The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W7-2023
FOSS4G (Free and Open Source Software for Geospatial) 2023 — Academic Track, 26 June—2 July 2023, Prizren, Kosovo

TRAFFIC SPEED MODELLING TO IMPROVE TRAVEL TIME ESTIMATION IN
OPENROUTESERVICE

C. Ludwig 2% J. Psotta 2, A. Buch !, N. Kolaxidis 2, S. Fendrich 2, M. Zia 2, J. Fiirle !, A. Rousell %, A. Zipf '?

! GIScience Research Group, Heidelberg University, Heidelberg, Germany
(ludwig,fuerle,buch,zipf) @uni-heidelberg.de
2 HeiGIT gGmbH (Heidelberg Institute for Geoinformation Technology), Heidelberg, Germany
(psotta,kolaxidis,fendrich,zia,rousell) @heigit.org

KEY WORDS: Routing, Traffic speed, OSM, Twitter, Centrality.

ABSTRACT:

Time-dependent traffic speed information at a street level is important for routing services to estimate accurate travel times and
to recommend routes which avoid traffic congestion. Still, most open-source routing machines that use OpenStreetMap (OSM) as
the primary data source rely on static driving speeds derived from OSM tags, since comprehensive traffic speed data is not openly
available. In this study, a method was developed to model traffic speed by hour of day at a street level using open data from
OpenStreetMap, Twitter and population data. The modelled traffic speed data was subsequently integrated into the open-source
routing engine openrouteservice to improve travel time estimation in route planning. Machine learning models were trained for ten
cities worldwide using traffic speed data from Uber Movement as reference data. Different indicators based on geolocation and
timestamp of Twitter data as well as a geographically adapted betweeness centrality indicator were evaluated for their potential
to improve prediction accuracy. In all cities, the Twitter indicators improved the model, although this effect was only visible for
certain road types. The centrality indicator improved the model as well but to a lesser extent. The Google Routing API was used
as reference to evaluate the accuracy in travel time estimation. Deviations in travel times were regionally different and were partly

alleviated by including the raw traffic data by Uber or the modelled traffic speed data in openrouteservice.

1. INTRODUCTION

Time-dependent traffic speed information at a street level is im-
portant for route planning to accurately estimate travel times
and to recommend routes which avoid traffic congestion. How-
ever, most open-source routing engines that rely on OpenStreet-
Map (OSM) as their primary data source do not extensively sup-
port the integration of real-time or historic traffic speed data.
Some engines offer prototypical implementations, but driving
speeds are primarily estimated based on the OSM tags assigned
to road features. This approach is also followed by open-
routeservice, an open-source routing engine based on OSM data
(openrouteservice, 2023).

One reason for the limited development in this area is that com-
prehensive global traffic speed data is only available from com-
mercial providers such as Google or Here. Some cities publish
traffic related data within their metropolitan area (e.g. Graph-
Hopper Open Traffic Collection (2023)), but combining mul-
tiple of these data sets to increase coverage is not feasible, since
they are all structured very differently which makes data fusion
hard to automatise and therefore labour-intensive. Furthermore,
municipal data sets are often not based on the OSM street net-
work, requiring extensive map matching procedures to transfer
traffic speed information to the corresponding OSM road fea-
tures.

Currently, the most promising open dataset suitable for usage in
open-source routing engines is provided by Uber Movement. It
contains hourly traffic speed data based on the OSM road net-
work for 51 cities worldwide (Uber Technologies Inc., 2023).
However, this data is limited to the time period from 2015 to
2020 and covers only a fraction of the roads within these cities.
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To address this gap, several studies have proposed methods for
modelling traffic speed using various open data sources. Many
of these studies utilized machine learning techniques with dif-
ferent indicators such as OSM tags (e.g., highway=*), points-
of-interest (Camargo et al., 2020), centrality indicators (Zhao
et al., 2017), or social media data (Pandhare and Shah, 2017).
These indicators have demonstrated their suitability for mod-
elling traffic flow, but none of these studies have specifically
evaluated the impact of using modelled traffic speed data on
travel time estimation in route planning.

