
COMTILES: A CASE STUDY OF A CLOUD OPTIMIZED TILE ARCHIVE FORMAT FOR
DEPLOYING PLANET-SCALE TILSETS IN THE CLOUD

M. Tremmel

Bahnhofstraße 31, 9429 Bodenmais, Germany - markus.tremmel23@gmail.com

KEY WORDS: Cloud Optimized File Format, Cloud Optimized Tile Archive, Cloud Storage, Web Map, Tiles, Cloud-native
Geospatial.

ABSTRACT:

The container formats commonly used for managing map tiles, such as MBTiles and GeoPackage, were originally designed with
only POSIX filesystem access in mind. This makes these file formats inefficient to use in a cloud native environment, especially
in combination with large tilesets. The Cloud Optimized GeoTIFF format solves the problem of providing large satellite data
in the cloud, creating a new category of so-called cloud optimized data formats. This type of format allows geospatial data to
be deployed as a single file on a cheap and scalable cloud object storage such as AWS S3 and accessed directly from a browser
without the need for a dedicated backend. Based on the concepts of the COG format, this contribution proposes a new cloud
optimized file format called COMTiles, specially designed for planet-scale tilesets. This format has the potential to simplify
the deployment workflow of large tilesets in a cloud-native environment, while simultaneously reducing the hosting costs. In
comparison to PMTiles, another cloud-optimized tile archive solution, COMTiles can reduce the number of transferred data and the
performance of decoding portions of the file. COMTiles also adds support for different coordinate systems.

1. INTRODUCTION

The state-of-the-art container formats for managing map tiles
are the Mapbox MBTiles specification (Mapbox, 2018) and the
OGC GeoPackage standard (Open Geospatial Consortium, 2021).
These formats enable the storage of large tilesets containing
hundreds of millions of map tiles in a single file. When used
in conjunction with a tileserver, map tiles can be requested over
a network or directly accessed by client applications. Since
both formats are based on an SQLite database, they are mainly
designed for a block-oriented POSIX-conform file system ac-
cess. This design approach makes these file formats inefficient
to use in a cloud native environment, especially in combina-
tion with large tilesets. To deploy a MBTiles database in the
cloud, the tiles must be extracted and either uploaded individu-
ally to an object storage or imported in a cloud database and
accessed by an additional dedicated tileserver. The main dis-
advantages of both options are the complex workflow for the
deployment and the expensive hosting costs. The Cloud Op-
timized GeoTIFF (COG) format already solves the problem for
providing large satellite data in the cloud, creating a new cat-
egory of so-called cloud optimized data formats (Cloud Optim-
ized GeoTIFF, 2018). This type of format allows geospatial
data to be deployed as a single file on a cheap and scalable cloud
object storage such as AWS S3 and accessed directly from a
browser without the need for a dedicated backend.

Based on the concepts of the COG format, this contribution pro-
poses a new cloud optimized file format called COMTiles, spe-
cially designed for planet-scale tilesets. This format is designed
as a streamable and read optimized single file archive format
for storing large raster and in particular vector tilesets in the
cloud. The COMTiles format has the potential to simplify the
deployment workflow of large tilesets in a cloud-native envir-
onment, while simultaneously reducing the hosting costs. The
proposed format aims to achieve this by minimizing the latency
to preserve the user experience commonly associated with web
maps, such as Google Maps. In addition, a novel tile request

batching approach is presented, which can significantly reduce
the number of tile requests. This enables the deployment of a
planet-scale OSM tileset with 90 gigabytes in size on a Cloud-
flare R2 storage and access to approximately 35 million tiles of
this dataset through a browser at a remarkably low cost of only
$1.35 per month.

To evaluate the efficiency of the design, this work compares
COMTiles with another cloud native tileset format PMTiles for
planet-scale tilesets based on different metrics (Liu, 2022). The
evaluation shows that COMTiles can reduce the number of trans-
ferred data and the performance of decoding portions of the file
by accepting a larger total index size. COMTiles also adds sup-
port for different coordinate systems.

