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ABSTRACT: 

When assessing the state of the climate system, industrial area heat (IAH) is one of the most critical variables for energy auditing. 
Thermal infrared (TIR) remote sensing techniques were used to track the surface temperature and microclimate impacts in an 
industrial environment by analysing in-situ data and their relationship with industrial features to characterise their impacts on human 
health and climate change. Based on TIR data, this study used an automatic detection method for industrial area heat (IAH). The IAH 
data is first retrieved, then the local abnormal high-temperature pixels are extracted using PIX4D software for UAV and split 
window for Landsat 8, and finally, the hotspot targets are identified using the spatial autocorrelation Moran's analysis tool available 
in the ArcGIS ESRI environment. The correlations (R2) between in-situ measurement and satellite-based industrial emissions at PGI 
were 0.85 with an RMSE of + 3.37 and 0.89 with an RMSE of + 1.42 at KSM. The detection accuracy of IAH methods is dominant. 
IAH accounted for 20% of the cool- and hot spots areas in the entire study area. The total cool-spots had a higher polygons per km2 
(3.5 n/km2) value than the total hot-spots (0.6 n/km2) value, while LEVEL-3 and LEVEL-2 had the lowest values, while the highest 
values were always found in LEVEL-1, with approximately 50 % IAH variation between the previous and next level. Moving from 
the total average cool-spot to the total average hot-spot classes generally increased about 5 °C. Between the most extreme cool- and 
hot-spot levels (LEVEL-3) for PG in the overall industrial area, a mean IAH increase of approximately 34.7 °C and 58.5 °C was 
observed. 

1. Introduction

A remote sensing-based approach for mapping and estimation 
of IAH is fast recognized as the only viable tool for retrieval of 
land surface temperature (LST) over a large area (Biswal et al., 
2019). It offers an opportunity to collect relevant data from 
various sectors at high spatial and temporal resolutions with 
spectral scales (Liu et al., 2018; Zhang et al., 2019). Currently, 
in an epoch of technological revolution, progress in data 
acquisition is quite crucial and remained relevant in the thermal 
domain. However, the influence of IAH in economic sectors 
and vigorous heat loss from industrial plants have substantial 
implications for human health and climate change (Vollath, 
1987). Existing high-temperature detection methods are still 
limited when it comes to detecting small-scale industrial area 
heat (IAH) with a focus on hotspot targets because the well-
behaved process (contextual algorithm) is time-consuming and 
complex (Xia et al., 2018)  and relies heavily on midinfrared 
(Kuenzer et al., 2013) or short- infrared data (Malakar et al., 
2018). 
However, the most widely used data with mid-infrared or short-
infrared channels for heat detection have low spatial resolutions 
(Pandya et al., 2014; Pour et al., 2019; Yang et al., 2017). 
Furthermore, medium and high spatial resolution data, such as 
Unmanned area vehicles (UAV) and Landsat 8 TIRS, are 
primarily obtained during the day, since daytime data area ideal 
(Heutger, 2014; Murad et al., 2019; Omotosho et al., 2015). 