The aim of this study is to model historic traffic speed at a
street level and by the hour of the day based on open and glob-
ally available data sources. Additionally, it seeks to evaluate
the potential of using this data to improve travel time estim-
ation in openrouteservice (Figure 1). The study specifically
focuses on assessing the benefits of incorporating geolocation
and timestamp information from Twitter data as well as a geo-
graphically adapted betweenness centrality indicator into traffic
speed modeling using machine learning models in ten cities
worldwide. More specifically, the study addresses the following
research questions:

1. How can geolocation and timestmap information from
Twitter data and the geographically adapted betweenness
centrality indicator improve the traffic speed model?

2. What impact does the incorporation of traffic speed data
have on the accuracy of travel time estimation in open-
routeservice?

The source code and data used in this study are available at
https://zenodo.org/record/7857038.ZEWubHbPOqw.
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Figure 1. Conceptual workflow

2. RELATED WORK

At the time of writing, most open-source routing engines of-
fer only experimental implementations for integrating time-
dependent traffic speed data into route planning. The rout-
ing engine Valhalla has a proof-of-concept implementation for
traffic-influenced routing that supports real-time traffic data
(Valhalla, 2023). However, only a single traffic speed value can
be provided for each OSM road feature, which might be an issue
especially for long features as the actual traffic speed may vary
along their length. The Open Source Routing Machine (OSRM)
also has an experimental integration of traffic data which al-
lows for a single traffic speed value to be provided for sections
of OSM road features in both driving directions (Open Source
Routing Machine, 2023). Graphhopper published an experi-
mental implementation of traffic data in 2015, which relied on
real-time traffic speed data from the City of Cologne (Graph-
hopper, 2019). It is however no longer maintained.

In the past, various methods have been developed to model
traffic speed information using different kinds of openly avail-
able data sources. Studies that utilize social media data to
model traffic speed or traffic volume primarily focused on ana-
lyzing the text content of the posts (Wang et al., 2018; Das and
Purves, 2019; Pereira et al., 2021). Alternatively, Fan and Stew-
art (2021) and Liao et al. (2022) utilized only the geolocation of
the tweets, without considering their content, to model regional
mobility behavior. Traffic delays have also been estimated us-
ing the frequency of points-of-interest (POIs) from OSM (Ca-
margo et al., 2020; Hu and Jin, 2017; Ge et al., 2020). Recently,
network indicators such as betweenness centrality have gained
popularity for modeling traffic flows in transportation networks
(Gao et al., 2013; Pedreira Junior et al., 2021; Zhao et al., 2017,
Jayasinghe and Sano, 2017).

In most studies, machine learning models, such as decision tree-
based models, have been utilized for modeling traffic speed
(Pandhare and Shah, 2017; Pedreira Junior et al., 2021; Integ-
rating Household Travel Survey and Social Media Data to Im-
prove the Quality of OD Matrix: A Comparative Case Study,
n.d.). Recent studies have focused on evaluating the potential
of deep learning in modeling traffic speed (Ge et al., 2020; Fang
et al., 2019; Ren et al., 2022; Cui et al., 2020). However, many
of these studies were restricted to small study areas due to the
high computational effort to train these models. Nevertheless,
some studies have explored the scalability of these models to
larger regions Derrow-Pinion et al. (2021); Fang et al. (2020).

Previous studies have predominantly utilized datasets from of-
ficial agencies for training and evaluating their models focus-
ing on single cities only. The applicability of these models to
multiple cities has rarely been investigated, partly due to the
challenge of obtaining suitable reference data sets from differ-

ent regions which share the same data format (Camargo et al.,
2020).

3. DATA

OpenStreetMap ’OSM is a global digital map of the world
that contains information about roads, land use, and points of
interest (POI). As a community project similar to Wikipedia,
the OSM data is primarily created and maintained by volunteer
members.