2. CLOUD OPTIMIZED GEOSPATIAL FORMATS

All major cloud platforms provide a object storage like AWS
S3, Azure Blob Storage or Cloudflare R2 as the cheapest and
most scalable way to store large amount of data. At the time
of writing, 100 GB of data is charged between $1 and $5 per
month, depending on the provider. However, the problem with
most geospatial data formats like MBTiles or Shapefiles is that
they were developed before cloud object storage was preval-
ent. These files are designed for the usage in local disks and
filesystems which offer low latency. Compared to local filesys-
tems an object storage service rely on HTTP requests with a
relatively high latency (100 ms or more) (Abernathey et al.,
2021). Therefore, the internal structure of a file has must be
specifically designed to be efficiently consumed in networked
environments. The first widely adapted geospatial format that
could be efficiently used in a cloud-native environment was the
Cloud Optimized GeoTIFF format. Based on the ideas of this
format, new cloud optimized geospatial formats, often built on
top of existing formats, have been created for various use cases.
These formats are based on and make use of the following cloud
native geospatial concepts:

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W7-2023
FOSS4G (Free and Open Source Software for Geospatial) 2023 – Academic Track, 26 June–2 July 2023, Prizren, Kosovo

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W7-2023-231-2023 | © Author(s) 2023. CC BY 4.0 License.

231

Category Formats
Raster Cloud Optimized GeoTiff

(COG)
Point Clouds Cloud Optimized Point

Cloud (COPC)
N-dimensional Arrays Zarr, TileDB

Vector FlatGeobuf, GeoParquet
Tile Archive PMTiles, COMTiles

Table 1. Categories of cloud optimized formats for storing
geospatial data.

• Cheap and scalable cloud object storage for storing massive
datasets

• HTTP GET range requests (IETF RFC7233) for partial
reads

• Spatial index for referencing parts of the file

• Metadata for describing the properties, content and struc-
ture of the file

• Read optimized-access

Based on the metadata and the spatial index, clients can request
portions of a file via HTTP GET range requests. The index in-
dicates the location of specific chunks of data within the file
and allows random reads. Since the index for massive datasets
is too large to be fully downloaded with low latency, the index
must also be streamable. Cloud optimized formats must be de-
signed in a way that minimizes the number of HTTP requests
for requesting parts of the index. This reduces both latency and
costs, since each request and the data size transferred is billed
by the cloud providers. To achieve this, most cloud optimized
formats are optimized for read access, which makes updates to
the file expensive compared to transactions in a database.

As shown in Table 1, there are several types of cloud optim-
ized formats for the different use cases within the geospatial
domain. The previously mentioned COG format focuses on
storing and serving georeferenced raster images on the web. In
addition, also specialized formats for point clouds like Cloud
Optimized Point Clouds and for multidimensional arrays like
Zarr or TileDB exists. Formats intended for storing large vector
datasets in the cloud are GeoParquet and FlatGeobuf. GeoPar-
quet with its column-oriented layout has a special focus on tab-
ular data and can be used for analytical workflows in cloud data
warehouses like BigQuery or Snowflake (GeoParquet, 2022).
FlatGeobuf is a performant binary encoding for spatial vector
data based on flatbuffers that can hold a collection of Simple
Features (Harrtell, 2021). In contrast to GeoParquet, a spatial
index for fast spatial bounding box filtering based on a packed
Hilbert R-Tree can be part of a FlateGeobuf file. Both formats
are well suited for analytical processing and workflow of large
vector datasets. However, both formats lack the concept of
overviews for visualizing large basemaps such as the planet-
scale OpenStreetMap dataset (Holmes, 2021). Overviews are
crucial for web maps to allow a fluent user experience known
from slippy map1 applications like Google Maps when zooming
across multiple scales.

As a result, since map tiles are based on the concepts of over-
views, they are the most effective way to display large vector
maps in the browser. To simplify the management of large

1 https://wiki.openstreetmap.org/wiki/Slippy map.

basemaps in the cloud, the tiles can be stored in a cloud op-
timized tile archive. Besides COMTiles, there are other cloud-
optimized formats for tilesets with different design approaches
and trade-offs like PMTiles, TileBase and Cotar. Due to the
broadest adaptation, the strong tool support and the most ad-
vanced concepts, the focus in the following is on PMTiles in
version 3.

A PMTiles archive is divided into the following five main sec-
tions: header, root directory, JSON metadata, leaf directories
and the tiled data. The root directory and leaf directories con-
sists of a list of entries and are used to address the tiles in the
archive. A directory entry is defined by a TileId, Offset, Length,
and RunLength. A TileId corresponds to a cumulative position
on the series of square Hilbert curves (Liu, 2022). To reduce
the size of the archive, each directory is compressed using a
combination of Run-length encoding (RLE), Delta coding and
Varint encoding, as well as a general purpose compression such
as Gzip. The compressions used lead to a remarkable reduction
in the size of the index. As a result, the index of a planet-scale
vector base map is only about 91 megabytes in size.

