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ABSTRACT: 

The continued demand for mineral deposits in recent years has led exploration geologists for each stage of mineral exploration; find 

more effective and innovative ways of processing different data types. The use of Geographic Information Systems (GIS) allows 

various features, such as elevation, slope, tectonic structures, lithological units and indicator minerals of Bou Skour region, Eastern 

Anti-Atlas, Morocco to be mapped making targeted mining decisions easier. In this paper, a methodology was developed to enable the 

automated mapping of mineral using machine learning methods such Random Forest (RF) and Artificial Neural Network (ANN) 

achieves approximately 98% classification accuracy on a single Intel® Core™ i5-5300U CPU core with 16GB of memory, and come 

up with predictive maps representing the probable potentially mineralized areas. 

1. INTRODUCTION

Mineral exploration involves providing and analysing geological 

maps in an attempt to locate the geological features related to 

target mineralization (Shirmard et al., 2022). These last include 

diverse features such as lithological units, tectonic structures, and 

indicator minerals. Typically some classic methods are used to 

mineral mapping such as Remote Sensing (RS) data that can be 

used to define significant zone of alteration, marked lithological 

connections, aeromagnetic data that can used to extract 

subsurface faults, and also geological, geochemical and field data 

to constrain the results, (Abdelkareem et al., 2018). Actively, 

geological mapping methods have progressed; and at the present 

time, the coupling GIS data and innovative data analytics such as 

machine learning is gaining considerable devotion. This 

amalgamation aids geologists stunned mutual challenges of old-

style approaches such as independent decision that can offer 

consistent maps and avoid wasting money on prospecting for 

sterile regions (Shirmard et al., 2022). 

Developing a suitable algorithm or for processing, analyzing and 

integrating various geospatial dataset (e.g., Geology, 

Topography, and GIS) is highly necessary for obtaining an 

efficient mineral map in order to visualize areas with a high 

favorability to be discovered further (Daviran et al., 2021). In this 

kind of modeling, various ranges of mathematical methods can 

be used for quantifying the spatial association between different 

evidential features and training locations,(Daviran et al., 2021). 

Recently, machine learning algorithms (MLAs), e.g., Random 

Forest (RF), and Artificial Neural Networks (ANNs) have gained 

much reputation and popularity in Mineral Mapping (MM), 

because of not requiring conditional independence of input 

features as well as ability to handle nonlinear correlations 

between known mineral deposits and spatial evidential features. 

(Park et al., 2021,  Li et al., 2021) ). In this paper, both 

classifying-models are used for the purpose of identifying 

different areas presenting the mineralization by treating the 

features as a pixel-level classification task (classify each pixel 

into each feature). The procedure of determining the class label 

is to superpose all the features in a way each pixel in the study 

area represents term information lithology, distance from faults, 

elevation and slope. Hence, the use of Random Forest (RF) and 

Artificial Neural Networks (ANNs) in Machine Learning results 

in splitting, training, and testing the data, which gives 

the accuracy of each model. Thus, using the power of python and 

its accompanying libraries (Geopandas, Rasterio…) Results can 

be shown and recorded with various extensions such as shapefile, 

TIF and csv. 

2. STUDY AREA

Bou Skour is located in the south-eastern of Morocco, part of 

Draa-Tafilalet region territory. Consist of Idelsane commune, 

Ouarzazate province and Ait Sedrate sahl North, Ait Sedrate sahl 

South communes, part of Tinghir province, (Figure.1). The study 

region covers an area of 200396 hectares which is known for its 

mineral enrichment as deposits that are in operation which makes 

it a destination of geologists to raise the yield of minerals, as well 

as the events related to their positioning in place from 

sedimentation and deposition medium, magmatic events, tectonic 

structures and the geological phenomena responsible for their 

establishment. 

Figure 1: Overview map of Bou Skour study area 
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3. GEOLOGICAL SETTINGS 

As part of the central Saghro massif, the Bou Skour area, the 

subject of this study, is located about 60 km east of Ouarzazate 

city on the southern side of the Sidi Flah inlier, located within 

precambrian extrusive and intrusive igneous rock units. As the 

oldest rocks in the prospect area, the extrusive rocks are 

composed of early Ediacaran andesitic-basalt rocks. During the 

last Pan-African event (Cadomian phase), these rocks underwent 

ductile-brittle deformation. This could be seen 

in schistosity metamorphism, and less developed orthogonal 

cleavages.  Subsequently, various Pan-African plutons and dykes 

intrude on the metamorphosed andesitic-basaltic rocks of the 

Saghro Group, (Figure.2), (Aabi et al., 2021). 

 

Figure 2: Geological map of the study area.  

 

Figure 3: Lithological map of the study area. The lithological 

units at each pixel were used as the labelled data for the models. 

