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ABSTRACT: 
 
It has been a challenge for electric power management to automatically extract power lines from LiDAR point clouds. However, 
environmental and technical issues have made management more challenging in complicated areas where power lines are in close 
proximity to buildings and/or trees. In this study, the structure and types of the data captured by a LiDAR sensor in regions 
containing line corridors were analysed. The crucial stage is appropriately identifying from the data the essential parts of a power 
line corridor route. The point cloud dataset used in the study belongs to the Borssele region in Zeeland, the Netherlands. By manually 
labelling the dataset, three classes were identified: wire, pylon, and others. For the classification of point clouds, the Random Forest 
method was utilised. To assess the obstacles posed by the class wire, 5 m, 10 m, and 15 m 3D buffer zones are created. The visual 
presentation of obstacles within the buffer zone is achieved by assigning them a separate class code and indicating that they are 
inside and partially within. Based on the results, the correctness values of the classes of wire and others are considered to be 
satisfactory. However, the class pylon contains points with incorrect labels after the classification. As a result, the accuracy of the 
pylon class is much lower than the accuracy of the other two classes. 
 

1. INTRODUCTION 

The demand for electricity has now reached an all-time high 
level. This means that keeping the load powered up at all times 
is vital to keeping clients satisfied, which is particularly 
significant due to the COVID-19 pandemic. To ensure that users 
receive uninterrupted power, corporations have prioritised the 
ability to maintain and regulate power lines rapidly and 
affordably. Thus, the power lines must be thoroughly inspected 
to detect and eliminate potential threats. The inspection process 
mainly differs depending on the characteristics of the 
settlement, i.e., urban or rural areas. While it mostly affects the 
usual flow of life in urban areas, it also results in numerous 
concerns, such as health, that cannot be compensated for by any 
interruption. Forest fires can arise as a consequence of any line 
breakage in forest areas, which are the heart of the living 
ecosystem, and this scenario can put the living life on an 
irreversible path in a rural area. 
 
There are several advantages to accurately mapping power 
lines: maximising power continuity by identifying infractions 
and creating safe line corridors; protecting the ecosystem from 
severe damage if a line breaks by limiting dangers that may 
affect living things in various locations; and automatically 
adjusting a helicopter's flight path in accordance with the 
mapping system's outputs; and so on. However, because 
electricity wires can reach great distances, traditional field-
based inspection is difficult or impossible in many cases. As a 
result of its technical advances, Light Detection and Ranging 
(LiDAR) technology has gained the lead role in such studies. 
The LiDAR, which can directly record high-precision 3D point 
cloud data of the power line corridor, is preferred to 
significantly shorten the time needed for the field survey. The 
point cloud dataset handled using LiDAR provides accurate data 
for the development of powerful and flexible methods for 
collecting information about power lines, regardless of the 

observed region's type and structure. The LiDAR, which creates 
a three-dimensional point model of a region, enables the 
detection of obstacles on power lines and the analysis of the 
region in which the dataset is being used. This makes it easier to 
identify and mitigate potential threats along the power line 
corridor. 
 
The primary objective of this work is to accurately map power 
lines using supervised point cloud data classification. This study 
utilised LiDAR data acquired by the ESRI Netherlands Map 
Society for the Borsselle region of Zeeland, Netherlands to 
locate obstacles in the power line corridor. Point-based 
supervised classification and obstacle detection are the two 
primary components of the method presented in this study. 
Local characteristics were retrieved by k-nearest neighbour 
(kNN) and entered as an input to the Random Forest (RF) 
classifier using the neighbourhood relations of the locations. 
After classification, a buffer region is formed for electrical 
wires to detect obstacles, with the obstacles shown in a new 
class code and a table containing their state as inside or partially 
within. The methodological overview is presented in Figure 1. 
In this work, CloudCompare (Vehiclemetrics Inc., 2022), 
MATLAB (The MathWorks Inc., 2021), and ArcGIS Pro (Esri 
Inc., 2021) were utilised for dataset segmentation, classification, 
and other related processes, respectively. 
 
The remainder of this work is organised in the following 
fashion. In the second section, some of the earlier work that has 
been done in this context is presented. In Section 3, we provide 
the information that has been gathered regarding the dataset that 
was used as well as the methodology. The outcomes of the 
experiments are discussed in Section 4. Section 5 summarises 
the findings and recommendations. 
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Figure 1. Workflow of the methodology.  
 