3. FILE LAYOUT

The COMTiles format is designed as a streamable and read
optimized file archive for hosting map tiles at global scale on
a cloud object storage. The basic concepts of COMTiles are
based on the ideas of the Cloud Optimized GeoTIFF format
and extended for the management of map tiles. As COMTiles
is designed to be agnostic to the tile content, both raster and in
particular vector tiles can be stored in the archive.

The following primary requirements are taken into considera-
tion in the design of the format:

• Support of different coordinate reference systems (CRS)

• Minimize the transferred amount of data and the number
of requests to reduce costs and latency

• Every tile in the archive can be requested with at most one
additional request

• Fast decoding of the index

The file layout shown in Figure 1 was chosen to support the
requirements. A COMTiles layout is basically divided into the
following four sections: header, metadata, index and data

3.1 Metadata

The metadata section describes the properties and structure of a
tileset encoded as a UTF-8 encoded JSON document, as shown
in Figure 2. To support different predefined tiled coordinate
reference systems, the metadata document is based on the OGC
“OGC Two Dimensional Tile Matrix Set and Tile Set Metadata”
specification. In this OGC specification, the basic concept for
describing the structure of a tileset is a tile matrix set that is
defined on top of a CRS. A fundamental part of the definition
of tile matrix set is a tile matrix, which is composed of a col-
lection of tile matrices. A tile matrix is associated to a spe-
cific scale and divides the space into regular conterminous tiles
with a unique identifier (Open Geospatial Consortium, 2022).
Based on the tile matrix limits, a limited coverage of a tile mat-
rix can be defined. Different coordinate systems are supported

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W7-2023
FOSS4G (Free and Open Source Software for Geospatial) 2023 – Academic Track, 26 June–2 July 2023, Prizren, Kosovo

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W7-2023-231-2023 | © Author(s) 2023. CC BY 4.0 License.

232

Figure 1. Layout of a COMTiles archive.

based on the Common TileMatrixSet definitions contained in
the OGC specification as informative annex. These definitions
propose different tile matrix set definitions for Mercator, Trans-
verse Mercator, Polar Stereographic, Lambert Azimuthal Equal
Area, and Lambert Conformal Conic projections. In addition,
there are also additional properties part of the metadata docu-
ment such as the content of the tiles (raster, vector) or properties
about the structure index. In combination with the file header,
the metadata document can be used to define requests for por-
tions of the index.

3.2 Index

The basic concept of the COMTiles format is to create an ad-
ditional streamable index that stores the offset and size of the
actual map tiles in the data section of the archive as so-called
index entries. In combination with a metadata document, the
index can be used to define a request for a specific map tile
in the archive stored on a cloud object storage based on HTTP
range requests. Since the index for a planet-scale tileset is too
large to be fully downloaded with an acceptable latency, only
portions of the index need to be queryable. The main design
goal of the index is to enable low cloud access charges and a
similar latency as compared to a deployment with a dedicated
tile backend. Therefore, the transferred amount of data and the
number of requests for portions of the index have to be minim-
ized. Every tile in the archive should be requested with at most
one request.

The combination of two different approaches for the index lay-
out showed the best results in tests: a root tile pyramid which
serves as an overview for the lower zoom levels and index frag-
ments which are lazy loaded on higher zoom levels. Since lower
zoom levels are accessed more frequently and the number of
tiles is manageable up to a specific zoom level, all index entries
can be fetched at once in an acceptable time when the map

Figure 2. Structure of the metadata document of a COMTiles
archive.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W7-2023
FOSS4G (Free and Open Source Software for Geospatial) 2023 – Academic Track, 26 June–2 July 2023, Prizren, Kosovo

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W7-2023-231-2023 | © Author(s) 2023. CC BY 4.0 License.

