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ABSTRACT: 

Nautical charts generally report fundamental knowledge for the safety of navigation. This information also includes sea depth data 
reported as depth points or contour lines, which can be used to build a 3D model of the seabed. However, there are different 
interpolation methods for creating digital depth models, and there is no way to know in advance which of them is the best 
performing. The aim of this work is to compare different spatial interpolation methods applied on a dataset concerning the seabed of 
the Port of Naples (Italy) and extracted from the Electronic Navigational Chart (ENC) produced by the Hydrographic Institute of the 
Italian Navy, in scale 1:10.000. Four deterministic interpolation methods, i.e. Inverse Distance Weighting (IDW), Global Polynomial 
Interpolation (GPI), Local Polynomial Interpolation (LPI), Radial Basis Function (RBF), and two stochastic interpolation methods, 
i.e. Ordinary Kriging (OK) and Universal Kriging (UK), are applied using Geographic Information System (GIS) software. Since 
each method requires to set specific parameters and different options are available, e.g. the order of the polynomial function for GPI 
and LPI, or semi-variograms for OK and UK, twenty-three models are generated. The result quality is evaluated by Leave-One-Out 
cross-validation and the statistics of the residuals produced by each interpolation method in the measured points are compared and 
analysed. The experiments confirm that the stochastic approach is more versatile compared to deterministic approach and can 
produce better results, as it is testified by the great performance of the Ordinary Kriging, which produces the most accurate 3D 
models.

1. INTRODUCTION

The ocean floor is the last great, largely un-surveyed area of 
Earth (Hare et al., 2011). The study of the underwater depth of 
ocean, sea, lake or river floor is referred as bathymetry 
(Weatherall et al.., 2015) and it can be carried out for various 
purposes, such as shipwrecks identification (Plets et al., 2015), 
monitoring of the effects of natural disasters (Frederik et al.., 
2019), geophysical purposes (Ladage et al.., 2006), estimation 
of the upper depth limit of seagrasses (Infantes et al., 2009), 
safety of navigation (Kristić et al., 2020). Bathymetric surveys 
based on single beam and multibeam echosounders allow to 
acquire depth data of a given area (Dabrowski et al., 2021).  

The maps used for navigation, namely nautical charts, present 
distinctive elements for the knowledge of the seabed such as 
contour lines (called depth contours or isobaths) and selected 
depths (soundings) (Alcaras et al., 2021). As well known, a 
contour line is a curve that joins points of equal value; in 
cartography, contour lines join the points of equal elevation 
above a given standard reference surface like the mean sea 
level. Specifically, charted depths displayed on nautical charts 
are measured from the level of water derived from some phase 
of the tide. The reference level is named Chart datum and 
commonly identified as the lowest astronomical tide (LAT), 
used for example in United Kingdom, Canada and Australia, or 
the mean lower low water (MLLW), used in USA and Italy. 
Chart Datum is shown on charts as the zero-metre contour.  

Nautical charts are manageable by information systems that 
support navigation, i.e. Electronic Charting Systems (ECS) and 
Electronic Chart Display and Information Systems (ECDIS) 
(Brčić et al., 2015). Nautical charts in vector format that comply 
with specific standards dictated by the International 

Hydrographic Organization (IHO), are called electronic 
navigation charts (ENCs) (Alcaras et al., 2021) and its use is 
mandatory for ECDIS. ENC is a major source of information 
for the navigator and for the safety of navigation, as it provides 
information on the depth of an area (Wlodarczyk-Sielicka and 
Stateczny, 2016).  

Since soundings and contour lines included in the ENC supply 
depth (z) variability related to planimetric position (x, y), it is 
possible to use those data to generate 3D models of the seabed. 
Even if the depth data usable for 3d modelling can be acquired 
with direct on-site survey techniques such as single beam and 
multibeam, ENCs are the most easily available and also the 
cheapest source of information. In general, a 3D model of the 
Earth's surface is called Digital Terrain Model (DTM) and it is 
often structured as a grid presenting height value in each node, 
so to result as a matrix of numbers (Digital Elevation Model, 
DEM); particularly a 3D model of the seabed is called Digital 
Depth Model (DDM) (Parente, Vallario, 2019).  