2. RELATED WORK 

Previous research analysed the difficulties encountered when 
managing a power line corridor; their origins; how they can be 
identified and mitigated; and how the applied work can improve 
the flow of life. The work conducted by Kim and Sohn (2013) 
covering the classification of power line objects using airborne 
laser scanning (ALS) data, considered Random Forests, a point-
based supervised classification method that enables the 
identification of corridor objects using LiDAR data. In a 
different study, an improved machine learning approach was 
proposed by Guo et al. (2016) to extract power lines from ALS 
data and reconstruct the gaps of power lines. A similarity 
detection method was used to identify the distribution properties 
of power-line sets. After that process, although most parts of the 
power lines were found to be clear, several openings were 
detected. For that reason, the RANSAC rule was utilised. Wang 
et al. (2017a) presented a power line extraction strategy whose 
four main components were candidate filtering, multi-scale 
neighbourhood selection, extraction of spatial topological 
features, and support vector machine (SVM) classification. In 
an experiment for an urban region, they discovered that feature 
extraction based on the multiple-scale spherical neighbourhood 
yielded superior classification results compared to a single-scale 
neighbourhood. Wang et al. (2017b) presented a semi-automatic 
design for the extraction of power line corridors. The direction 
of the power line corridor was introduced for candidate point 
filtering, and a multi-scale inclined cylindrical neighbourhood 
was presented for the extraction of structural features.  
 
In the novel work of Yang and Kang (2018), a voxel-based 
method was developed to automatically extract transmission 
lines from airborne LiDAR point cloud data. They also 
preferred Markov Random Field (MRF) model-based extraction 
for generating optimal results both locally and globally. 
Concerning an autonomous vision-based investigation, Nguyen 
et al. (2018) analysed power line mapping with deep learning 
algorithms, observing plants that threaten power lines, detecting 
icing, and monitoring disaster-induced breaches. Therefore, 
viable beginning points for constructing a system with deep 
learning methods using an unmanned aerial vehicle (UAV) were 
provided. Awrangjeb (2019) presented a sequential method for 
the recovery of power line corridors, pylons, and wires. First, 
corridors for power lines were recovered from the input point 

cloud data. Each power line corridor was described as a 
collection of rectangular regions, and only locations inside each 
rectangular region were evaluated for the location and 
extraction of pylons. The non-ground points between two 
consecutive pylons in the same power line corridor were then 
used to isolate individual wires. Chen et al. (2020) proposed a 
filtering process as a partition-based elevation histogram 
method based on spatial feature analysis of LiDAR data. The 
triangle modelling method was used in the land modelling 
process. The kd-tree data structure was employed to build the 
sphere search model, and safe distance detection of the tree 
barrier's dangerous points was achieved for power line points 
and vegetation points recovered by classification. 

 
3. MATERIAL AND METHODOLOGY 

3.1 Dataset 

The point cloud data used in this study includes the power lines 
in close proximity to a nuclear power plant located in the 
Borssele (Zeeland, Netherlands) region (see Figure 2). The 
Netherlands elevation data of AHN3 (Current Elevation File 
Netherlands) were generated from that point cloud data in 
which both ground-level and off-ground objects (trees, 
buildings, bridges, and other objects) were resampled from the 
point cloud to a 0.5-meter grid. The dataset has EPSG:28992 
horizontal and EPSG:5709 vertical reference systems and 
contains approximately 40 million points. In order to make the 
dataset more manageable, the data has been broken up into 
multiple small parts. Overall, 10% and 2% of the data belong to 
the classes of wire and pylon, respectively, and the rest (88%) 
belongs to the class others. The average point density is ≈ 12 
points/m2. 
 

 
 

 

 
Figure 2. Overview of the point cloud data of Borssele, 
Netherlands with three manually labelled classes. 
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3.2 Point Cloud Classification 

At this stage, we perform a point based supervised classification 
to detect three classes: wire (power line), pylon (conductor), and 
others. Extracting different features from the LiDAR point 
cloud as an input and the selection of a classifier are crucial 
steps. The features are usually computed from points and 
neighbours that represent the local object structures. For 
determining the spatial structure for each point under 
consideration, various neighbourhood types, such as spherical 
(Brodu and Lague, 2012), cylindrical (Filin and Pfeifer, 2005), 
and k-nearest neighbourhoods (kNN) (Weinmann et al., 2015; 
Seyfeli and Ok, 2022), are favoured. In this context, 
establishing a neighbourhood relationship with kNN is one of 
the main issues. The 3D kNN relation is in fact a flexible radius 
spherical neighbourhood. In this approach, a fixed k value is 
chosen, and the kd-tree algorithm (Bentley, 1975) is performed 
to find the k points that are closest to each point in the point 
cloud based on the 3D Euclidean distance. Twelve features, 
grouped as geometric-based and eigen-based, also known as 
shape properties, are recovered for each of the points in the 
neighbourhood to enrich the point attributes. 
 
