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ABSTRACT: 

The Urban Heat Island (UHI) is a phenomenon where an urban area experiences higher temperatures than its surroundings. A 
commonly observed phenomenon worldwide and is one of the serious environmental problems related to urbanization. This paper 
assessed the past and current state of UHI in Baguio City, the Summer Capital of the Philippines. Land Surface Temperature (LST) 
layers were generated from Landsat images (March 25, 2019, and March 09, 2022) using the Project GUHeat Toolbox and then used 
to calculate the Urban Thermal Field Variance Index (UTFVI). The study found out that the UHI has intensified in the past three years. 
In contrast LST in March 2022 was generally lower than that in March 2019, most likely due to differences in weather conditions. This 
implies that while it is important to examine the spatiotemporal variations of LST, it is critical that UHI indices are also examined. 
Random Forest regression was used to examine the UHI indices such as Normalized Difference Built-up Index (NDBI) and Normalized 
Difference Vegetation Index (NDVI). The explanatory variables used in modelling are (1) NDBI (2) NDVI (3) combination of NDBI 
and NDVI. The performance of the models is evaluated with Mean Squared Error (MSE) and R-squared (R2). Using NDBI or NDVI 
alone yielded a less satisfactory model. The combination of NDBI and NDVI resulted in a good prediction of UHI with R2=0.89 and 
MSE=0.006. 

1. INTRODUCTION

Urbanization is a rural-to-urban transformation that involves 
population, land use, economic activity, and culture 
(McGranahan & Satterthwaite, 2014). More than one-half 
(56.2%) of the 2020 world's total population is living in urban 
areas, which is expected to increase to 60.8% in the next decade 
and 68% by 2050. Urban growth will likely occur in the less 
developed regions of East Asia, South Asia, and Africa (UN-
Habitat, 2020). 

Based on a review of the World Bank (2017), the urban 
population of the Philippines grew by over 50 million in the past 
five decades and is projected to grow to approximately 102 
million by 2050. The high and increasing population of cities 
gave rise to economic benefits arising from the concentration of 
business and housing in particular areas that provided many 
opportunities for structural transformation of the economy. 
According to the report, while urbanization has positive impacts 
on economic growth and poverty reduction, the country has not 
benefited from urbanization gains compared to other countries 
because of structural issues and binding constraints. Poor land-
use planning and limited capacities in property taxes are 
considered binding constraints related to land administration and 
management in urban areas of the Philippines. These binding 
constraints has significant effects on the vibrancy of the land 
market, in shaping and rationalizing urban growth in a 
sustainable manner, and in generating revenues to support 
programs to improve urban life. 

Population growth and anthropogenic activities in urban areas 
contribute to various environmental problems such as altered 
climate, water, and energy balance, air pollution, and urban heat  

island (UHI) (Canete et al., 2019; Firozjaei et al., 2022). The UHI 
is a phenomenon where urban and suburban areas experience 
warmer temperatures compared to their rural surroundings 
(Heisler & Brazel, 2010). There are three types of  

UHI, namely --- air temperature, subsurface and surface 
temperature --- which differ in the ways they are formed, and the 
techniques used to identify and measure them (Oke, 2006). 

The air temperature UHI is estimated with the use of air 
temperature (AT) data acquired in meteorological stations. The 
use of AT data only represents the specific location, and it is 
difficult to estimate the temperature variability in mountain areas 
with AT since the weather is particularly sensitive to small 
changes in climate forcing (Daly et al., 2008; Rangwala & Miller, 
2012). The subsurface UHI is measured in the ground beneath 
the surface. Lastly, the surface UHI is estimated with remote 
sensing techniques. The surface UHI is based on the Land 
Surface Temperature (LST), which is retrieved from thermal 
infrared (TIR) spectral measurements by airborne or satellite-
based sensors (Mutiibwa et al., 2015). The urban thermal field 
variance index (UTFVI) is used by several papers to estimate 
UHI (Naim and Kafy, 2021; Sobrino and Irakulis, 2020). 

