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ABSTRACT:

Several tools have been proposed to automatically create thematic maps. A common drawback of these tools is that they rarely
provide means for users to explore their decision trees. Users may thus create maps or get some maps proposed, but not know why
some suggestions of maps were made. To address this gap, this work introduces 3D4DT, an approach to explore decision trees as
a three-dimensional interactive scene. The 3D4DT approach uses JSON as a machine-readable format to represent decision trees
and maps JSON elements to user interface elements (e.g. radio buttons and cubes). A preliminary evaluation of 3D4DT has shown
effectiveness gains in comparison to information displayed as text+picture, for a decision tree with a simple hierarchical structure.
The contributions of this work are relevant to the design of more transparent software for automated thematic map creation.

1. INTRODUCTION

Thematic maps are useful to portray geographic patterns of phe-
nomena over a spatial region. They have become a medium of
choice for the visualization of open geographic data related to
the world’s biggest challenges (see for example their use as a
visualization medium by ‘Our World in Data’"). Creating them-
atic maps may require familiarity with a software library, a pro-
gramming language, or a user interface. For instance, creating
maps through programming can be done using D3.js (Bostock
et al., 2011), Vega-Lite (Satyanarayan et al., 2017), Florence
(Poorthuis et al., 2020), Unfolding (Nagel et al., 2013), the
mapmap.js API (Ledermann and Gartner, 2015), or program-
ming languages such as R or Python. Creating maps through
a user interface that suggests meaningful defaults can be done
through tools/toolkits such as Descartes (Andrienko and An-
drienko, 1999), SDG Viz (Gong, 2019), AdaptiveMaps (Deg-
belo et al., 2020), the GAV Toolkit (Van Ho et al., 2012), the
Geoviz Toolkit (Hardisty and Robinson, 2011), and commer-
cial solutions such as ArcGis Online? or Carto’.

Research Gap: An important drawback of current state-of-the-
art tools is that the expertise encapsulated in these software
(e.g. enabling one to choose a type of map or visual variables
depending on the characteristics of the data contained in the
map), is often not well communicated to the user. That is, users
can use these tools to create meaningful maps for their open
geographic datasets but are offered little support regarding why
some suggestions of thematic map types were made (e.g. why
a dot map is proposed by a toolkit instead of a choropleth map).
Put simply, users get little insight into the decision processes of
current tools/toolkits for thematic web creation.

Contributions & Target audience: To help users learn about
the decision processes of software for automatic map creation,
this work introduces the 3D4DT approach. The approach uses
JSON (JavaScript Object Notation) as a machine-readable format
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to represent decision trees and subsequently maps JSON ele-
ments to user interface elements for an interactive 3D scene.
The contributions are twofold: 1) a controlled vocabulary to
support the creation of machine-readable descriptions for de-
cision trees of the Cartography literature; and 2) an approach
to navigate these decision trees as interactive scenes in 3D. The
approach is implemented as an open-source prototype. It is rel-
evant to both developers and users of software for automatic
thematic map creation. The controlled vocabulary can be used
by developers to encode the decision trees underlying their soft-
ware as machine-readable data, and make the ‘brain’ of their
software available for reuse in multiple use cases. The explor-
ation of the decision trees as an interactive scene is relevant to
users who can retrieve information about the inner workings
of software for map creation in an interactive format. The ex-
pected benefits for these latter users will be similar to the cus-
tomary benefits of explainable software (Nunes and Jannach,
2017), namely: transparency (explain how the system works),
education (allow users to learn something from the system) and
scrutability (allow users to tell the system it is wrong). At last,
since decision trees are often produced during research endeav-
ours, the 3D4DT approach is one way of facilitating the reuse
of research outcomes, in line with an ongoing initiative to foster
the reuse of research products in the Earth System Sciences
(NDFI4Earth, see Bernard et al. (2021)). Throughout the art-
icle, a decision tree is defined in line with (Nauta et al., 2023)
as a rooted graph with a conditional statement at each node.