Objects in OSM can be represented as nodes (points), ways
(lines, polygons), or relations (groups of nodes or ways). The
properties of these objects can be described using tags, which
consist of a key and a value. For example, a bench can
be mapped as a point geometry with the tag amenity=bench.
Roads in OSM are labeled with the key highway=*, with
the value depending on the type of road. For instance,
highway=motorway st[tyrepresents a motorway, while high-
way=residential represents a residential street. An OSM object
can have multiple tags assigned to it to describe its properties.
OSM users have the flexibility to create and assign tags accord-
ing to their needs. To maintain semantic consistency in the data,
the OSM wiki provides guidelines for tag usage. Additionally,
OSM members can propose new tags in the OSM forum. After
discussion within the OSM community, it is decided whether
the tag will be added to the wiki.

In this study, OSM data was utilized for traffic speed model-
ing to calculate the centrality indicator (see section 4.4) and for
route planning in openrouteservice (see section 5). The OSM
data used for all cities corresponds to March 31, 2020, aligning
with the time period of the Twitter and Uber traffic speed data.
The OSM data was downloaded from Geofabrik (2023).

Twitter Twitter is a social media platform where users can
publicly post text messages, called tweets. Optionally, the cur-
rent geolocation at the time of sending the tweet is stored as
well, provided that the user has activated this feature. Twitter
data can be downloaded free of charge using the public Twitter
API, but only a fraction of all tweets is available for download.
In this study, roughly 10 million tweets were downloaded for
the ten cities investigated, spanning the period from January
2018 to March 2020 (Table 1).

City Twitter Users Tweets | Population
Barcelona 44,758 542,076 5,687,356
Berlin 26,070 418,932 3,573,938
Cincinnati 11,445 157,754 296,943
Kyiv 5,398 73,046 3,016,789
London 151,509 | 1,543,018 9,648,110
Madrid 58,505 552,925 6,751,374
Nairobi 12,750 130,681 5,325,160
New York City 198,144 | 3,981,137 7,888,121
Sao Paulo 89,599 | 1,263,890 | 22,619,736
Seattle 34,694 518,950 737,015

Table 1. Number of Twitter users and number of Tweets
(January 2018 - March 2020) and population in 2023 provided
by World Population Review (2023) for all cities.

Population data The population distribution was considered
in the calculation of the geographically adapted betweenness
centrality of the road network (see section 4.4). To accomplish
this, the study utilized the Global Human Settlement Population
Layer dataset, provided free of charge by the Joint Research
Center (JRC). This dataset offers global coverage at a resolution
of 250 meters (Schiavina et al., 2022).
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Uber Movement traffic speed data Uber Movement is a
platform that offers open data on traffic flow for 51 cities world-
wide (Uber Technologies Inc., 2023). The traffic speed data is
derived based on the OSM road network using user data from
the Uber app. Hourly mean, median, and 85th percentile traffic
speeds are provided for road segments with at least 5 valid
measurements by Uber users. The data is publicly available
from January 2015 to March 2020. In this study, the quarterly
speed statistics by hour of the day for the first quarter of 2020
were used.

4. TRAFFIC SPEED MODEL

4.1 Assumptions

The model is based on the fundamental assumption that pub-
licly available geocoded data from social media platforms can
serve as indicators of spatio-temporal human mobility in the
real world. The presence of a higher number of social me-
dia messages at a specific location and time suggests a larger
crowd of people in that area. Consequently, it implies increased
traffic flow in the nearby road network, as individuals would
have traveled to that location using various means of transport-
ation, such as cars or public transport.

The approach presented in this study does not rely on the con-
tent of social media posts or personal user information. Instead,
it solely utilizes the geolocation and timestamp of Twitter mes-
sages to infer traffic conditions. It does not assume that indi-
viduals create social media messages while driving a car, and
therefore, it does not employ a telemetric approach to estimate
user speed based on the spatio-temporal difference between two
messages.

While this study tests the approach using Twitter data, it
is worth noting that any datasets containing geolocation and
timestamp information, such as those from other social media
platforms or mobile phone data, could potentially be used as
well. This expands the model’s potential for application in other
regions and reduces its dependence on a single data source.