The majority of publicly available 3D point cloud databases 
only include geometric data expressed as spatial 3D 
coordinates. The height of the point (Z) is one of the basic 
geometric features that are taken from the point cloud. The 
height difference between the lowest and highest points (ΔH = 
hmax – hmin) and the standard deviation of the height (σH) of all 
points in the local relations are additional features obtained 
from height. Verticality (V) is the final geometric property 
(Seyfeli and Ok, 2022). Moreover, the eigenvalues λ1,2,3 have 
great potential to calculate local shape properties, including 
dimensionality (linearity, planarity, and sphericity) in the local 
neighbourhood (Demantké et al., 2012), and other measures 
such as omnivariance, anisotropy, eigenentropy, sum of 
eigenvalues, and change of curvature. The eigenvalues listed as 
λ1 ≥ λ2 ≥ λ3 ≥ 0 and the measures listed in Equation 1 are eigen-
based properties. 
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During the classification step, all features retrieved from the 
neighbourhood of points are fed into a classifier, which assigns 
them to one of the given (semantic) classes. For simplicity, 
efficiency, and application in terms of reproducibility, the focus 
is on individual point classification using the Random Forest 
(Breiman, 2001) approach, which is frequently recommended 
for rapid classification of dense LiDAR point clouds. 

3.3 Obstacle Detection 

All living things in the forest ecosystem, especially trees and 
predators that grow uncontrollably, are potential obstacles. The 
obstacle detection approach that is based on classified point 
clouds is divided into five steps. The power lines are converted 
from points to lines first, as illustrated in Figure 3a (by using the 
Extract Power Lines from Point Cloud tool). The Buffer 3D tool 
is then used to assign a buffer on each power line (see Figure 
3.b), and violations in buffers are visualised (by using the 
Locate Las Points by Proximity tool). The status as entirely and 
partially violated points for each buffer is displayed in the 
fourth step using the Inside 3D tool. The last optional step is to 
save the table in Excel format. 
 

 
(a) 

 
(b) 

 
Figure 3. (a) Extracted power lines from point cloud, and (b) 
the generation of buffer area. 
 
3.4 Parameters 

In this study, a part of the data was selected from the datasets 
that contained an obstacle close to the power line. The training 
set contains over 30 million points, while the test set contains 
over 10 million points. While the random forest model is 
estimated using training data, it is subsequently used for the test 
set to independently evaluate classification outcomes. 
 
The necessary parameters to initiate the methodology are 
presented in Table 1. Accordingly, a fixed value (100 points) 
was chosen for the neighbourhood in the point-based 
classification stage of the study. In total, 12 features were 
extracted from the adjacent points. For the random forest 
classifier, the number of trees was taken as 25. As a comparison 
criterion for safe zone detection, buffer zones were set based on 
the distances of 5 m, 10 m, and 15 m. 
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Section Parameter Definition Parameters 

3.2 

k value  100 points 
# of features  12 
# of trees of RF {5, 10, 15, 20, “25”, 30} 
# of variables (n) to 
select for each decision 
split, √n 

3 

minimum # of 
observations per tree leaf 1 (default) 

3.3 Buffer radius (in meter) 5, 10, 15 
Table 1. Parameter settings. 

 
 

4. RESULTS AND DISCUSSION 

In Table 2, the columns represent predicted values for the 
classes of wire, pylon, and others based on the results of the 
confusion matrix. The training set's overall, user, and producer 
accuracy values are all fairly high (all above 99%). However, 
the accuracy values for the classes of wire and others are 
satisfactory in the test set, whereas the pylon class contains 
many mislabelled points (see Table 3). As a result, the user 
(27.9%) and producer accuracy (61.7%) values for pylons are 
significantly lower than those for the other two classes. Such 
poor findings may be the result of imbalanced number of points 
in the classes, with the pylon class containing the fewest 
number of points.  Despite the fact that the numerical overall 
accuracy value indicates that the classification performance is 
quite accurate, a thorough examination of the classified data 
reveals numerous mislabelled points (see Figure 4). 
 

 Predicted Values 

 others wire pylon 

A
ct

ua
l 

V
al

ue
s others 9,502,555 1,943 27,343 

wire 1,368 67,696 575 
pylon 6,531 168 10,807 

Table 2. Confusion matrix of the test set. 

 

 others wire pylon 
User Accuracy 99.9 97.0 27.9 

Producer Accuracy 99.7 97.2 61.7 
Overall Accuracy 99.6 

Kappa 80.5 
Table 3. User, producer, overall accuracy and kappa coefficient 
of the test data (in percentage - %). 