When compared to low-resolution thermal data, Landsat 8 data 
has a high sensor sensitivity in the TIR region with a spatial 
resolution of 100 m resample to 30 m (Mia et al., 2017), 
implying a higher brightness temperature saturation and the 
possibility of discovering cooler or smaller hot spots. Landsat 8 
data have two TIR channels ranging from 10.8 to 12 m, which 
compensate for the lack of midinfrared and SWIR channels 
(Hazaymeh & Hassan, 2015; Storey et al., 2014), which are not 
always available at night (Xia et al., 2018). We present a simple 
thermal variance index (TVI) based on Wien's law and Planck's 
law for the rapid detection of thermal variance information 
using Landsat 8 TIR data (Kant, 2021). 
Even though remotely sensed-based studies provide an 
alternative for the accurate depiction of IAH (Xia et al., 2018; 
Zhang et al., 2019), this research is limited to industrial 
applications. The use of remotely sensed surface temperature 
allows data to be collected over relatively large areas. Even the 
spatial resolution of such datasets, which ranges from 60 m to 
1000 m, is inadequate in acquiring local exchanges of surface 
temperature related to various environmental features in 
metropolises (Zheng & Weng, 2018). Therefore, UAV-based 
techniques can capture thermal imagery with a very high spatial 
resolution (≥ 5~10). These studies were supplemented by using 
disruptive technology to map and identify hotspot targets. These 
were accomplished by retrieving and estimating heat loss using 
UAV and Landsat-8 data, and (ii) identifying the hotspot target 
above ambient temperature. (iii) Relate the UAV to the satellite 
map. This study has a significant impact on the energy balance 
because it examines the relationship between industrial 
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materials and thermal energy at microscales (1:50,000 ~ 100,000 
scales. Therefore, detecting and mapping energy loss within 
various ranges of targets for various temperatures will help 
policymakers understand how to improve disparities in existing 
industrial substances. 
The main objective of this study is to use the SW algorithm for 
IAH retrieval from Landsat 8 TIRS data via GIS software and 
UAV TIR data via PIX4D software to display how the analysis 
and distribution of surface temperature for industrial areas are 
carried out for quantifying and mapping IAH. The application is 
in the industrial area of Pasir Gudang, Peninsular Malaysia. The 
stages to be realised are as follows: first, we present the 
algorithm derivation and computation analysis for the 
brightness temperature (TB) for retrieving IAH, and then IAH 
from UAV is directly extracted using PIX4D software. The 
multispectral (4,5, and 6) indices were used to track the 
evolution of the industrial area emissivity (IAE), and the TIRS 
bands (10 and 11) from Landsat 8 were used to retrieve IAH. 
The SW algorithm estimates the IAH for each ground pixel by 
combining the TB and IAE. Second, we validate the proposed 
algorithm and UAV data output by correlating them with in-
flight air temperature data. Most importantly, it will help to 
accelerate the implementation of Targets 9.4 and 11.6 to retrofit 
industries to make them more sustainable. As a result, it will 
make a significant contribution to the achievement of SDGs 9.4 
and 11.6 by 2030, which emphasise the need to promote 
resource-use efficiency and minimise cities' environmental 
impact by paying special attention to municipal waste 
management.  

2. Materials and methods 

2.1. Study Area 
The Pasir Gudang industrial area (1°30' N, 103°56' E) is Johor 
state's largest industrial base and comprehensive centre in 
southern Peninsular Malaysia (Figure 1). It is located in the 
tropical zone, which is influenced by two monsoon seasons: The 
Southwest monsoon, which occurs from late May to September, 
and the Northeast monsoon, which occurs from November to 
March. The Northeast Monsoon brings heavy rain, particularly 
to Peninsular Malaysia's east coast states and western Sarawak, 
whereas the Southwest Monsoon usually brings relatively dry 
weather (Suhaila et al., 2010). 

Figure 1. The study area 

3. Method for retrieving IAH from UAV and Landsat 8

There are several algorithms for the retrieval of surface 
temperature (SC, MW SW and Dual-channel), however, for this 
study we employed SW for the retrieval of IAH developed by 
Sobrino et al. (2001) for Landsat 8. According to Rogninn et al. 
(2015), we adopted the SW algorithm in the following form for 
IAH retrieval from L8 TIRS (B10 &11) as shown in Figure 2 
methodological flow chart.  

3.1 IAH retrieval from UAV 

The FLIR conversion procedure to generate radiometrically 
calibrated JPEG photos in bulk include Stage 1) one image of 
the blackbody object and the surrounding features was acquired 
using an infrared thermometer operating on a 9V 6F22 battery. 
Its absolute measurement accuracy is ±1.0 ◦C and its thermal 
sensitivity is 0.1 ◦C. stage 2) the acquired radiometric JPEG 
image from the UAV was loaded into FLIR Tools software 
combined with relevant environmental parameters (air 
temperature, humidity, emissivity) (Sagan et al., 2019) 
measurements during the task. 