233

Encoding Row-major
order

Hilbert order

Varint 32.83 (19.93) 32.83 (19.93)
Gzip 25.05 25.08

ORC RLE V1 22.96 (20.43) 23.04 (20.37)
ORC RLE V2 21.43 (19.92) 21.46 (19.95)

Parquet
RLE/Bit-Packing

25.44 (19.11) 24.83 (19.19)

Modified ORC
RLE V1

22.17 (20.12) 22.36 (20.11)

Table 2. Results of comparing different compression algorithms
for a index pyramid. Results are in kilobytes, with results of

additional Gzip compression in parentheses.

is initially loaded. For the compression of the tile pyramid, a
lightweight compression technique should be used that allows
for fast decoding. Lightweight compression techqniques can
be applied at logical and physical level. The reduction of the
number of values and the mapping to smaller values is applied
on the logical level. Basic logical level techqniques are Run-
length encoding (RLE), delta coding or dictionary encoding.
These techniques are used in combination with null suppression
(NS) algorithms that eliminate the leading zeros in the binary
representation of small integers. Widely used null suppression
techqniques are Varint encoding and bitpacking. In planet-scale
tilsets duplicate water tiles are a dominant part of the map, since
about 71% of the earth is covered with water. Thus, the index
pyramid references many tiles of the same size. Therefore, to
reduce the size of the pyramid, RLE coding is the most im-
portant logical level technique for compressing the size of the
pyramid. There are ready to use and widely adapted lightweight
compression algorithms used in big data formats that combine
RLE encoding with a null suppression technique. For instance,
the ORC format employs RLE V1 and RLE V2 encoding, while
the Parquet format utilizes an RLE/Bit-Packing Hybrid encod-
ing. For the comparison, also only the usage of Varint encoding
was evaluated. To find the best integer compression algorithms,
a zoom level 0 to 7 index pyramid with 21845 index entries
based on a planet-scale vector tileset was compressed. As il-
lustrated in Figure 2, the ORC RLE V2 encoding exhibited the
most optimal results, while an adapted verson of the ORC RLE
V1 encoding was identified as the second-best performing en-
coding method. According to the findings, the ORC RLE V2
encoding exhibited the most optimal results, while an adap-
ted version of the ORC RLE V1 encoding was identified as
the second-best encoding method. The evaluation also shows
that using an additional heavy compression such as Gzip on top
of the light compression algorithms results in only small im-
provements in the compression ratio while slowing down the
decoding performance. It was also tested whether using a Hil-
bert curve instead of row-major ordering for the index entries of
the pyramid results in a better compression ratio. The main idea
behind this is that tiles of the same size, such as ocean tiles, are
more likely to be spatially clustered, resulting in longer runs in
the RLE encoding. However, the results show no improvements
in compression ratio when the index entries of the pyramid are
order on a Hilbert curve instead of a row-major. Since the ad-
apted version of the ORC RLE V1 encoding is faster to decode
and easier to implement than the ORC RLE V2 encoding, this
encoding was chosen as the compression method of the root
pyramid in the COMTiles format.

To fulfill the requirements that every tile can be accessed with
only one additional request, a different approach called index
fragments is used for lazy loading portions of the index on

higher zoom levels. Fragments are a collection of index re-
cords with a default of 4096. Depending on the extent of the
tileset, the boundaries of the fragments can be sparse or dense.
To allow random access, all fragments have to have the same
size. Therefore, the index records of a fragment are bitpacked
with a default size of 20 bits per entry, resulting in a default
size of 10kb per fragment for 4096 index entries. To reduce
the number of requests, the fragments are ordered on a space
filling curve such as the hilbert curve. Therefore, the tiles can
be fetched in batches, reducing the number of total requests.
The sequence for requesting batches of tiles from a cloud ob-
ject storage by combining an index pyramid with fragments is
shown in Figure 3. Since no advanced compression algorithms
can be used to fulfill the specified requirements, the resulting
index for a planet-scale tileset is about 10 times larger com-
pared to PMTiles (∼91 MB to ∼880 MB). The difference in
size is mainly a result of the compression algorithms PMTiles
uses, with deduplication of directory entries based on RLE en-
coding being the dominant factor. However, since cloud storage
is cheap, the additional cost of the difference in the index size
proved to be negligible.