A 3D grid model can be generated using an interpolation 
method that estimates the value of elevation or depth in each 
node starting from the known elevations or depths of 
neighbouring points. In literature there are several interpolation 
methods to build a 3D grid model (Arun, 2013); however, there 
is no way of knowing a priori which of them is the best for a 
given dataset.  

This work aims to analyse interpolation methods capable of 
generating DDMs and compare them to determine the most 
performing one, in relation to a dataset of depth points and 
contour lines extracted from the ENC of the Port of Naples in 
scale 1:10,000. 
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This paper is organized as follows. Section 2 focuses on the 
study area and dataset. Section 3 describes: firstly, the main 
characteristics of the interpolation methods adopted for DDM 
construction; then the analysis process for each model accuracy 
evaluation. Section 4 introduces and discusses the results 
obtained from the application of the selected methods. Finally, 
Section 5 draws out the conclusions of this research study and 
highlights areas for future work.  
 

2. STUDY AREA AND DATASET 

The area considered for this study concerns the Port of Naples 
(Italy) and surroundings, as shown in Figure 1. The Port of 
Naples is one of the most important ports in Europe; it occupies 
the northernmost natural inlet of the Gulf of Naples and extends 
for about 12 km, from the city centre towards its eastern part. 
The total area extends for over 4.086 sq. km and is utilized for 
multifunctional use for a total of 14 piers.  
Depth data for this work are obtained from the ENC n. 84 
produced by Hydrographic Institute of the Italian Navy (Istituto 
Idrografico della Marina Militare Italiana – IIMM), in scale 
1:10,000. The original file is formed in accordance with the 
standards established by the International Hydrographic 
Organization (S-57 IHO), so we convert it as shape format 
(.shp) for using in ArcGIS version 10.8 (ESRI). However, 
several files are produced, one for each layer included in the 
ENC. Firstly, we transform the reference system from WGS84 
ellipsoidal coordinates (EPSG code: 4326) in the Universal 
Transverse of Mercator (UTM) - WGS84 - Zone 33 N (EPSG 
code: 32633), then we select only the depth data that are 
included in two layers named contour lines (depths in meters: 0,  
-2, -5,  -10,  -20, -30, -50, -100) and soundings (from -1.30 m to 
-128.00 m); finally, we group the vertices of contour lines and 
the soundings in one shape file.  
 

 
Figure 1. Geo-localization of the Port of Naples: map in 
equirectangular projection and WGS 84 geographic coordinates 

(upper); RGB composition of Sentinel-2 images in UTM-
WGS84 - Zone 33 N - plane coordinates expressed in meters 
(lower).  
 
As shown in Figure 2, the resulting dataset extends within the 
following UTM/WGS84 plane coordinates – 33T zone: E1= 
433,621 m, E2= 444,624 m, N1= 4,514,622 m, N2= 4,521,768 
m. It includes 16,853 points and depth values range between 0 
m and -128 m.  
 

 
Figure 2. The point dataset extracted from the ENC n. 84 
concerning the Port of Naples and used for Digital Depth 
Models (UTM-WGS84 - Zone 33 N plane coordinates 
expressed in meters). 
 

3. METHODS 

Spatial interpolation is a very important component of many 
Geographical Information Systems (GIS) and we can define it 
as the procedure to predict the value of attributes at unobserved 
points within a study area covered by existing observations 
(Krivoruchko, 2011).  
 
Spatial interpolation methods can be divides in two main 
categories: global and local. Global methods use all available 
data in the region of interest to derive the estimation and capture 
the general trend; local methods operate within a small area 
around the point being estimated, using samples in a search 
window, and capture the local or short-range variations (Li, 
Heap, 2019).  
 
Another way to classify these methods is to differentiate them 
into deterministic and stochastic. Deterministic methods use 
point values directly, while stochastic methods incorporate the 
concept of randomness and use statistical techniques to analyse 
the data and statistical criteria for predictions (Mitas, Mitasova, 
1999). In other words, the deterministic methods use 
mathematical functions to predict unknown values, while 
geostatistical methods use statistics and mathematical functions 
as well (Ajvazi, Czimber, 2019).  
 