4. DATA AND METHODS 

4.1 Data collection 

4.1.1 Images acquisition 

The feed-in data was extracted from the Digital Elevation Model 

(DEM) that gave the elevation (Figure.4), and slope (Figure.5), 

values of each part on the area. 

 The DEM was extracted with a resolution of 30 meters with a 

GeoTiff extension, that is to say it is georeferenced in the 

geographical system (WGS1984), to project it afterwards 

according to the project reference system that is ESRI: 102191 - 

North_ Morocco_Degree and to crop it on the study according 

to the dimensions, width: 2591 and height: 1719, with a pixel size 

of 28.75. 

 Then the geological map which includes the lithological units 

(Figure.3) as the tectonic structures that gives the Distance from 

faults feature (Figure.6). 

The geological maps have been recovered as a jpeg images, of 

two zones, OUARZAZATE-ALGOUM-TELOUET_SUD and 

JBEL SAGHROU DADES in a scale of 1/200 000, the thing that 

makes them objects that has no reference, the thing that comes 

then is to give them one by georeferencing using GIS and return 

them to GeoTiff extension, giving the same reference system, and 

combine them to seek a map that represent the whole study area, 

hence, processing this map by the same method as DEM with the 

identical dimensions and pixel size. Moreover, to extract the 

lithology and the faulted zone in an exact and exploitable way, 

the only manner is the digitization of the formations and 

structures to make them hand and prepared for the steps that 

come after. 

 The fundamental step of data collection is acquiring these 

element images and treating them based on GIS software giving 

the same dimensions to each image in a way that every pixel on 

a single image is identical with others, then converting them to 

vector points that represent the pixel values for each one of them 

to get the inputs features in the machine learning algorithms. 

 

 

Figure 4: Elevation map of the study area. The elevation 
value at each pixel was used as the labeled data for the 

models. 
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Figure 5: Slope map of the study area. The slope value at 

each pixel was used as the labeled data for the models. The 

minimal values are 0% and the maximal values are 70, 3%. 

 
Figure 6: Proximity distance from faults map. In the models, 

labeled data was taken from the distance values at each 
pixel. 0 (meters) is the minimal distance, and 752 (meters) is 

the maximal distance. 

4.1.2 Indicator minerals 

The labeled ground truth data or indicator minerals were 

extracted from the mineralogy of pre-existing sites with mineral 

potential (Figure.7). This construction is generally relied to 

tectonic structures (faults), the thing that makes us work on faults 

mineralization and puts us in a situation where we are talking 

about tectonic-related minerals. Based on some present studies in 

the same area, this simple was mined, digitized, resized and 

pixelated in the same way as other features, hence, giving all the 

pixels varied values between 0 and 1 which the Zeros represent 

the vacant areas and Ones represent the areas with mineral 

existing to finally get the target layer used to train the mineral 

mapping model. 

 

Figure 7: Map of pre-existing Indicator minerals in the 

study area. Each pixel in the Mineralized structures takes a 

value of 1 and the rest pixel values takes 0. Then each pixel was 

used as the labeled data for the models. 

 

4.2 Data gathering 

Gathering the dataset in one table (Table.1) is the final step of 

preparations using Geographic Information Systems (GIS), 

collecting all the feature values to facilitate the machine learning 

process and make it meaningful. Using some plugins and field 

calculator as some spatial queries, the table was successfully 

generated and assembled all the data needs to modeling the 

mineral mapping process in machine learning part which in turn 

provides some algorithms to visualize the data and see how it is 

consistent and coherent whether there are null values and other 

stuffs  to begin the analysis, making sure that the training data are 

really clean and ready to go into the machine learning models, 

using Random forest (RF) and Artificial Neural Networks 

(ANN). 

 

 
Table 1: Overview of the dataset 

 

4.3 Workflow 

The mineral mapping modeling based on GIS and machine 

learning is mainly divided into four principal parts (Figure.8). 

The first step is data collection that contains the geological map 

where lithological units and tectonic structures was extracted, the 
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DEM giving the slope and elevation for each part in the study 

region, and indicator minerals as Areas of interest that will be the 

targeting of our model next. The following step is to extract the 

features and the target of the model in a table where every row 

combines the pixel values for each feature correspond to given X 

and Y coordinate represented in the coordinate reference system 

(SCR) ESRI: 102191 - North_ Morocco_Degree - Projected 

(Table.1). The third step is to train machine learning models 

using the known samples and then use the trained model to 

predict mineral probability for the whole area. The fourth step is 

the comparison and evaluation of the predictive results. 

According to the metallogenic background and model, as well as 

previous experiences and knowledge, the prediction results can 

be evaluated and screened. Then, the most mineralized parts of 

the target area can be delineated. 

 

 
 

Figure 8: Workflow for Bou Skour mineral mapping based 

on GIS and machine learning. (Designed in: 
https://app.diagrams.net/) 

4.4 Algorithms 

4.4.1 RF 

Random Forest works well on a wide range of problems. 