2. BACKGROUND

2.1 Exemplar decision trees from Cartography

In the Cartography literature, decision trees are useful to syn-
thesize theoretical knowledge and best practices. These de-
cision trees may be explicit (i.e. the tree-like model of decisions
and their possible consequences is explicit) or implicit (i.e. the
knowledge can be encoded into a tree-like model via a trans-
formation). An example of explicit decision tree is the decision
tree to guide the choice of thematic map types by (Kraak et al.,
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2020), while the decision tree used in the AdaptiveMaps pro-
totype to automate the creation of web maps (Degbelo et al.,
2020) is implicit. Variable syntactics are also a good example
of implicit decision trees. As discussed in (Roth, 2017), syn-
tactics is a term that denotes the relationship of sign vehicles
to one another in semiotics. In Cartography, ‘syntactics pre-
scribes the use of a (visual) variable given the level of measure-
ment of the attribute information’ (Roth, 2017). MacEachren
(1995) synthesized a few variable syntactics based on a review
of the literature: visual variable syntactics (to relate visual vari-
ables to Stevens’ levels of measurement), dynamic/sound vari-
able syntactics (to relate dynamic and sound variables to the
levels of measurement), and colour syntactics (to relate colour
type selection to the kind of data represented: qualitative, bin-
ary, quantitative sequential, and qualitative diverging). Figure
1b shows an example of an explicit decision tree. An example
of an implicit decision tree is the variable syntactics in Figure
1c. This variable syntactics can, in principle, be brought into a
tree-like model through a series of if/else statements for a rule-
based geographic information system, for instance: if data_type
== ‘ordinal’ and purpose == ‘good effectiveness’ then visual
variable = ‘size’ or ‘colour value’ or ‘colour saturation’ or
‘transparency’ or ‘crispness’ or ‘resolution’.

Though explicit and implicit decision trees are produced during
research projects, they are often available in a textual and/or
pictorial form. That is, they are rarely stored in a machine-
readable form, for knowledge exchange across projects. We
assert here that this is a missed opportunity for their reuse.

2.2 Visualizing decision trees

Several techniques have been proposed to visualize decision
trees. As of this writing, treeviz.net (Schulz, 2011) lists no
less than 333 techniques®. Filtering by dimensionality shows
67 techniques that cover the visualization of trees in 3D, but
none addresses the visualization as an interactive scene aimed
for in this work. In addition, filtering these techniques using the
keyword ‘interactive’ returns 17 techniques from which only
the Strata Treemap is a 3D technique. Furthermore, several
libraries are useful to visualize decision trees. These include
notably libraries to understand the parameters of a decision tree
trained on a classification task, for example, Scikit-learn (Pedre-
gosa et al., 2011), Matplotlib5 or Graphviz (Ellson et al., 2004).
An example of a visualization of a trained decision tree in 3D
can be found in (Mrva et al., 2019). A commonality of these
libraries is that they require knowledge of a programming lan-
guage to generate the visualization. By contrast, the 3D4DT ap-
proach does not require such knowledge. The only prerequisite
for 3D4DT is the ability to encode a decision tree in JSON.

3. THE 3D4DT APPROACH

As mentioned in Section 1, the representation of decision trees
in a machine-readable format and their exploration as an inter-
active 3D scene are addressed through the 3D4DT approach.
This necessitates two steps: 1) the choice of an approach to
store the decision trees computationally, and ii) the mapping
of machine-readable elements to user interface (UI) elements.

As for i), given that a decision tree is a directed graph, it can be
stored computationally as a matrix or as structured data (with

4 https://treevis.net/ (accessed: April 06, 2023).
5 https://matplotlib.org/ (accessed: April 06, 2023).

or without formal semantics). We were interested in an ap-
proach that is easy to learn by users and produces results that
can be also easily written/read. Hence, we decided against stor-
ing as a matrix. In addition, we have not chosen a language
with formal semantics because of its relatively steeper learn-
ing curve. We could have gone for XML, YAML and JSON.
XML is comparatively more verbose than JSON. The distinct-
ive advantages of YAML and JSON are more challenging to
pinpoint, but the best summary we have come across is from
a StackOverflow user: “For settings/config files, YAML is bet-
ter. For machine/machine interoperability use JSON. In other
words: if your target audience is human, YAML is better. If
the target is another program (but you still want the data to be
human-readable), use JSON” (Stack Overflow, 2018). A study
comparing YAML and JSON observed that ‘JSON generation
and parsing is faster for all sets of data tested’ (Eriksson and
Hallberg, 2011). Since parsing is needed to produce 3D inter-
active scenes, we have opted for JSON at this stage: this seems
to provide the best compromise between machine/machine in-
teroperability and human readability/learnability.