Figure 2. The method flowchart for retrieving IAH 

Then the converted and retrieved temperature values were 
exported to TXT files (Zhang et al., 2018). The bias between the 
blackbody object and the surrounding temperature was also 
realized. Stage 3) Radiant heat temperatures were extracted 
from UAV photos and related to the locations of in situ data as 
shown in (Figure 2.) which brings about the linear regression 
model being used as a radiometric calibration comparison. 
Stefan-law Boltzmann's equation describes the relationship 
between radiant and surface temperatures, which is determined 
by emissivity and incoming longwave radiation (Li et al., 2013). 

where Ts denotes the surface temperature (K), Trad the radiant 
temperature (K), emissivity, the Stefan-Boltzmann constant 
(5.67 10-8), and LW the incoming longwave radiation (W m-2). 

3.2 IAH retrieval from Landsat 8 

 Landsat 8 TIRS  remote sensing data products from the US 
Geological Survey were used to create the IAH identification 
layer for this study (Khalil et al., 2017; Micijevic et al., 2016)( 
https://earthexplorer.usgs.gov) and UAV thermal data 
(Kraaijenbrink et al., 2018; Maes et al., 2017; Pérez-García et 
al., 2018; Song & Park, 2020), referred to the summer period 
(September) 2020. IAH was estimated from clear-sky images 
with a horizontal resolution of 30 m (the US Geological Survey 
resampled the TIRS bands' initial resolution of 100 m to 30 m) 
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(10:30 UTC) (Rozenstein et al., 2014). BT is the 
electromagnetic radiance moving upward from the top of the 
earth’s atmosphere to allow the thermal calibration conversion 
(The DN values of TIR band 10 and 11 to TOA spectral 
radiance), (USGS Handbook, 2013) equation 1. thus, The BT is 
not a temperature on the ground rather is the temperature at the 
satellite. The thermal band is first converted from DN to at-
satellite radiance and then to effective at-satellite temperature 
(T), Assuming surface emissivity = 1 to convert radiance to 
temperature was used like the following equation 2 & 3 (Disast 
et al., 2016; Rongaliet al., 2018).   

where: - At satellite brightness temperature (K); -
Calibration constant 1 ; -Calibration 
constants 2, However, the values are in Kelvin (K), to have it in 
Celsius degree, it is necessary to consider adding absolute zero 
which is equal to -273.15. 

3.3 Normalized difference vegetation index (NDVI) 

To transform multispectral data into a single image band 
representing the distribution of vegetation/build area, NDVI 
was used. The NDVI values represent the pixel quantity of 
green vegetation; the NDVI is determined from the visible and 
near-infrared light reflected by vegetation (Malik et al., 2019; 
Tang et al., 2015). Using the ArcGIS 10.5 software, NDVI 
maps are extracted from Landsat-8 images as follows in Equ. 4: 

Where, In the Landsat-8 red and near-infrared bands the NIR 
and Red are the spectral reflection, NDVI calculations often fall 
between ranges -1 and +1 for a single pixel; Where more green 
vegetation signifies positive values and the negative values 
denote bare land surface characteristics. 

3.4 Industrial Surface Emissivity (ISE) 

This was considered phase 4 to determine the ISE, where the 
emissivity of the land surface is calculated using the NDVI 
image-based process (Nguyen et al., 2019; Saradjian & 
Jouybari-Moghaddam, 2019; Valor & Caselles, 1996). Images 
of the fractional vegetation cover (FVC) were generated. This 
can, however, be applied by using Equa.5. 

The industrial area emissivity images of bands 10 and 11 are 
then explicitly used to measure the average and variations in 
emissivity (Equations 7 and 8). Thus, using Equation 6, the land 
surface emissivity images of bands 10 and 11 are created 
separately. 

Where;  is the surface emissivity;  represent the 
emissivity of pure vegetation and pure soil areas respectively, 
and FVC represent the fractional vegetation cover (surface 
roughness) (Cristo & Jime, 2009; Julien et al., 2011; Sobrino et 
al., 2008). However, in equation 11, the mean LSE images of 
TIRS 10 and 11 are combined by using Equa.7 and 8. 