In Baguio City, the UHI value has increased from 1987 to 2015 
due to the rapid expansion of impervious surfaces and the loss of 
green spaces caused by rapid urbanization (Estoque & 
Maruyama, 2017). The increase in LST values is predicted to 
intensify the effects of UHI on the city (Baloloy et al., 2019). 
Future urbanization scenarios were simulated with ENVI-met to 
assess the effects of urbanization on the microclimate of Baguio 
City. Scenarios include (1) the current climate, (2) the removal 
of Balete trees, and (3) removal of some pine trees and addition 
of new buildings. The models found out that there are 0°C to -
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0.01°C temperature differences between the current and 
simulated conditions (Baloloy et al., 2020). 
 
Monitoring of UHI variation provides useful information in land 
administration and management in urban areas, which can help 
in minimizing its impact on human health and the environment. 
However, the use of ground measurements to assess it had a 
limitation since meteorological stations are unevenly distributed 
in most urban areas, especially in densely built-up areas where 
the UHI effect is intense. To fill the existing data discrepancies, 
the use of remote sensing techniques has been introduced in 
different papers (Zhou et al., 2018; Maharjan et al., 2021). 
Several studies used machine learning techniques like regression 
to model and predict UHI using the LST as a dependent variable, 
and different indices as explanatory variables (Zhang et at., 2009; 
Alcantara et al., 2019). 
 
The study adopted the use of satellite images to assess the past 
and the current state of UHI in Baguio City and utilized Random 
Forest regression analysis to predict how UTFVI changes 
considering the indices NDVI (Normalized Difference 
Vegetation Index) and NDBI (Normalized Difference Built-up 
Index). 
 
2. MATERIALS AND METHODS 

2.1  Study Area 

 
Figure 1. Google satellite image showing the administrative  

boundary (yellow) of Baguio City 
 

Baguio City is located in the southern part of Benguet Province 
in the Cordillera Administrative Region (CAR). The city is 
located on the side of a mountain range, with many hills and 
plateaus. Several rivers run through the city, including the Bued, 
Balili, Galiano-Camp-Asin, Naguilian, and Ambalanga. The 
elevation of the city ranges from 900 meters along the Bued 
River to 1,600 meters at Pacdal (Baguio City Planning and 
Development Office, 2018). 
 
The city's land cover is predominantly made up of forested areas, 
but during the past few decades, these areas have been 
transformed into residential and commercial areas in response to 
the city's rapid population growth and economic activities. 
Being situated on the main island of Luzon, the city is an 
accessible place for the people who want to relax and escape the 
excessive heat of the lowland. The city is a famous tourist 
destination especially during the dry season because of its cool 
climate and peaceful environment, which makes it a “Summer 
Capital of the Philippines” (Estoque & Murayama, 2011). 
 

2.2  Data Used 

The Landsat 8 and 9 satellite images used in the study are 
acquired from the USGS Earth Explorer website 
(https://earthexplorer.usgs.gov/). To get a better result, the study 
considered the availability of data and selected the images that 
had no cloud cover. The study chose the month of March since it 
is the only month in the hot dry season that had no clouds. The 
Landsat-captured (https://landsat.gsfc.nasa.gov/)  images of the 
city in 2022 are mostly obstructed by clouds for the months of 
April and May. The highest temperature recorded in the city by 
the PAGASA Baguio station from 1988-2020 was in March 1988 
(PAGASA, 2022). This study therefore focuses on the month of 
March. The Landsat 8 and 9 data used in the study are captured 
on March 25, 2019 and March 09, 2022, respectively. These two 
satellite images were used to calculate the LST, UTFVI, NDVI 
and NDBI to examine the thermal, vegetation and built-up 
changes in Baguio City. 
 
The study also used the air temperature data acquired in 
Philippine Atmospheric Geophysical and Astronomical Services 
Administration (PAGASA) Baguio Synoptic and Upper-Air 
station to verify the satellite-derived LST. The PlanetScope 
(https://www.planet.com/) satellite images give insight into what 
happened between 2019 and 2022. 
 
2.3 Data Processing 
 
The images are processed using Project GUHeat 
(http://www.guheat.tcagp.upd.edu.ph/hub.html) toolbox in 
QGIS to produce spatiotemporal LST maps. The mean of LST 
outputs are used to calculate the UTFVI of the city. 
 
The satellite images are also used to calculate the NDVI and 
NDBI. The calculations of these indices are based on the specific 
properties of the features of interest in terms of absorption and 
reflection in different spectral bands of multispectral imagery. 
 