4.2 Model setup

Traffic speed prediction is performed for individual street seg-
ments, considering the hour of the day, using supervised ma-
chine learning techniques across ten cities worldwide. These
cities include Berlin (Germany), London (UK), Barcelona
(Spain), Madrid (Spain), Nairobi (Kenya), Kyiv (Ukraine), Sao
Paulo (Brazil), Seattle (USA), San Francisco (USA), New York
City (USA), and Cincinnati (USA).

The street segments are derived from the OpenStreetMap
(OSM) road network, which is transformed into a directed
graph using the Python package omsnx (Boeing, 2017). For
each street segment, various indicators are calculated and util-
ized as predictors for traffic speed in the model. These indicat-
ors encompass OSM tags such as “highway” and “max_speed,”
a geographically adapted betweenness centrality indicator, and
several Twitter indicators. Twitter indicators. The input vari-
ables are standardized based on the training data prior to model
training. To avoid model leakage the standardization is per-
formed separately for training and testing data. Missing values
in the max_speed tag are filled using the mean max_speed value
for the respective highway tag. The highway tags are encoded
to a numeric representation using a One-Hot-Encoding.

Separate models are trained for each city using the gradient
boosting method implemented in the Python package XGboost
(Chen and Guestrin, 2016). Different combinations of features
are utilized to assess their impact on model performance. Uber
data provides information on the mean, median, and 85th per-
centile of traffic speed. Hence, three different models with dif-
ferent target variables are trained for each city to evaluate the
influence of these metrics on the accuracy of travel time estim-
ation (see section 6.2).

To train the models, 1000 samples for each highway tag are
randomly selected for each city. If there are fewer than 1000
samples available for a specific highway tag, all available fea-
tures are used as samples. The training data comprises 70%
of the samples, while the remaining samples are used for model
evaluation. The quality of the different models is assessed using
the coefficient of determination (R?) and the root mean square
error (RMSE).

4.3 Twitter indicators

Using the Twitter data, eight different indicators are computed
for each street segment. To determine the optimal spatial ag-
gregation of Twitter messages, the number of tweets in the vi-
cinity of each street segment is calculated using four different
buffer distances: 50 meters, 100 meters, 250 meters, and 500
meters. In assessing the temporal aggregation, the Twitter mes-
sages within each buffer are aggregated both by the hour of the
day and by the total tweet count, disregarding the specific hour
of the day.

4.4 Geographically adapted betweenness centrality

Betweenness centrality is an indicator used to identify signi-
ficant nodes or edges in a network. It is computed by gen-
erating the shortest paths between all possible pairs of nodes
in the graph and subsequently calculating the number of times
each node or edge has been traversed. Although initially de-
veloped for social network analysis, betweenness centrality can
be applied to other graph-like structures such as road networks,
where it reveals the relative importance of road segments within
the network.

Calculating the betweenness centrality of road networks re-
quires considering their geographical context. People tend to
choose faster routes rather than shorter ones, so road type be-
comes an important consideration. Additionally, human mobil-
ity is often purpose-driven, resulting in varying levels of travel
to different locations. Taking these factors into account in-
creases the complexity and computational effort, especially for
large road networks, necessitating the calculation of a random-
ized sample of routes due to resource constraints.

Therefore, a geographically adapted version of the betweenness
centrality indicator was calculated instead of using the original
form. In each city, 20,000 car trips were generated using the
openrouteservice car profile. For each trip, a random starting
point, weighted by the population distribution, and a randomly
selected destination point represented by a POI, were chosen.
POIs were obtained from OSM based on predefined OSM tags,
categorized into work, education, shopping, or leisure. To sim-
ulate more realistic trips, a distance decay function was used,
favoring POIs closer to the starting point, as described in Gao
et al. (2013). The generated routes were then matched to the
corresponding OSM road segments using fast map matching
(Yang and Gidoéfalvi, 2018), and aggregated to derive a cent-
rality score for each road segment.
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5. TRAFFIC SPEED INTEGRATION IN
OPENROUTESERVICE

Openrouteservice is a freely available, open-source routing ser-
vice that based on OSM data. The provided services include
route planning, distance and travel time matrices and isolines
for different profiles such as pedestrian, bike, car or wheelchair
as well as geocoding and map-matching functions. Currently,
openrouteservice uses a heavily modified fork of Graphhopper
for routing.