3.5   The retrieval of Industrial Area Heat (IAH) 

The SW algorithm applied in this study is also referring to the 
multi-channel approach and used the different absorptions of 
two TIR bands, linearizing or non-linearizing RTE concerning 
the temperature (S. Zhang et al., 2019). As reported by (Zhang 
et al., 2019), the SW algorithm employed in this study is 
estimated as; 

\ 
where  and are the at-sensor brightness temperatures at 
the bands (10 and 11) in Kelvins, ε is the mean emissivity, ε = 
0.5(  + ), Δε is the emissivity difference, Δε =(  -

), w is the total atmospheric water vapour content (in g·cm-

2). Though, both SW and SC algorithms require the water 
vapour content (w) in the atmosphere as input. 

Table 1. SW coefficients values for TIRS bands of Landsat-8 
imagery 

3.6. The Industrial Thermal Area Index (ITAI) Layer 

Following the estimation of IAH, the industrial thermal area 
Index (ITAI) was chosen to apply an industrial sector evaluation 
based on thermal conditions. This measurement has been used 
in several recent studies to estimate the impact of various 
environmental factors on the quality of life in cities(Guerri et 
al., 2021; Guha & Govil, 2021; Guha et al., 2018; Liu & Zhang, 
2011; Portela et al., 2020; Renard et al., 2019). To estimate 
ITAI, which was used to quantitatively explain the industrial 
effect, the following equation was used:  

Where  represents the industrial heat variance index,  is 
the heat emission of the ith pixel in the industrial area, and 

 is the average heat emission of industries, including 
surrounding areas, at the time the satellites overpass.  

3.6.2. Thermal Hot-Spot Detection 

The hotspot analysis used in this study was created to identify 
industrial hotspot sources based on different sector emissions 
with spatially widespread IAH values, resulting in positive or 
negative structural IAH anomalies. The criterion for identifying 
a statistically significant hot spot or cool spot (Jamei et al., 
2019) values at the local level is the highest and lowest value 
surrounded by other features with similar IAH values. The 
analyses were carried out using the ArcGIS ESRI environment's 
Hot-Spot Analysis tool (Getis-Ord Gi*) (Lanorte et;., 2012). 
Daytime IAH datasets from Landsat 8 images that had been 
converted to a spatial point object were used to evaluate the 
method. The Getis-Ord Gi* statistic method was used to 
calculate each IAH point in the context of its neighbouring 
points. Significant hot- and cool-spot areas were defined 
spatially using the formula described by (Yongjiu et al., 2018): 
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Where,  represent the attribute value for the feature ;  
represent the spatial weight between feature  and ; n is equal 
to the total number of features.  and  are mean and variance 
values, respectively: 

 

 
 
4.   Results and Analysis 
 
This study presented four outputs: (1) UAV retrieved IAH map, 
(2) Satellite-based using Landsat 8 retrieve IAH map, (3) 
identified IAH hotspot targets, and (4) regression analysis for 
In-Situ, UAV, and Satellite-based. 
 