Another distinction can be made in exact and approximate. 
Exact interpolators do match the measured values on which the 
interpolation is based; thus, the predicted surface must pass 
through each measured data point. Approximate interpolators 
utilize the measured values in calculating the predicted surface, 
but the surface is not restricted to passing through the measured 
values at those locations (Eberly get al., 2004). 
 
In this study, we consider four deterministic methods, i.e. 
Inverse Distance Weight (IDW), Global Polynomial 
Interpolation (GPI), Local Polynomial Interpolation (LPI), 
Radial Basis Function (RBF), and two stochastic interpolation 
methods, i.e. Ordinary Kriging (OK) and Universal Kriging 
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(UK), all available in Geostatistical Analyst, an extension of 
ArcGIS Software. For OK and UK different semi-variogram 
models are used, such as Stable (S), J-Bessel (JBS), K-Bessel 
(KBS), Exponential (ES). 
 
Semi-variogram is a diagram in which the semi-variance is 
represented as a function of the distance between two points 
(Zimmerman and Zimmerman, 1991). The semi-variance 
function is given by the formula (Walvoort, de Gruijter, 2001): 
 

𝛾𝛾(ℎ) =
1

2𝑛𝑛
�(𝑧𝑧(𝑥𝑥𝑖𝑖) − 𝑧𝑧(𝑥𝑥𝑖𝑖 + ℎ))2
𝑛𝑛

𝑖𝑖=1

 (1) 

 
where: γ(h) is the value of the semi-variance at the distance d; 
            n is the number of couples of points separated by h; 
            z is the value of the depth; 
            xi and xi+h indicate the positions of each couple of 
            points.  
 
3.1 Inverse Distance Weighting (IDW) 

IDW is largely used in various fields such as earth sciences, 
hydrology and environmental sciences (Koutroulis et al., 2011). 
IDW makes the assumption that things close to one another are 
more similar than those are far. The attributed values to 
unknown points are calculated with a weighted average between 
available known points. 
 
The interpolation function can be written as: 
 

𝑍𝑍𝑥𝑥,𝑦𝑦 =
∑ 𝑍𝑍𝑘𝑘

𝑑𝑑𝑘𝑘
𝑝𝑝

𝑁𝑁
𝑘𝑘=1

1
𝑑𝑑𝑘𝑘
𝑝𝑝

 (2) 

 
where Zx,y = estimated value at the position (x, y) of the grid; 
           zk = a neighbouring data point value; 
           N = the number of neighbouring points; 
           dk = the distance between the data point and the point  
           being interpolated; 
           P = a positive-power parameter. 
 
In other terms, to predict a value for any not measured location, 
IDW uses the measured values available. IDW assumes that 
each measured point has a greater influence that decreases with 
distance, hence the name inverse distance weighting. This 
weight is modulated by the power. In this study, IDW with 
power equal to 2 is applied. 
 
3.2 Global polynomial interpolation (GPI) 

Global polynomial interpolation (GPI) fits a smooth surface that 
is defined by a mathematical function (a polynomial) to the 
input sample points. The result from global polynomial 
interpolation is a smooth surface that represents gradual trends 
in the surface over the area of interest (Johnston et al., 2001). 
The interpolation function can be written as (Parente and 
Vallario, 2019): 
 

𝑧𝑧 = ��𝑎𝑎𝑖𝑖,𝑗𝑗𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖
𝑚𝑚2

𝑗𝑗=0

𝑚𝑚1

𝑖𝑖=0

 (3) 

 
Where, if n is the order of the equation:  

0 ≤ 𝑚𝑚1 ≤ 𝑛𝑛;  
0 ≤ 𝑚𝑚2 ≤ 𝑛𝑛;  
𝑚𝑚1 +  𝑚𝑚2 ≤ 𝑛𝑛;  
𝑎𝑎𝑖𝑖,𝑗𝑗 are determined using the known values in the 
sample points.  