The original version of the openrouteservice routing engine
does not utilize traffic speed data as input. Instead, it assumes
static driving speeds based on factors such as the highway class,
road surface, and country-specific rules. Additionally, an accel-
eration heuristic is implemented to account for reduced speeds
at junctions.

In this study, a traffic speed integration was implemented in
openrouteservice to consider historic traffic speed data during
route planning. It allows the provision of traffic speed data for
each hour of the day, irrespective of the date or day of the week.
This information is parsed and stored by openrouteservice as
supplementary data for each edge in the routing graph.

The traffic speed data should be provided in a CSV file format.
Each row in the dataset represents the traffic speed value for a
specific hour of the day for an OSM street segment, identified
by the OSM way ID it belongs to as well as the start and end
node IDs. This structure enables the specification of driving
speeds for both directions throughout a typical day. The data
format aligns with the quarterly traffic speed datasets offered by
Uber Movement, enabling their direct usage with openrouteser-
vice without requiring map matching or other preprocessing
steps.

To evaluate the potential improvement in travel time estima-
tion by incorporating traffic speed data, comparisons were made
between the travel times estimated by openrouteservice and
those estimated by the Google Routing API. Google utilizes
data from smartphones using its services to derive real-time and
historic traffic speed information. Since the traffic speed model
in this study only provides historic traffic speed, routes from
Google were requested for a date several weeks in the future to
ensure the utilization of historic data rather than real-time data.
For each city, 50 random routes for each hour of the day were
requested from the Google Routing API for June 23rd, 2023. To
increase the number of routes for comparison, alternative routes
were also included.

For each Google route, five routes were generated using open-
routeservice with different traffic data sets: openrouteservice
without traffic speed data, with modeled mean traffic speed,
with modeled median traffic speed, with modeled 85th percent-
ile traffic speed, and with raw 85th percentile traffic speed data
from Uber. To replicate the Google routes as closely as pos-
sible, 10 waypoints distributed along the route were passed to
openrouteservice. However, deviations between the routes gen-
erated by Google and openrouteservice still occurred. To ex-
clude these form the analysis, routes with a deviation in geo-
metry larger than 3% and differences in distance greater than
1% were excluded from the analysis.

This analysis was conducted for three cities located in different
geographic regions and with varying spatio-temporal densities
of Twitter data relative to population numbers: Nairobi (low

density), Berlin (medium density), and Seattle (high density)
(Table 1).

6. RESULTS
6.1 Traffic speed model

The variation in model performance based on different model
features exhibits a consistent pattern across all cities (Fig-
ure 2). The models utilizing only the OSM tags "highway” and
”max_speed” demonstrate the lowest accuracy. The inclusion of
the hour of the day as an additional indicator does not consider-
ably enhance model performance; in some cities, it even shows
a slight decline. On the other hand, substantial improvements
are observed when incorporating the total number of Tweets
within a 250-meter distance of streets into the model. However,
this improvement is not evident when aggregating the Tweets
by hour of the day. In cities with limited Twitter data, such as
Berlin or Nairobi, the addition of the betweenness centrality in-
dicator further enhances the model. However, for cities with a
substantial amount of Twitter data, such as New York City or
London, the improvement is relatively small.
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Figure 2. RMSE and R? (in brackets) of models predicting the
85th percentile of traffic speed using different features.

Several Twitter indicators based on different spatio-temporal
aggregation methods were evaluated (Figure 3). Again, the
same pattern could be observed across all cities. Regarding
spatial aggregation, model performance considerably improved
with increasing distance from streets. For example, in Seattle,
considering Tweets up to 500 meters away from the street
reduces the RMSE by 5.13 km/h, while considering Tweets
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within a distance of 100 meters only reduces RMSE by 0.31
km/h. As for temporal aggregation, aggregating Tweets by the
hour of the day instead of taking the total Tweet count within
the vicinity of the street does not significantly improve the mod-
els. Due to memory issues, it was not possible to aggregate
Twitter messages using a 500-meter buffer in cities with very
large Twitter data (New York City and London). These lim-
itations can be overcome by improving the implementations’s
efficiency, but it also highlights the high computational effort
required to compute this indicator for all street segments.
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Figure 3. Difference in RMSE and R? (in brackets) of models
using different Twitter indicators compared to the model
h+m+hod+centrality in Figure 2. Twitter indicators differ
depending on the buffer sizes and temporal aggregation.