4.1.   Results and Analysis Based on Satellite Data 
 
In this study, in-situ observations were used to verify the final 
retrieved IAH results due to a lack of simultaneous land surface 
temperature data when the satellite passes. The mean 
temperature of retrieved IAH for PG from Landsat 8 data is 41.4 
°C, the mean ambient temperature is 35.6 °C, the Std. is 7.2, 
and the mean in-Situ observation is 61.4 °C. The correlation 
coefficient is 0.88 with an RMSE of (2.5 °C) for the PGIA, 
while the mean temperature of retrieved IAH for KSM is 38 
°C), the mean ambient temperature is 37.16 °C), the Std. is 6.8, 
and the mean in-Situ is 63.79 °C. The correlation coefficient is 
0.87, with an Std. of (2.6 °C). As shown in Figure 5, the SW 
retrieving method from Landsat 8 data was used with greater 
accuracy, resulting in high-quality retrieved IAH data for the 
analysis of industrial area heat. The mean temperature of 
retrieved IAH is 38 °C, the mean ambient temperature is 37 °C, 
and the mean in-Situ observation on 20 September 2020 is 63.8 
°C, Std. is 8.2. For the Oil Palm Industrial area, the correlation 
coefficient is 0.74, with an IAH RMSE of (1.4 °C). Although 
the IAH of the study areas for Landsat 8 and UAV were not the 
same, their change trend is very close, particularly for air and 
UAV temperature, as shown in Tables 3 and 4. The spatial 
consistency of the Landsat 8 retrieving maximum heat of 89.8 
°C with an error of ( 3 °C) and the UAV retrieving maximum 
heat of 143.3 °C with an error of ( 1.4 °C) indicated that the two 
sensors are comparable to IAH retrievals in the Peninsular 
Malaysia case study. However, the comparison of the two 
sensors should be investigated further with more data collection 
soon. The heat emission in the Pasir Gudang estate's industrial 
sectors (Pasir Gudang and Keck Seng Masai Oil Palm) was 
higher than 89 °C for Landsat and higher than 140 °C for UAV 
at Keck Seng Masai. These industries are the most affected by 
IAH. The temperature in all industrial sectors ranged between 
60 and 90 °C, with industrial sectors being the dominant factor. 
It should also be noted that, due to the scattered distribution of 
heat from satellite-thermal emission, the effects of IAH spread 
evenly but do not yet form a large-scale regional heat effect. 
Although satellite data (Landsat 8 and UAV thermal band data) 
can be used to investigate the extreme heat emission distribution 
of IAH in highly targeted industrial sectors, the method for 
calibrating IAH in future studies will need to be refined with in 
situ observation of IAH. 
 

 
Figure 5. Spatial distribution of IAH and surface indices for 
Pasir Gudang. 

 
Figure 6. Statistical distribution for regression coefficient (a) 
for the vegetation Cover responses; and (b) Built-up cover 
responses taking over Keck Seng Oil Palm Industry  
 

 
Table 3. Scattered plots of (a) IAH (b) NDVI and (c) IAE map 
generated from Landsat-8 data acquired on the 10th and IAH vs 
IAE 

 
Table 4. The correlation coefficient results for in-Situ Vs UAV 
Tir-based 
 
The NDVI values were used as input to create the fvc image 
using Equations 5-6 and the IAE image using Equation 7. 
However, the IAHE image in Figure 4 was captured using the 
NDVI threshold value method and Equa.5-8. Figures 5 and 6 
show NDVI and IAE raster maps. The results show that the 
NDVI value ranges from -1 to 0.87, with a mean of 0.41 and a 
standard deviation of 0.41 images. The lowest NDVI values 
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were observed over an industrial area (-10.43), sub-industrial 
areas (-0.08 0.31) with yellow colour, and higher NDVI values 
over vegetation and greenery areas with green and blue colour. 
Values close to one, on the other hand, indicate a positive 
response and healthy green vegetation. Furthermore, the 
decrease in NDVI values is attributed to land use activities with 
negative responses, as shown in Figure 7. For greenery areas, 
heat emission has a significant negative correlation with NDVI 
(R2= 0.83). The industrial area emissivity (IAE) value of the 
map ranges from 0.086 to 0.99, indicating low emissivity when 
compared to the vegetation area in developed areas. High 
temperatures are present in the heat emission sources. It means 
that an area with more vegetation has a lower temperature 
because available energy is distributed more towards the 
evapotranspiration process, resulting in a lower AST when 
compared to a low vegetation area. Weak vegetation has a 
higher ambient temperature because of the low NDVI value. 
Previous research (Bendib et al., 2017; Jamei et al., 2019; Malik 
et al., 2019)  has found a significant negative relationship 
between NDVI and IAE (Danodia et al., 2017) 
 

 
Figure 7. Showing all hotpots targets for (a) all Categories of 
industries (Heavy, Medium and Light (b) Heavy Industries (c) 
Medium Industries (d) Light Industries at Pasir Gudang 

                                                                                                                            
Figure 9. Normal distribution for all industries (Heavy, Light, 
and Simple). 
 