  
GPI obtains predictions using the entire dataset instead of using 
the measured points within neighbourhoods. GPI 1st order (GPI-
1) fits a flat plane; GPI 2nd order (GPI-2) fits a surface with one 
bend, GPI 3rd order (GPI-3) fits a surface with two bends, and 
so forth (Wang et al., 2014).  
 
3.3 Local polynomial interpolation (LPI) 

Local polynomial interpolation fits the specified order (zero, 
first, second, third, and so on) polynomial using points only 
within the defined neighbourhood. The neighbourhoods overlap, 
and the value used for each prediction is the value of the fitted 
polynomial at the centre of the neighbourhood (Johnston et al., 
2001). 
 
Local polynomial interpolation uses a local subset defined by a 
window (Luo et al., 2008). This window is shifted across the 
map area and the surface value at the centre of the window is 
estimated. Naturally, the size of the window must be large 
enough to include a correct number of data points (De Smith et 
al., 2007).  
 
3.4 Radial Basis Function (RBF) 

Radial basis function methods are modern ways to approximate 
multivariate functions, especially in the absence of grid data 
(Baxter, 2010). A radial basis function approximation takes the 
form:  
 

𝑠𝑠(𝑥𝑥) = �𝑦𝑦𝑖𝑖𝜑𝜑(‖𝑥𝑥 − 𝑖𝑖‖
𝑖𝑖∈𝐼𝐼

), 𝑥𝑥 ∈ 𝑅𝑅𝑑𝑑  (4) 

 
where  𝜑𝜑:[0, ∞) → R is a fixed univariate function and the  
            coefficients (𝑦𝑦𝑖𝑖)𝑖𝑖∈𝐼𝐼 are real numbers; 
            ‖𝑥𝑥 − 𝑖𝑖‖ represents the norm, and the Euclidean norm is  
            the most common choice; 
            S is represented as a linear combination of translations  
            of a fixed function that is radially symmetric with  
            respect to the given norm (Buhmann, 2009). 
 
In this study we apply different basis functions such as: 
completely regularized spline RBF-CRS, spline with tension 
RBF-SWT, thin-plate spline RBF-TPS, multiquadric function 
RBF-MF, inverse multiquadric function RBF-IMF. Each basis 
function generates a different interpolation surface (Johnston et 
al., 2001).  
 
3.5 Ordinary Kriging (OK) 

OK is one of the most commonly used Kriging techniques 
(Setianto and Triandini, 2013). Its aim is to predict the value of 
the random variable 𝑧𝑧(𝑥𝑥0) at an unsampled point 𝑥𝑥0 of a 
geographical region as well (Webster, Oliver, 2007).  
It assumes the model: 
 

𝑧𝑧(𝑥𝑥0) = �𝜆𝜆𝑖𝑖𝑧𝑧(𝑥𝑥𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 (5) 

 
Where: 𝜆𝜆𝑖𝑖 are the kriging weights. 
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The function 𝑧𝑧(𝑥𝑥𝑖𝑖) is composed of a deterministic component μ 
and a random function  𝜀𝜀(𝑥𝑥𝑖𝑖) (Oliver et al., 1989). 
 

𝑧𝑧(𝑥𝑥𝑖𝑖) = 𝜇𝜇 + 𝜀𝜀(𝑥𝑥𝑖𝑖) (6) 
 
The deterministic component is a constant value for each 𝑥𝑥𝑖𝑖 
location in each area. 
In this study, we analyse this method varying the models of the 
semi-variogram.   
 
3.6 Universal Kriging (UK) 

UK assumes the model (Johnston et al., 2001): 
 

𝑧𝑧(𝑥𝑥𝑖𝑖) = 𝜇𝜇(𝑥𝑥𝑖𝑖) + 𝜀𝜀(𝑥𝑥𝑖𝑖) (7) 
 
where, 𝑧𝑧(𝑥𝑥𝑖𝑖) is the variable of interest, 𝜇𝜇(𝑥𝑥𝑖𝑖) is some 
deterministic function and 𝜀𝜀(𝑥𝑥𝑖𝑖) is random variation 
(Gundogdu, Guney, 2007).  
 