Since no heavyweight compression algorithms for the complete
index fragments is used, the index records can also be stream
decoded and processed before the full fragment is loaded. This
can reduce the latency when the corresponding index entries
for the required tiles are in the front part of the fragment. In the
browser small chunks from an network stream can be processed
based on the Streams API and the associated ReadableStream
interface. One disadvantage is that the size of the chunks can’t
be configured, as it is controlled by the browser. In the tests on
an about average internet connection of 110 Mbps the full frag-
ment was returned as a single chunk, omitting the possibility
to process index entries before the full fragment is available on
the client-side. In contrast, for a 3G connection with 1.44 Mbps
bandwidth, the chunk size was by about 1.5 Kb. This allowed to
process the index entries of a fragment in 7 chunks. Therefore,
when the references to the tiles were part of the first chunks, the
latency could be reduced.

4. EXPERIMENTS

In this section, COMTiles is compared to PMTiles for planet-
scale tilesets based on different metrics. Furthermore, the effi-
ciency of the presented tile request batching approach is eval-
uated. The COMTiles archive used in the following evaluation
was generated with the @com-tiles/mbtiles-converter from a
planet-scale MBTiles database based on the OpenMapTiles vec-
tor tiles schema (MapTiler, 2023). The file layout described
in Section 3 was not yet integrated in the @com-tiles/mbtiles-
converter at the time of the test. Therefore, the generated COMTiles
archive were post-processed with a separate utility library (Trem-
mel, 2023) to match the specified file design. The post-processing
stage entailed the utilization of the modified ORC RLE V1 en-
coding technique for compressing the root pyramid, along with
the bitpacking method for compressing the index fragments.
The complete source code is available online 2.

4.1 Comparison with PMTiles

The author has selected the following metrics to compare COMTiles
with PMTiles, as they have a significant impact on user experi-
ence and cloud access charges:

2 https://github.com/mactrem/com-tiles-evaluation.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W7-2023
FOSS4G (Free and Open Source Software for Geospatial) 2023 – Academic Track, 26 June–2 July 2023, Prizren, Kosovo

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W7-2023-231-2023 | © Author(s) 2023. CC BY 4.0 License.

234

Figure 3. Sequence of requesting data from a planet-scale
COMTiles archive.

• Size of downloaded data from a cloud object storage

• Number of requests to a cloud object storage

• Performance for decoding portions of the index

For testing, a planet-scale MBTiles database based on the Open-
MapTiles vector tiles schema was converted into a PMTiles
archive using the go-pmtiles utility tool (Liu, 2023) in version
2.0.1. To display the PMTiles archive on a map, the PMTiles
js library (Liu, 2022) in version 2.7.0 were utilized. This lib-
rary was slightly modified to capture the number of requests,
the transferred amount of data and to benchmark the time for
decoding portions of the index. The global scale PMTiles and
COMTiles archives were both deployed on a AWS S3 storage.

4.1.1 Number of requests and data transferred To de-
termine the number of requests and transferred data size, two
different realistic map interactions have been automatic sim-
ulated. For the first workflow the testing method described
by (Netek et al., 2020) was selected with the Department of
Geoinformatics building at Palacký University in Olomouc as
the default object. The map interactions shown in Table 3 are
described by (Netek et al., 2020) as ”simulating how users typ-
ically interacted with map applications”. Since this workflow
is more focused on zoom based interactions, also a second test
case with a focus on a panning based map navigation pattern
was conducted. The workfow of the second test is focused on
exploring larger cities in Europe and is summarized in Table 4.

Table 5 shows the results of the comparison between the two
formats in terms of the amount of data transferred and the total
number of requests. The results reveal that the COMTiles solu-
tion outperforms PMTiles, resulting in a 3.3x and 3.1x reduc-
tion in data transfer for the first and second test case, respect-
ively. Regarding the total number of requests, both approaches

Interaction Zoom
before/after

Displayed
Extent/Level

Interaction Zoom
before/after

Displayed
Extent/Level

Initial load -/6.5 Czech Republic
Zoom in on the

Department
6.5/17 Street level

Pan to the Square 17/17 Street level
Zoom out 3x 17/14 City of Olomouc
Zoom out 1x 14/13 City of Olomouc

Table 3. List of interactions for the first test case. Adapted from
(Netek et al., 2020).