 

The geometric similarity of wires, pylons, and other objects is a 
source of confusion in the classification process. If the wires 
and pylons have any geometrical similarities with other objects, 
the model's predictions may be incorrect. Railroad or train lines 
that have a similar shape to power lines may cause classification 
errors. Similarly, considering the height feature used, wind 
turbines share a high degree of geometric similarity with pylons, 
and as a result, the model may classify wind turbines as pylons. 
The same can be said for the network poles and crane towers.  
 

 

 
 

Figure 4. Classification result of a part of the test set. 
 

The topography of the study area is a second point of 
discussion. Due to the difficulty of field-based inspection in 
regions such as forests and mountains, violation detection in 
rough terrain is essential for power line safety and the protection 
of animals. The topography of the data used for classification 
impacts the model's efficiency. Due to the comparatively 
smooth surface of the study area's topography, a rough surface 
may not produce the same results. In a flat environment, the 
absolute elevation of power lines does not significantly vary. 
However, this may not be the case in a rugged environment. As 
a result, the precision may possibly diminish over uneven 
terrain. To address this issue, the terrain can be represented 
using a digital terrain model with a resolution comparable to the 
input point cloud. 
 
In Figure 5, violations within the 10-meter-radius buffer zone 
are represented as inside and partially within. The tables offer 
X, Y, and Z information for each obstacle. The 'Object ID' 
column in the table represents the buffer ID in the data, the 
'Target ID' column represents the identity of the power lines, the 
'Status' column represents the status of the obstacles entering the 
buffer zone, and the 'Contain ID' column represents the number 
of obstacles entering the buffer zone. 
 

 
Figure 5. Visualization of obstacles within a 10-meter radius 
with a status table. 

 
As depicted in Figure 6, the buffer's radius and the number of 
obstacles it contains are directly proportional. Expanding the 
radius of the buffer area increases the number of obstacles 
within the buffer, making it simpler to discover violations. 
Calculating the radius of the buffer region is closely tied to the 
topographic structure of the data. As the radius expands, it 
becomes possible for unobstructed objects to cross the 
expanding buffer zone, resulting in misleading analysis results. 
In order to avoid erroneous results and construct a safe area that 
is convenient for the data, the topographic structure should be 
used to estimate the buffer radius. Besides, in this work, we 
preferred an individual buffer around each powerline extracted; 
however, one buffer around all extracted power lines, i.e. 
uniting the individual buffers, might be easier for dealing with 
the maintenance purposes. 
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(a) 

 
(b) 

 
(c) 

 
Figure 6. Visualization of obstacles within a 5m, 10m, and 15m radius. 
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5. CONCLUSION 

The purpose of this study is to classify power lines and build a 
buffer zone based on their classification. Identifying existing 
obstacles near power lines using LiDAR data may reduce the 
amount of time and effort invested and significantly increase 
operating efficiency. Provided as input are point cloud data for 
power lines, power poles, and other objects in urban and forest 
environments. LiDAR data was classified using the Random 
Forest approach.  
 
The supervised classification using the random forest approach 
achieved a producer accuracy of 97.2% for the class wire and 
61.7% for the class pylon. A satisfactory level of performance 
has been obtained. The identification of obstructions that enter 
the buffer zone is accomplished effectively. The classification 
accuracy for electrical wires was determined to be relatively 
high. The wires' nearly straight and almost parallel structure 
assures a low error rate. Even if a moderate degree of accuracy 
is attained through the classification of pylons, 
misclassifications sometimes occur, especially for points with 
similar geometries. Cranes, antennas, trees, and other poles with 
comparable characteristics were classified as electrical poles in 
the point cloud data since only geometric properties of 
neighbourhood points were considered during the classification. 
 
The classification performance may increase if the point cloud 
data can be supported with RGB features in addition to the 
geometric properties extracted from the point cloud. Parallel 
processing by dividing the study area into smaller grids can be 
utilised to improve the efficiency of the processing. In this 
study, three different classes were utilised, and the obstacles 
were defined in a single class (i.e., others). The number of 
classes can be increased to better identify obstacles. For 
example, it can be expressed that the majority of the detected 
obstacles are trees. For this reason, a tree class can be formed 
for power line corridors. In regions where the density of the 
point cloud data is different, it will not be appropriate to hold 
several parameters constant. In such a case, the parameters 
related to the neighbourhood should be updated according to the 
point density of the input dataset. In the context of supervised 
classification algorithms, this study could benefit from 
additional machine learning or deep learning strategies recently 
developed in the literature. 
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