The NDVI and NDBI outputs are used as explanatory variables 
in the regression model to estimate the UTFVI. 
 
2.3.1  Normalized Difference Vegetation Index (NDVI) 
 
NDVI is the most commonly used index for retrieval of 
vegetation based on surface relative reflectivity in the near 
infrared (NIR) and Red wavelengths of the spectrum (Carlson et 
al., 1994). The NDVI is calculated as 

 
 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  (𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁)

(𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁)
  (1) 

 
The pixel values of raster produced using the equation is ranging 
from -1 to 1, which represents the health of vegetation. The high 
positive values correspond to dense and healthy vegetation cover, 
while the low positive and negative values indicate non-
vegetated areas such as barren land, sand, paved surfaces, and 
water. (Perez & Comiso, 2014; Zhang et al., 2009). 
 
2.3.2 Normalized Difference Built-up Index (NDBI) 
 
NDBI is used to extract built-up features of the city.  The NDBI 
raster is derived from the short-wave infrared (SWIR) and NIR 
channels of multiband remotely sensed imagery (Garg et al., 
2016). The formula for calculating NDBI is 
   

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = (𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑁𝑁𝑁𝑁)
(𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑁𝑁𝑁𝑁)

  (2) 
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The resulting raster will have pixel values ranging from -1 to 1 
where higher values are indicators of anthropogenic land surface 
modification (Canete et al., 2019). 
 
 2.3.3  LST Retrieval 
 
The study generated the LST for both years using the Landsat 
images and Project GUHeat toolbox in QGIS. The methodology 
used by the toolbox to estimate the LST is from Jeevalakshmi et 
al. (2017). The method involves converting the band 10 digital 
number (DN) values to at-sensor spectral radiance and 
converting them to brightness temperature (BT). Next, the NDVI 
is computed and used to calculate the proportional vegetation 
(Pv). The land surface emissivity (LSE) is then derived from Pv 
and NDVI. Lastly, the calculation of LST using BT of band 10 
and LSE. 
 
2.3.4 Urban Thermal Field Variance Index 
 
Urban thermal field variance index was used to quantitatively 
measure the UHI vulnerability of the area (Alcantara et al., 
2019). UTFVI can be calculated using the equation: 
 

𝑈𝑈𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁 =  𝑇𝑇𝑠𝑠  −  𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑇𝑇𝑠𝑠
  (3) 

 
Where, Ts is the LST, Tm is the mean LST of the area. 
 
2.3.5 Regression Modelling 
 
Regression modelling was performed to generate a model that 
would best predict the UTFVI (dependent variable), from the 
independent variables such as NDBI and NDVI. 
 
The study utilized random forest (RF) regression which is a 
supervised machine learning method that builds an ensemble of 
decision trees from a randomized variant of the tree induction 
algorithm (Louppe, 2015). The study used the “Forest-based 
Classification and Regression” toolset in ArcGIS to train models 
and generate predictions. Three RF models were developed using 
the Landsat-based (1) NDBI, (2) NDVI, and (3) NDBI-NDVI 
combinations as explanatory training datasets, along with the 
UTFVI-based SUHI generated by this study. The models are 
used to predict SUHI variations and examined using R2 and MSE 
to evaluate the overall performance of RF models. 
 
In order to determine which areas were accurately predicted and 
which areas had under- and over-predictions, the study compared 
the generated SUHI estimation of three models to the UTFVI-
based SUHI. 
 
3. RESULTS AND DISCUSSION 
 
3.1. NDVI and NDBI 
 
Figure 2 shows the variations of NDVI in Baguio City during 
2019 and 2022. High NDVI values were mostly found in the 
forest and underdeveloped areas, while the low NDVI values 
were found in the business district area. The figure also shows 
that the grassland and agriculture areas in the 2022 NDVI map 
are much greener compared to March 2019, which implies that 
the vegetation is healthier now than it was in 2019. 
The NDVI difference map in Figure 2 revealed the growth 
change of vegetation in Baguio City from 2019 to 2022. The 
difference values are mostly in the 0.00 to 0.10, which indicates 
that the vegetation has increased in the current year. 

 
Figure 2. Spatial distributions of NDVI in Baguio City in 2019 
(top) and 2022 (middle), and the difference (bottom). The figure 
illustrates that the grassland and agriculture areas in the current 

year are substantially greener than they were in 2019. 
 

