Suyarso, 2022). SWIRB is yet to be studied for its correlation 
with mangrove biophysical parameters. 
 
 

RECOMMENDATIONS 

Neri et al. (2021) mentioned that there were missed mangroves 
due to the application of a vegetation mask from Sentinel quality 
scene classification layer (SCL). Huang et al. (2022) used NDVI 
thresholding to produce a vegetation mask. SCL masking may be 
faster as there is no need to optimize thresholds, but NDVI may 
produce significant results. Thus, the researchers recommend 
analyzing their difference in the results of mangrove mapping. 
 
While the RF machine learning algorithm is found to produce 
high accuracy results in land cover mapping, the use of ground  
data as inputs to RF may be more reliable and is recommended. 
 
Lastly, only SWIRB had an optimized threshold within the 
proponent’s recommendation, showing least variability to site 
and mangrove conditions. However, the studies that observed 
these are mostly in Asian countries. The threshold of all indices 
may differ again in different countries, similar to what MVI 
experienced in the study areas of Huang et al. (2022) in China. 
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