Basically, multiple decision trees are used for this (Li et al., 

2021). The idea is to solve the issue that an individual decision 

tree may be disposed to over-fit a portion of the data. 

By combining different individual decision trees into an 

ensemble (Figure.9), a random forest can average out the 

individual mistakes to reduce the risk of over-fitting. The random 

forest offers the advantage of not requiring pre-processing the 

data. 

However, to achieve good performance it is critical to realize the 

important hyper-parameters needs to be tuned which include the 

extreme depth of the trees and the maximum number of features, 

(Li et al., 2021). 

 

 
Figure 9: Illustration of the random forest for mineral 

mapping 

4.4.2 ANN 

A number of different machine learning algorithms exist, but one 

of the most popular technologies is Artificial Neural Networks 

(ANN) (Figure.10). Based on a large amount of training data, this 

algorithm can extract both implicit and complex correlations. 

ANN algorithms are based on a series of layers. Each layer 

contains a number of “neuron” units and carries a calculation of 

weighted input plus a bias term followed by a non-linear 

transformation. The results gotten by the above events are then 

fed into the next layer. The training process includes reducing the 

variance between the true values and predicted values. 

Throughout the process, the weights and bias of each layer are 

iteratively efficient by back broadcast algorithms. Due to the 

nonlinear activation function and hidden neurons, deep neural 

networks are established to deal with situations where input-

output mappings are extensively complex (Li et al., 2021) 

 

 

Figure 10: Illustration of the Artificial Neural Networks 

algorithm. 
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4.5 Data pre-processing and characteristic analysis 

Through the data acquisition procedure illustrated in Figures 3-

4-5-6-7 and assembled in Table.1 the 2428433 data were 

prepared for pre-processing, as shown in (Figure.8) goes into 

analysis before processing in order to have a global vision in term 

of variables frequency distribution (Figure.12), the plot A shows 

the frequent distances are intersected with the faults zone 

represented by a distance of 0 meter with 250 000 data points. 

The plot B indicates that the dominant lithological unit is the once 

labelled with the 1 value representing the Quaternary formations. 

The plot C directs to the recurrent elevation values in the area of 

study so that the high altitudes vary between 1200 and 1500 

meters. The plot D designates that the dominant slopes range in 

values from 0% to 10%. 

Concerning the correlations between the variables, the 

(Figure.11), demonstrates that the features representing a high 

and positive correlation are slope and elevation in the first range, 

then comes lithology and slope with low and positive correlation. 

In the other hand, the distance to faults and lithology represents 

a high and negative correlation.  For the other variables the 

correlation is weaker. 

Pre-processing the available data divided into two categories: 

training, and test datasets. After randomly assigning 25% of the 

data as test, the remaining 75% are randomly assigned to training 

data. Therefore, before the launch of the algorithms, it is essential 

to tuning the hyper- parameters in order to make the model more 

efficient and more accurate as they provide  

 
 

 

 
A: Frequency distribution of distances from faults 

B: Frequency distribution of lithological units 

 

guidelines to prevent the over-fitting problems and trained model 

with the lowest error. After the execution of each algorithm, it is 

obligatory to test its accuracy using the test data, as and other 

supplementary metrics as receiver operating characteristic and 

features importance to validate the model and well understanding 

the provided results. 

 

Figure 11: Feature correlations 

 

 
C: Elevation frequency distribution 

 
D: Slope frequency distribution 

 

  
Figure 12: (A, B, C, D) Features frequency distribution. 
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5. RESULTS AND DISCUSSION 

5.1 RF Classifier  

In this model, the performance of the RF classifier was tested on 

training dataset by the accuracy (98, 36%) and Receiver 

operating characteristic (Roc) with a value of (0.96). The RF 

classifiers were chosen in this study. Additionally, the effect of 

the number of trees in the forest (n-estimator) on the classifier 

performance was evaluated as well. The best performance for the 

training was done with 100 trees turning the Bootstrap to True 

and using entropy as criterion. Those hyper-parameters were 

chosen aids of grid search module are the best tunings to get the 

best performance as shows the results in the Figures.13-14. 

 

 
 

Figure 13: Mineral map predicted using Random Forest 

(Generated and reclassed in GIS Software). 

 

 
 

Figure 14: Mineral map predicted using Random Forest 

(Generated and reclassed in GIS Software). 