 
Figure 3. Spatial distributions of NDBI in Baguio City in 2019 

(top), 2022 (middle), and the difference (bottom). There are 
little to minimal changes in impervious surfaces between 2019 

and 2022, and the new buildings are still built in the central 
district of the city. It is also easy to distinguish the built-up 

pattern in 2022 because of the high contrast or greener 
vegetation during the same year.  
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Figure 3 presents the NDBI variations in Baguio City. Even 
though the NDBI values became lower during 2022 in the 
vegetative area of the city, the built-up pattern remained the 
same. High NDBI values are still prominent in the business 
district area where residential and commercial structures were 
built, while low values are observed in the forest and active 
agricultural areas. 
 
Figure 3 (bottom) shows that the difference values are mostly in 
the -0.10 to 0.00, which indicates that there is minimal change in 
the built-up areas of the city. It also revealed a pattern of building 
activities being centered in the business districts of the city. 
 
3.2 LST 
 
The spatial distributions of LST during 2019 and 2022 in Baguio 
City are shown in Figure 4. The figure revealed that the city 
experienced much higher LST in 2019 than 2022. Based on Table 
1, the air temperature (AT) measurements acquired in PAGASA 
Baguio Station correspond to the LST values derived from 
Landsat images. The AT and LST values are both high during 
March 2019 compared to the March of the current year. 

 
Figure 4. LST distribution in Baguio City on March 25, 2019 
and March 09, 2022. The LST values are lower in March 2022 

than in March 2019. 
 

 
Table 1. Air temperature values recorded in PAGASA Baguio 
Station and LST values during March 2019 and March 2022. 
 
The map also shows that there is an intense LST in the bottom 
part of the city during March 2019. The pattern observed was 
also observed in LST maps produced in the previous study of 
(Project GUHeat, 2020) for the month of April 2019. 
 
The NDBI 2019 output shows intense positive values in that area 
while NDVI 2019 shows high negative values. Meaning the high 

LST values in that area are caused by impervious surfaces and 
lack of vegetation. With the use of PlanetScope satellite images 
(fig. 4), the study found out that the high LST values are caused 
by burned vegetation in that year. 
 
In general, the high values of LST are prominent in the industrial 
area of Baguio City. The dense houses and buildings contribute 
to the warming of the area that result in an increase in LST (Hua 
et al., 2020; Yu & Lu. 2014). Therefore, the LST in the industrial 
area is higher than those of the surroundings. 
 

 
Figure 5. PlanetScope images on March 25, 2019 (left) and 

March 09, 2022 (right). The left image shows the 
presence of burned vegetation in the southern part 

of the city that resulted in high LST values. 
 
3.3  UTFVI-based UHI 

 
Figure 6. Spatial variations of UTFVI in Baguio City on March 
25, 2019 (top) and March 09, 2022 (middle), and the difference 

(bottom) between them. The UHI effect in the city has 
increased in the current year, particularly in the central business 

area. 
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Figure 6 shows the distribution of UHIs in Baguio City over the 
study period. As can be seen, the UHI intensity of the city was 
increased from 2019 to 2022. In general, the UHI hotspots mainly 
occurred in the business district area of the city, which contains 
dense urban villages and commercial establishments. The bottom 
map of Figure 6 revealed that the difference values are mostly in 
the range of 0.00 to 0.05 degree Celsius, which means most parts 
of the city experienced an increased UHI intensity.  It also shows 
that the upper and middle parts of the city experienced an 
increase in UHI intensity. 
 
The output of LST and UTFVI indicates that even if the LST 
intensity is decreasing the UHI can still possibly increase. So, the 
modeling of LST as a factor of different indices to predict UHI 
can be problematic (i.e., no inherent correlation can be derived). 
Given this scenario, the study tried to model the UHI (UTFVI-
based) as a factor of NDBI and NDVI. 
 
3. 4. Random Forest 
 
The combination of NDVI and NDBI as explanatory variables 
resulted in 0.006 MSE and 0.89 R-squared. The model that used 
the NDBI as explanatory variable alone resulted in 0.007 MSE 
and 0.76 R-squared. The model that used the NDVI as 
explanatory variable alone resulted in 0.009 MSE and 0.72 R-
squared. Table 2 summarizes the performance of the models for 
the cases considered in this study. 
  