The prediction of traffic speed improved to varying degrees
depending on the road type. For traffic-calmed sectors (high-
way=living_street), construction sites (highway=construction),
as well as motorways and links, model performance improved
when considering the total Tweet count within the vicinity of
the street. In Berlin, for example, the RMSE for construction
sites decreased from 7.78 km/h to 3.79 km/h (Figure 4). How-
ever, for small to medium-sized roads such as residential streets,
no improvement was observed by incorporating Twitter or cent-
rality indicators (Figure A.1 in the appendix).

Regarding feature importance, the influence of the features
on the model prediction is generally well-balanced (Figure 5).
However, for roads with high traffic speeds such as motorways,
the OSM tag max_speed="* has a significantly higher influence
on the model prediction than the other indicators.

6.2 Evaluation of travel time estimation

To assess the impact of different traffic speed data sets on travel
time estimation in openrouteservice, routes were generated us-
ing the Google Routing API for each city: Berlin (3097 routes),
Nairobi (2744 routes), and Cincinnati (2796 routes). The vari-
ation in the number of routes is due to the different numbers of
alternative routes provided for each request. Only a subset of
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highway=construction in Berlin for different models. Twitter
and centrality indicators improve the model considerably.
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these routes could be accurately replicated using all five open-
routeservice instances: 210 in Berlin, 489 in Cincinnati, and 43
in Nairobi.

In Berlin, incorporating traffic speed data in openrouteservice
did not significantly improve the accuracy of estimated travel
times (Figure 6). Without traffic data, travel times were over-
estimated on average by 7.77%, whereas with modelled traffic
speed data, travel times were generally underestimated, particu-
larly when using the 85th percentile (-35.99%). The best results
were achieved when using the modelled median traffic speed
(-8.89%). The utilization of raw traffic speed data provided by
Uber, available for approximately 40% of OSM street segments,
did not considerably enhance travel time estimation.

Berlin (210 routes)
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Figure 6. Differences in estimated travel time between Google

Routing API and openrouteservice with different traffic speed

data sets for Berlin. Positive values mean that estimated travel
time of openrouteservice is longer than Google.

In Cincinnati, openrouteservice without traffic speed data over-
estimated travel times on average by 24.74% (Figure 7). These
discrepancies were slightly reduced to 22.49% when incorpor-
ating the modelled 85th percentile traffic speed data. The util-
ization of raw Uber traffic speed data, which is accessible for
17% of street segments, further narrows the gap in travel times
to 19.23%.
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Figure 7. Differences in estimated travel time between Google
Routing API and openrouteservice with different traffic speed
data sets for Cincinnati. Positive values mean that estimated
travel time of openrouteservice is longer than Google.

In contrast to Berlin and Cincinnati, openrouteservice without
traffic speed data underestimated travel times in Nairobi on av-
erage by 41.53% (Figure 8). However, incorporating the mod-
elled or raw traffic speed data significantly improved the estim-
ation of travel times. The most accurate results were obtained

when using the modelled 85th percentile traffic speed data, re-
ducing the deviation in travel times to just 1.42%.
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7. DISCUSSION

The influence of Twitter indicators on the accuracy of the traffic
speed model was similar in all ten cities. Using the total count
of Twitter messages in the vicinity of a street segment led to
higher model accuracy than using hourly aggregation. This
could be due to the fact that the density of Twitter messages
is not high enough to extract both a spatial and a temporal sig-
nal. It might also be the reason why considering Tweets up to
500 meters away from the streets yielded the best model res-
ults. This means that aggregating the data at a street segment
level is not necessary, and that it can also be done on a smaller
neighborhood scale, for which a less computationally intens-
ive method can be found. In this way, Twitter indicators with
buffers of 500 meters and above could also be calculated for
larger cities such as New York City and London, which previ-
ously failed due to memory issues. The geographically adapted
betweenness centrality indicator also improved the models, es-
pecially in cities with a low density of Twitter data. This shows
that centrality indicators can complement the Twitter indicators
quite well. However, further analysis regarding the adaptability
of these indicators to the geospatial domain should be conduc-
ted to better integrate them into traffic speed modeling.