Interaction Zoom
before/after

Displayed
Extent/Level

Initial load -/1 Planet level
Zoom in Munich

center
1/18 City of Berlin

Zoom out 18/5 Country level
Pan to Berlin 5/5 Country level

Zoom in Berlin
center

5/18 City of Berlin

Zoom out 18/6 Country level
Pan to Paris 6/6 Country level

Zoom in Paris
center

6/18 City of Paris

Zoom out 18/6 Country level
Pan to London 6/6 Country level

Zoom in London
center

14/13 City of London

Table 4. List of map interactions for the second explorative test.

did not exhibit a statistically significant difference for both in-
teraction pattern. However, the data revealed that a COMTiles
based client made approximately 13% fewer requests in the first
test case, while a PMTiles based client made approximately 7%
fewer requests in the second explorative test case.

4.1.2 Decoding performance For comparing the decoding
performance of both formats, data for the index at zoom level 14
in the center of Munich was selected. The benchmarking were
carried out on a Windows 10 workstation equipped with Intel
Core i7-8665U (1.90 GHz) and 32 GB of RAM. Benchmark.js
were used as benchmarking library because it supports high-
resolution timers. The benchmark suites were repeated 15 times
and the average was calculated. For benchmarking COMTiles
a fragment with the default size of 4096 index records were
selected. For PMTiles, in addition to a planet-scale directory
of 16384 entries, also a second directory in the size of the used
COMTiles fragment with 4094 entries was generated.

As shown in Table 6, COMTiles outperforms PMTiles for a
planet-scale directory by about factor 63. When both approaches
use corresponding fragment respectively directory sizes, COMTiles
is about 19 times faster compared to PMTiles for decoding por-
tions of the index. Thus, the faster decoding performance of
COMTiles for global tilesets results from the lightweight en-
coding combined with the smaller downloaded index portions.

Test Case Format Transferred data Requests
1 COMTiles 1.0 1.0

PMTiles 3.29 1.13
2 COMTiles 1.0 1.10

PMTiles 3.1 1.0

Table 5. Results of comparing COMTiles and PMTiles on a
planet-scale tileset in terms of the amount of data transferred and

the number of requests.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W7-2023
FOSS4G (Free and Open Source Software for Geospatial) 2023 – Academic Track, 26 June–2 July 2023, Prizren, Kosovo

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W7-2023-231-2023 | © Author(s) 2023. CC BY 4.0 License.

235

Format Num Entries Decoding
Performance

COMTiles
fragment

4096 1

PMTiles
country-scale

4096 19

PMTiles
planet-scale

16384 63

Table 6. Results of comparing the decoding performance of
COMTiles and PMTiles.

4.2 Batching Tile Requests

For testing the effectiveness of batching tile requests, the real-
istic map interaction pattern of exploring the city of Olomouc
already introduced in section 4.1.1 and shown in Table 3 was
used. The test was conducted by displaying the map in full-
screen mode on a Full HD (1920x1080 pixels) display. The
vector tiles stored in the COMTiles archive had a resolution of
512x512 pixels and were sorted in row-major order.

In the test the number of tile requests was reduced by approx-
imately 77%, resulting in a decrease from 137 individual tile
requests to 32 batched requests. As a result, this leads to a con-
siderable reduction in cloud access charges since each request
made to a cloud object storage is charged. In addition, batch-
ing the tile requests also reduces the network latency as at the
time of writing, most major cloud providers like AWS or Mi-
crosoft only offer HTTP/1 support for their object storage. The
number of parallel HTTP/1 connections and thus the number
of parallel requests is limited to 6 for most modern browsers
(MDN, 2023). For example, during the tests, most of the time
15 tiles were requested for the current viewport of the map. As
a result, when no batching was implemented two times 6 and
one time 3 consecutive tile requests were made to the object
storage. However, when the tile requests were batched, only
3 parallel requests were required for the 15 tiles. If the object
storage is combined with a Content Delivery Network (CDN),
this latency advantage is not applicable, as HTTP/2 enables the
request for multiple resources on a single TCP connection. A
disadvantage of the tile batching approach is that it takes longer
until the first tile can be displayed, since a certain number of
tiles now have to be downloaded completely at once.

5. CONCLUSIONS AND FUTURE WORK

Based on the results of this paper, the author is confident that
COMTiles can simplify the workflow for deploying large tile-
sets and significantly reduce the storage costs while preserving
almost the same user experience compared to a dedicated tile
backend. As only a single file must be uploaded to a cloud stor-
age and no dedicated tile backend to be setup, COMTiles can
also be deployed by non-GIS experts in a quick and easy way.