 
Table 2. Performance of the random forest regression models 

considering NDBI and/or NDVI. 
 
The Mean Squared Error (MSE) tells how close the predicted 
values are to observed values. A good model should have a 
relatively low MSE value whose ideal value is closer to zero (Das 
et al., 2004). On the other hand, the R-squared is the proportion 
of variance in the dependent variable which is explained by the 
explanatory variables (Miles & Shevlin, 2000). 
 
Figure 6 shows the visual representations of observed UTFVI 
values against model-predicted values. The scatter plot of NDBI 
shows that most of the predicted UTFVI of the model are 
excessively and underrated. For the NDVI model, the predicted 
values are mostly underestimated. The scatter plot of the NDBI-
NDVI combination model shows near prediction results 
compared to other models. However, some predicted values of 
the model are also overestimated and underestimated. 
 
Figure 7 shows the actual UTFVI and the predictions made by 
regression models. As compared to the UTFVI, the predicted 
output of the NDVI-NDBI combination model is the best model 
to predict UHI. Its prediction shows a similar pattern of observed 
UTFVI hotspots and coldspots. The NDBI model vividly detects 
the UHI in the area where impervious surfaces are dense, but 
struggle in the vegetation areas. For the NDVI model, the 
predicted values are almost the same in the NDBI model but this 
model can minimally detect the UHI in the vegetation areas. 
 
The study assessed the accuracy of prediction values to the 
observed UTFVI by getting the difference or bias of the two 
variables. Figure 8 shows the difference between observed 

UTFVI and RF-predicted UTFVI. The values that are closer to 0 
show excellent UTFVI estimate. In the visualization, the yellow 
color ranges from 0.00 to 0.05 values. As a result, the more 
yellow the model is, the closer it estimates the UTFVI. The figure 
also shows that overestimated values are mostly in areas with 
dense impervious surfaces, while underestimated values are 
found in vegetation areas. 
 
Figure 9 shows how the observed NDBI and NDVI affected the 
biases in model predictions. For NDBI, the biases are expected 
in negative NDBI values. While in NDVI, the biases are in 
positive NDVI values. In general, the vegetation areas are more 
likely to have overprediction and underprediction of UHI. 
 
These results show that the best model to predict UHI is the 
model 3 (NDBI-NDVI combination) since it has the lowest MSE 
(0.006) and highest R-squared (0.89) values, and it also shows 
similar patterns of hotspots and coldspots of UHI. 
 

 

 

 
 

Figure 6. Scatter plots of UTFVI and RF-predicted UTFVI 
using NDBI (top), NDVI (middle), and NDBI-NDVI (bottom). 

Using both NDBI and NDVI results in less scatter of points 
with respect to the fitted line.
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Figure 7. Comparison of observed and predicted UTFVI. The RF models were able to predict the UTFVI intensity especially in the 

built-up areas. However, some values in certain areas are overestimated while others are underestimated.
F 

  
Figure 8. The figure shows the difference between observed 
and R-F predicted UTFVI values. The figure revealed that 

overestimated values are usually found in impervious surfaces, 
whereas underestimated values are mostly found in vegetation 
areas. A more accurate prediction is obtained when the NDBI 
and NDVI indices are combined as input data for modelling. 

 
 

 

 
Figure 9. Distribution of prediction bias in relation to NDBI 
and NDVI observed values. The scatter plots revealed that 
vegetation areas are more likely to have overprediction and 

underprediction of UHI. 
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4. CONCLUSION 
 
Regarded as the "Summer Capital of the Philippines", Baguio 
city is a popular tourist destination for people who want to escape 
the heat in the lowland areas in the Philippines. The results of 
UTFVI analysis, however, point to worsening surface UHI 
phenomenon in Baguio City in the past three years due to an 
increase in built-up areas. On the other hand, the LST layers 
showed that March 2022 was cooler than March 2019. This 
contrasts with the findings based on UTFVI. LST alone is not 
always a good indicator of UHI as surface temperatures are 
affected by weather conditions. Based on the results of regression 
analysis using Random Forest, the NDBI-NDVI combination 
model proposed and used in this study can account for about 89% 
of the variation in UTFVI. The output of this study can provide 
useful information in city planning and development as well as 
in policymaking to improve environmental conditions of the city.  
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