In this study, Twitter data was used as an indicator to predict
traffic speed, but technically, other datasets containing geoloca-
tion and timestamp information, such as other social media plat-
forms or mobile phone data, could be integrated as well with
minimal effort. Therefore, future studies should investigate the
potential to replace or enrich Twitter data to further improve
model performance. The main focus of this study was to invest-
igate the potential of different open datasets for traffic modeling
rather than optimizing the model itself. In future studies, the
potential of the investigated indicators in deep learning mod-
els should be explored. Additionally, the transferability of the
models to cities without Uber data is another important aspect
that needs to be addressed.

The comparison of travel times between Google and open-
routeservice yielded different patterns in all cities. In Berlin and
Cincinnati, the original openrouteservice without traffic data
overestimated travel times, while in Nairobi, it was strongly un-
derestimated. This could be attributed to a lower level of attrib-
ute completeness of OSM highway features in Nairobi or may
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indicate the need for more country-specific adaptations in the
heuristics used for travel time estimation in openrouteservice.

Using the raw or modeled traffic speed data in openrouteser-
vice corrected this bias in Nairobi, demonstrating that traffic
speed information could be useful in alleviating regional differ-
ences in accuracy. In some cases, the raw Uber traffic speed
data improved travel time estimation more than the modeled
traffic speed. This observation might indicate that the traffic
speed models are not accurately predicting traffic speed in ex-
ceptionally busy streets. Further investigation is needed to bet-
ter understand and improve the models.

Generally, the approach to compare travel times between two
different routing engines needs improvement, as it was only
possible to reproduce a fraction of Google routes with the re-
quired accuracy. Therefore, the analysis should be repeated us-
ing a better method and a larger number of routes. Neverthe-
less, the results demonstrate that evaluating the performance of
a traffic speed model in combination with its usage in a routing
engine is worthwhile, since strong improvements in the traffic
models might not necessarily lead to significant improvements
in travel time estimation. For example, in Berlin, the accuracy
of the traffic models was the highest, but it did not result in a
significant improvement in travel time estimation.

Technically, integrating the Uber traffic speed data in open-
routeservice was quite easy since no map matching was neces-
sary. However, this data structure resulted in very large CSV
files containing the traffic speed data, requiring a significant
amount of RAM during graph building. Therefore, the struc-
ture should be adapted to store the traffic speed information in a
more efficient way. One option to consider is reducing the tem-
poral resolution from one-hour intervals to three-hour intervals,
which may help address this issue.

8. CONCLUSION AND OUTLOOK

The results of the traffic speed models have shown that the in-
tegration of Twitter data can considerably improve traffic speed
models. This is especially true for traffic-calmed sectors and
construction sites but not as much for medium-sized roads, such
as residential streets. Aggregating the Twitter data on a neigh-
borhood level was more effective than on a street level, and the
temporal information contained in the tweets was not relevant
for improving the model. The comparison between travel times
in Google and openrouteservice showed regional differences in
the accuracy of estimated travel times. These differences could
be partly alleviated by incorporating raw or modeled traffic
speed information. Generally, the method used to evaluate the
travel time difference between two routing engines needs im-
provement to yield more reliable results. Investigating traffic
speed models in combination with their usage in routing en-
gines is worthwhile since the results showed that improvements
in the models do not necessarily lead to improvements in travel
time estimation.
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Figure A.1. Residuals of OSM road features with tag
highway=residential in Berlin for different models. Twitter and
centrality indicators do not improve the model.
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