The evaluation showed that COMTiles outperforms PMTiles in
an about 63 times faster decoding of portions of the index, redu-
cing the processing time from approximately hundreds of milli-
seconds to a few milliseconds in the test cases. COMTiles also
requested about 3 times fewer data on average from a cloud
storage in the tests. Additionally, the random-access design of
the COMTiles index leads to one initial roundtrip less to the
server, resulting in a faster map load. The main advantage of
PMTiles is an approximately 10 times smaller size for a planet-
scale index. Since cloud storage is cheap, the difference in the
index size proved to be negligible in terms of the storage costs.

The effects of the index size when using a cloud optimized tile
archive in combination with a serverless tileserver require fur-
ther investigation.

However, future work may include further reduction of the in-
dex size while continuing to meet the requirements specified in
Section 3. One approach could be to use a Bitvector encod-
ing to reduce the index size of sparse tilesets. Since over 50%
of the COMTiles index fragments of an OSM vector tileset are
not present, this approach could significantly reduce the size of
the index. This could be inspired by the implicit tiling exten-
sion of the 3DTiles spec that contains an availability section to
efficiently encode sparse datasets (Cesium, 2022).

REFERENCES

Abernathey, R. P., Augspurger, T., Banihirwe, A., Blackmon-
Luca, C. C., Crone, T. J., Gentemann, C. L., Ham-
man, J. J., Henderson, N., Lepore, C., McCaie, T. A.,
Robinson, N. H., Signell, R. P., 2021. Cloud-Native Re-
positories for Big Scientific Data. Computing in Science
& Engineering, vol. 23(2) 26-35, 1 March-April 2021,
doi.org/10.1109/MCSE.2021.3059437.

Cesium, 2022. 3D Tiles Specification.
https://github.com/CesiumGS/3d-tiles (21 April 2023).

Cloud Optimized GeoTIFF, 2018. https://www.cogeo.org/ (22
April 2023).

GeoParquet, 2022. GeoParquet Specification. ht-
tps://geoparquet.org/ (20 April 2023).

Harrtell, B., 2021. FlatGeobuf Specification. ht-
tps://github.com/flatgeobuf/flatgeobuf (20 April 2023).

Holmes, C., 2021. Towards a Cloud-Native OGC.
https://www.ogc.org/blog-article/towards-a-cloud-native-ogc/
(19 April 2023).

Liu, B., 2022. PMTiles Specification. ht-
tps://github.com/protomaps/PMTiles (18 April 2023).

Liu, B., 2023. protomaps/go-pmtiles: Single-file executable
tool for creating, reading and uploading PMTiles archives.
https://github.com/protomaps/go-pmtiles (18 April 2023).

Mapbox, 2018. MBTiles Specification.
https://github.com/mapbox/mbtiles-spec (17 April 2023).

MapTiler, 2023. Open vector tile schema for OpenStreetMap
layers. https://openmaptiles.org/schema/ (17 April 2023).

MDN, 2023. Connection management in
HTTP/1.x - HTTP. https://developer.mozilla.org/en-
US/docs/Web/HTTP/Connection management in HTTP 1.x
(16 April 2023).

Netek, R., Masopust, J., Pavlicek, F., Pechanec, V., 2020. Per-
formance Testing on Vector vs. Raster Map Tiles-Comparative
Study on Load Metrics. ISPRS International Journal of Geo-
Information, 9(2), 101. doi.org/10.3390/ijgi9020101.

Open Geospatial Consortium, 2021. GeoPackage Encoding
Standard. https://www.ogc.org/standard/geopackage/ (20 April
2023).

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W7-2023
FOSS4G (Free and Open Source Software for Geospatial) 2023 – Academic Track, 26 June–2 July 2023, Prizren, Kosovo

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W7-2023-231-2023 | © Author(s) 2023. CC BY 4.0 License.

236

Open Geospatial Consortium, 2022. OGC Two Dimen-
sional Tile Matrix Set and Tile Set Metadata Specifica-
tion. https://docs.ogc.org/is/17-083r4/17-083r4.html (16 April
2023).

Tremmel, M., 2023. Evaluating COMTiles.
https://github.com/mactrem/com-tiles-evaluation (16 April
2023).

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W7-2023
FOSS4G (Free and Open Source Software for Geospatial) 2023 – Academic Track, 26 June–2 July 2023, Prizren, Kosovo

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W7-2023-231-2023 | © Author(s) 2023. CC BY 4.0 License.

237