 

 

5.2 ANN Classifier 

The architecture of ANN was exposed to affect the prediction 

performance over the prediction investigates, it was observed that 

when ANN was applied with two or more hidden layers the 

performance did not increase over the use of a single hidden layer 

(Li et al., 2021). Therefore, in this study, ANN with one hidden 

layer with four nodes was used, gives a measurement accuracy of 

(97, 12%) and Receiver operating characteristic 

(Roc) with a value of (0.83) were adopted to evaluate the 

performance of the model. As results of the Artificial Neural 

Network algorithm, the prediction at each pixel or cell is 

represent a probability value ranging from 0 to 1, which indicates 

the probability that it contains minerals occurrence in the study 

area, generally the model provides a moderate result (Figure.15), 

which are not very satisfied in term of performance. 

 

Figure 15: Mineral map predicted using Artificial Neural 

Network. 

5.3 Prediction results comparison 

For the shallow machine learning models, the validation dataset 

was used to measure the prediction performance of each 

classifier. 

Performance results obtained by the accuracy are very similar for 

the two algorithms RF and ANN with an approximate value 

(98%), then classification report shown in (Table.2, Table,3) as 

the Receiver operating characteristic (Roc) (Figure.16, 

Figure.17) are totally different and shows the performance of 

Random forest classifier with a macro F1 score of 0.83 performed 

best more than the Artificial Neural Network, Moreover, the 

scores calculated by different averaging strategy show slight 

differences, meaning that models trained by a balanced dataset 

can perform well regardless of the distribution of mineral 

indicators. 
 

 

Table 2: Random Forest classification report. 
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Table 3: Artificial Neural Networks classification report. 

 

 

Figure 16: Random Forest Receiver operating 

characteristic. 

 

Figure 17: Artificial Neural Network Receiver operating 

characteristic. 

5.4 Features importance 

Calculating the importance of each factor in the training models, 

and indicate those that redirect and impact the prediction, The 

graph (Figure.18) indicate that the distance from faults factor 

with a percentage of (66%) control mostly the training models, 

that can be validated with the logical relation between 

mineralization and faults since the simples are highly 

concentrated on the faults zone. The Second feature affected the 

prediction represented as lithology with moderate percentage 

(29%) which is also related to the mineralization, highlighting the 

importance of this later highlight the importance of the latter in 

the deposition of the mineralization and also the ages, events and 

structural domains. to comes the elevation and slope with very 

low importance.  

 
 

Figure 18: Features importance through the machine 

learning modelling. 

 

6. ISSUES TO CONSIDER 

6.1 Input Data Issues 

The training data is highly concentrated in the central part which 

has a bias towards due to the involvement of fault structures in 

the study area. More data are needed to correct this imbalance. 

6.2 Geological Issues 

Mineral deposits are more often than not structurally controlled, 

which is why the 'Distance from Fault' feature was incorporated 

into the model. 

One thing that was not included in the thought process of this 

feature is what each fault represents. Are there different faulting 

events? What is the structure-mineralization relationship? Did 

some of this faulting occurred post mineralization? This is an 

example of how understanding all aspects of geology in the study 

area will greatly affect what can and should go into the model. 

6.3 Model Issues 

The Random Forest and Artificial Neural Network models 

returned high classification accuracy. If we think about the issues 

already mentioned, the accuracy realistically should not be that 

high. This is most likely due to over-fitting, where the model has 

learnt all the little variations/data noise in our training/test data 

and accommodated for it. A way of removing over-fitting is by 

altering model parameters or trying a multitude of different 

machine learning algorithms and finding out what one works 

best. 

Checking if yes or not the models are under over-fitting, the 

learning curve method was used as shown in the plots (Figure.19, 

Figure.20), the training score indicates how well the model is 

fitting the training data, while the cross validation score indicates 

how well the model fits new data, resulting that the RF model 

(Figure.19), works best than the ANN model (Figure.20), that has 

a tangle of training and validation score curves which indicate 

that is under over-fitting. 

 

Figure 19: Random Forest Learning curve. 
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Figure 20: Artificial Neural Network Learning curve. 

7. CONCLUSION

Developed and adapted some machines learning methods that 

have recently become popular and established for geographic 

information systems (GIS) data processing and investigated their 

applications for exploring different ore deposits. 

GIS datasets have provided a new data resource to overcome 

problems associated with mapping geological features from field 

data alone. As a data-driven classification or prediction tool, 

Random Forests and neural networks have been widely applied 

in GIS data processing as well as a large number of research areas 

ranging from engineering and environmental science to physics 

and astronomy, (Shirmard et al., 2022).Recent advancements in 

machine learning methods have the potential to deal with large 

and complex data with features in processing ground truth 

measurements against noise and uncertainties. 

Therefore, based on all the data mentioned, taking in 

consideration the problems and issues that occur, in this example, 

predict results were obtained and compared with the facts in the 

field as well as experts were consulted verifying that the potential 

sites for the presence of minerals are actually sites with properties 

and advantages that make the presence of minerals in them 

crucial. 

To close, Geology has never been an exact science, but getting as 

close to exact as possible is crucial for the future of mineral 

deposit discovery. 
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