Unlike OK, where the mean 𝜇𝜇 is assumed constant over the 
entire region of study, UK assumes that the mean 𝜇𝜇(𝑥𝑥𝑖𝑖) is 
dependent on the spatial location (Kiš, 2016). 
 
Also for the UK, in this study different semi-variogram models 
are used.   
 
3.7 Accuracy Evaluation 

To assess the accuracy of the results, Cross Validation (CV) is 
carried out. CV is a statistical validation technique to assess the 
performs of an interpolation algorithm (Alcaras et al., 2022). 
There are different methods available in literature for CV 
application (Browne, 2000; Falchi et al., 2018).  
In this case, leave-one-out (CV-LOO) method is adopted. It 
consists in removing a point from the starting series and 
calculating the height/depth in the removed point using the 
height/depth of the other points and applying the same 
interpolation algorithm you want to test (Fasshauer, Zhang, 
2007).  
 
Therefore, as many heights are calculated as there are points. 
Finally, the difference between the single measured point and 
the predicted (calculated) value is checked, analysing the 
statistical values of these residuals, such as mean, standard 
deviation, minimum, maximum and Root Mean Square Error 
(RMSE) (Li, 1988; Aguilar et al., 2005). 
RMSE is calculated in accordance with the formula: 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ (𝑍𝑍𝑖𝑖(𝑥𝑥, 𝑦𝑦) − 𝑍𝑍𝑖𝑖′(𝑥𝑥, 𝑦𝑦))2𝑛𝑛
𝑖𝑖=1

𝑁𝑁
 (8) 

 
Where: N is the number of the depth points. 
            Zi (x,y) is the measured depth at the location i(x, y); 
            Zi′(x, y) is the interpolated depth at the same location 
             i(x, y). 
 

4. RESULTS AND DISCUSSION 

In this study, we applied the different interpolation methods 
previously described producing totally twenty-three DDMs.  
Considering that the bathymetric dataset is derived from the 
ENC of the Port of Naples in scale 1:10,000, we choice the cell 
at 5 m for all generated models. This is in accordance with the 

study “finding the right pixel” proposed by Hengl (Hengl, 
2006). 
 
Optimization is performed for all the models obtained with the 
different interpolation methods; particularly, we use the option 
supplied by Geostatistical Analyst that allows the automatic 
parameter setting to optimize the results reducing the CV 
residuals.  In Table 1 the statistics of the residuals supplied by 
the CV-LOO are reported.  
 
For deterministic methods, the range of the minimum values is 
between -56.139 m for GPI-1 and -16.790 m for LPI-4. For 
stochastic methods, the minimum value goes from -19.603 m 
for OK-ES to -11.195 m for OK-KBS.  
For deterministic methods, the maximum value ranges from 
19.724 m for RBF-MF and 43.971 m for GPI-1. For stochastic 
methods, the range of maximum value goes from 15.584 m for 
OK-JBS to 19.720 m for OK-ES.  
 
For deterministic methods, the mean value is between -0.241 m 
for RBF-IMF and 0.653 m for LPI-2. For the stochastic 
methods, the range of the mean goes from -0.026 m for OK-S 
and OK-JBS, to 0.013 m for UK-S and UK-KBS.  
For the deterministic methods, the range of the standard 
deviation values is between 1.656 m for RBF-MF and 18.720 m 
for GPI-1. For the stochastic methods, standard deviation values 
go from 1.384 m for OK-S, to 2.472 m for UK-SS and UK-
KBS.  
 
About RMSE values, for the deterministic methods the range is 
between 1.656 m for RBF-MF and 18.720 m for GPI-1. In the 
end, for the stochastic methods, RMSE goes from 1.384 m for 
OK-S, to 2.472 m for UK-S and UK-KBS).  
 