                                                                                                                  
Table 5. Summary result for Descriptive statistics of Thermal 
heat emission based on industrial types, NDVI and NDBI for Pasir 
Gudang Industrial Area 

                                                                                                                    
Table 6. Variation of IHW (°C) for industrial sectors > 80 °C 

 

                                                                                                        
Table 7. Statistical spatial distribution for Keck Seng field data 

                                                                                                                         
Table 8. The correlation coefficient results for in-Situ Vs UAV 
Tir-based 
 
4.2. The Industrial Thermal Area Index (ITAI) Layer 
Table 9 and Figure 8 show the extreme levels of industrial 
assessment: excellent (0) and worst (> 0.016) indicators for 
hotspot sources in PG. The ITAI classification map of industrial 
assessment in the study area can also provide important 
information for energy efficiency and evaluating eco-
environmental quality. which all the other conditions were 
defined as favourable ecological settings for a healthy 
environment. Thus, coastal and vegetated areas were removed 
since they accounted for under ≤ -0.004 at Pasir Gudang (PG) of 
primary energy use in PM. Thus, they were thought to 
contribute far less to thermal heat than the three primary 
categories of industries (Barren land, industrial boundary and 
Hot-spot sources). The severe IAH phenomenon necessitates a 
more acceptable industrial zone and industrial development to 
protect such an eco-environment in Peninsular Malaysia's future 
industrial strategy, as has been achieved in other similar sectors. 
PG is the study location with the most surface area affected by 
adverse industrial activities, accounting for approximately 10% 
of the total industrial area affected by factory activities. When 
the entire industrial area was considered, high heat emission 
affected nearly 3% of the surface at PG, while the rest revealed 
favourable industrial conditions (Table 10). High heat intensity, 
on the other hand, affected 10% of the study area compared to 
its surrounding area, which had a higher percentage of 
favourable conditions than the industrial area. The coastal and 
vegetated areas had the most favourable industrial conditions, 
accounting for nearly 20% of the total metropolitan area 
covered by the same ITAI classes.  
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Table 9. The threshold of the industrial assessment index 
(ITAI) for Pasir Gudang   

                                                                                                            
Figure 8. The ITAI classification map of industrial evaluation 
in Pasir Gudang 
 
4.3. Spatial Distribution of Hot-Spot Classes and IAH 
Variation 
Table 10 and Figure 9 show descriptive statistics for hotspots 
and their spatial representation. Cool spots are nearly twice as 
common as hot spots, with average IAH minimum and 
maximum values ranging from 27.4 °C to 36.2 °C for PG and 3 
% of hot-spot areas with IAH values ranging from 55.7 °C to 
85.5 °C for PG. Similarly, nearly 19 % of the thermal emission 
area covers the entire industrial area, and cool spots are nearly 
twice as numerous as hot spots: 15% of cool spots with average 
IAH minimum and maximum values ranging from 16.9 °C to 
30.1 °C, (Table 9). In contrast, the non-industrial area 
percentage coverage threshold for PG cool spots exceeded the 
average industrial area percentage coverage threshold for hot 
spots. The percentage coverage value of hotspots in 10% of the 
industrial area was higher than the value in the average non-
industrial area. The percentage coverage value of hotspots in 
19% of the industrial area was higher than the value in the 
average non-industrial area. 
 

 
Figure 9.  Industrial Area Heat Map shows identified Hotspot 
targets 
 

                                                                                                                           
Table 10. The percentage coverage area of Getis-Ord Gi* Hot-
spot classes with relative average values of IAH PG 
 
4.4 Discussion 
 
Industrial area heat is the energy released in industrial 
operations at high temperatures from direct combustion 
processes, at medium temperatures from combustion unit 
exhaust, and at low temperatures from process unit sections, 
products, and machinery that is wasted into the environment and 
serves no useful purpose, Thus, classified as high, medium, or 
low temperature. The instantaneous heat emission changes of 
the majority of industrial heat targets, however, as well as their 
temporal dynamics assessment of the entire region over a year, 
could be obtained using the rapid RS approach. Certain 
industrial plants with increasing output over the measuring 
period were found in the medium industries throughout 2020, 
using steel and chemical plants as examples. These illustrations 
demonstrate how heat emissions that reflect the scope of 
industrial activity can be tracked over time using satellite 
measurements. Policymakers may receive precise and pertinent 
information from such efficient trend observations over 
particular facilities to support dynamic industrial productivity 
and emission monitoring on finer spatial and temporal 
dimensions. The simple and quick identification of emissions in 
industrial operations may also be advantageous to them. The 
most severe industrial polluters should operate at a lower 
intensity, according to many researchers, to reduce heat 
emissions. These industrial sectors should be identified as heat 
emission risk sources because a small number of super-emitters 
account for a disproportionately large portion of overall 
emissions. The thermal heat energy sources and other artificial 
surfaces experienced high surface temperatures (> 90°C) with 
precision (RMSE= + 3 °C) based on satellite data.  The results 
show that heat sensing-based IAH estimations can be linearly 
transferred with only minor accuracy loss. The SW algorithm's 
IAH estimates differ by no more than 5 °C  from the measured 
air temperature (Rongali, 2018) Greenery surfaces, including 
sub-industrial areas, had the lowest temperatures (28 39 °C). In 
addition to the comparison with Landsat-8 data, the IAH of 
selected targets was confirmed using UAV-based data with the 
high agreement (R2 = 0.80 ~ 0.90, p 0.001). Thus, the technique 
employed is a very concise yet accurate technique for mapping 
thermal heat energy sources in industrial areas. Maps, models, 
and hotspot targets from the PG industries were successfully 
produced using the aerial and satellite-based techniques used in 
this study. The study's many industrial feature layers, in 
particular the vegetation state (NDVI), the characteristics of 
industrial surfaces, and IAH parameters were all related to the 
degree of thermal significance. The complex hotspot pattern 
may be explained by the combined and consistent role that 
various industrial feature layers play during the day in the 
surface energy balance, which in turn affects how the industrial 
microclimate behaves. However, vegetation (NDVI) and IAH 
were the industrial components that were typically identified as 
significant predictors, as was also the case for cool spots. The 
presence of vegetation was on average very low, as confirmed 
by NDVI values < 0.0023, and also a value of VC lower than 50 
%. Conversely, hot spots were mostly characterized by high 
impervious surface (IS) values (10%) for PG associated with 
low IAH values (1.9 km2) for PG and (13.2 km2), resulting in a 
high thermal storage capacity. Indeed, IS, as we expected, is the 
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main driver for IAH increases, as confirmed by other studies 
(Dahiru et al., 2022; Xia et al., 2018; Zhang et al., 2019; Nanda 
et al., 2021), and high values could have negative impacts on 
plant diversity and ecosystem services (Guk & Levin, 2020; 
Zhou et al., 2019). Hence, it's far more difficult to regulate heat 
emissions in barren land and industrial zone. Therefore, we 
concentrated on industrial hot-spot sources, which are important 
for emerging industries and agents of environmental warming 
like PG's industrial regions. 
 
4.5 Conclusion 
 
This study connects data on thermal emissions with energy and 
economic statistics that are far more complicated. It contributes 
to a better understanding of the relationship between 
industrialization and environmental consequences, as well as 
efforts to reduce thermal emissions. This is very common in PG 
factories that used to be industrial sources of thermal emissions. 
The findings revealed that industrial emissions are determined by 
production rather than industrial types, as shown in Figure 9, which 
generated IAH products with a higher in the medium industry than 
heavy and light and similarly in UAV, and it can be used in various 
areas in future research. It can be concluded that by selecting 
effective dependent variables and formulating appropriate 
coefficients for variables in the structure of the heat emission 
equations, the accuracy of the generated data can be improved. 
Because of its acceptable accuracy, the SW algorithm can be used to 
derive IAH from the industries in future studies (Sajad Zareie et al., 

2018). Future research should focus on improving the accuracy of 
aerial and satellite IAH generated by split-window algorithms. 
However, mapping and identifying Hotspot targets will help 
policymakers and industrial developers become more aware of 
draught policies and regulations for relevant industries, which 
will help to close gaps in current industrial activities.  
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