Therefore, analysing all RMSE values reported in Table 1, for 
both deterministic and stochastic methods, we see that the best 
performing method is OK-S. Since the performance of each 
method is related to the specificity of the analysed situation, we 
cannot say in absolute that OK-S is the best algorithm to 
interpolate bathymetric data derived from an ENC. On the other 
side, the results confirm the ability of the stochastic approaches 
compared to deterministic approaches for better modelling the 
seabed. 
 

Interpolat. 
Method 

Statistics of the residuals 
Min 
(m) 

Max 
(m) 

Mean 
(m) 

St. Dev 
(m) 

RMSE 
(m) 

 IDW -24.290 20.000 -0.071 2.371 2.372 
GPI-1 -56.139 43.971 0.000 18.720 18.720 
GPI-2 -27.287 40.018 0.000 9.331 9.331 
GPI-3 -25.390 36.707 0.000 7.859 7.859 
GPI-4 -24.566 34.390 0.000 7.250 7.250 
GPI-5 -48.730 33.447 0.000 6.458 6.458 
LPI-1 -19.956 23.472 0.241 4.503 4.509 
LPI-2 -17.565 20.421 0.653 4.593 4.639 
LPI-3 -18.444 21.937 0.133 4.036 4.038 
LPI-4 -16.790 22.345 0.021 3.317 3.317 
LPI-5 -17.790 22.752 0.052 3.787 3.788 

RBF-CRS -19.818 19.892 -0.096 2.053 2.055 
RBF-SWT -19.708 19.877 -0.093 2.035 2.038 
RBF-MF -19.605 19.724 -0.002 1.656 1.656 
RBF-IMF -24.467 22.667 -0.241 2.884 2.894 

OK-S -11.218 15.687 -0.026 1.384 1.384 
OK-JBS -11.490 15.584 -0.026 1.388 1.388 
OK-KBS -11.195 15.762 -0.025 1.386 1.386 
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OK-ES -19.603 19.720 0.010 1.543 1.543 
UK-S -14.704 19.411 0.013 2.472 2.472 

UK-JBS -13.569 18.641 0.011 2.285 2.285 
UK-KBS -14.788 19.422 0.013 2.472 2.472 
UK-ES -13.754 18.890 0.010 2.468 2.468 

Table 1. Statistics of the residuals supplied by Cross Validation 
for all methods applied. 
 
Figure 3 shows the worst model obtained using deterministic 
methods, i.e. GPI-1. Figure 4 shows the best performing model 
among those resulting from the application of a deterministic 
method, i.e. RBF-MF. Figure 5 shows the best performing 
model among those resulting from the application of a 
stochastic method, i.e OK-S. 
 

 
Figure 3. 2D visualization of the bathymetric model resulting 
from Global Polynomial Interpolation - 1st order interpolation 
method. 
 

 
Figure 4. 2D visualization of the bathymetric model resulting 
from Radial Basis Function Multiquadratic interpolation 
method. 
 

Figure 5. 2D visualization of the bathymetric model resulting 
from Ordinary Kriging interpolation method based on the 
application of Stable Semi-variogram Model. 
 

5. CONCLUSION 

This study illustrates the performance of spatial interpolation 
methods to produce 3D bathymetric models from an initial 
dataset obtained by ENC and containing 16,853 depth points 
selected from isolines and soundings. Specifically, we consider 
deterministic as well as stochastic approaches and use CV– 
LOO to analyse the performance of twenty-three methods.  
 
About the deterministic methods, RBF-M allows the best 
performing model, observable from the RMSE values; GPI-1 
presents the worst results, as it was possible to expect, since this 
algorithm turns out an inclined plane interpolating the analysed 
points. 
 
For the stochastic methods, OK-S allows the best performing 
model; UK-S and UK-KBS present the worst results.  
Ultimately, comparing all the interpolation methods used, and 
analysing the RMSE values, we can say that the best performing 
method for the considered dataset is OK-S.  
 
The results obtained remarks the efficiency and the high 
performance of the Kriging interpolators. Furthermore, it can be 
noted that the choice of the mathematical model of the semi-
variogram has a considerable influence. 
 
About the future developments of this work, further studies will 
be focused on the relationship between interpolation methods 
and seafloor morphology as well as point density and model 
accuracy.   
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