As for ii), the creation of the interactive scene necessitates the
choice of an appropriate metaphor. Metaphors are useful here
because they help understand a (usually abstract) domain in
terms of a very different domain (more familiar) of experience,
see Lakoff (1992). Using the basic conceptual building blocks
presented in (Mandler and Cdnovas, 2014), the following state-
ments about the theoretical foundations of the approach can be
made: nodes are containers and edges are paths. Furthermore,
Matlock et al. (2014) reported that web users relied on two con-
ceptual metaphors to structure their thinking about the web:
“WEB SPACE IS PHYSICAL SPACE” and “OBTAINING IN-
FORMATION IS MOVING THROUGH PHYSICAL SPACE”.
That is, browsing through nodes and edges to get meaningful
options for a given set of constraints can be conceptualized as a
movement between containers through paths. The translation of
these three concepts to UI elements is discussed in Section 3.2.

3.1 A controlled vocabulary for machine-readable descrip-
tions of decision trees

There are several ways of defining controlled vocabulary in the
literature. The term is used here after Cardoso (2006) to denote
a list of terms that have been enumerated explicitly. Controlled
vocabularies limit choices to an agreed-upon, unambiguous and
non-redundant set of terms. The main objective of a controlled
vocabulary is to prevent users from defining their own terms
which can be ambiguous, meaningless, or misspelt.

We were inspired by JSON Graph (JSON Graph Format, 2022)
but aimed at keeping things as simple as possible. Hence, some
elements of the JSON Graph specification (e.g. hyperedges)
were left out in this first version. Our controlled vocabulary
for representing decision trees features seven types of entities
at the moment. The graph is the basic entity. A graph consists
of nodes and edges. Furthermore, our critical analysis of the
decision trees from Figure 1a,b led to the identification of three
types of nodes and three types of edges that are relevant to the
conversion of decision trees into a machine-readable format.

Nodes

e root: this is the starting point of the decision tree. A de-
cision tree has only one root.

e leaf: this is a node without children. These are the them-
atic map types (see Figure 1b for examples).
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Figure 1. Three examples of decision trees (DT) from the Cartography literature: a) decision tree of AdaptiveMaps (Degbelo et al.,
2020) as pseudocode [implicit DT]; b) decision tree for the choice of thematic map types (Kraak et al., 2020) as a diagram [explicit
DT]; c) an example of visual variable syntactics (White, 2017) that can be converted to a decision tree [implicit DT].

e inner-node: this is a node that does not belong to either of
the former two categories.

Edges

e parameter: this is an edge that connects a root node and an
inner node.

e superclass: this is an edge that connects two inner nodes.

e meaningful: this is an edge that connects an inner node
and a leaf. It is useful to express that a thematic map is
meaningful for a given set of constraints.

As we shall see, the controlled vocabulary with the set of terms
above is enough to describe decision trees so that the machine-
readable descriptions can be used to generate interactive 3D
scenes. The JSON-based schema of this work also contains a
description attribute for every leaf (see Figure 2). The decision
trees from Figure 1a,b encoded using the controlled vocabulary,
the specification of the JSON schema and the template to get
started with the description of further decision trees are avail-
able on GitHub (see supplementary material, Section 7).

3.2 Generating 3D Interactive Scenes

The whole decision tree is a scene. The mapping of decision
tree elements to Ul elements is done as follows:

e root: not mapped to any UI element.

e leaf: these are mapped to cubes in the scene (Figure 3).
Cubes have the advantage that pictures can be easily im-
ported and are displayed in suitable proportions. The im-
age just needs to be in 1:1 format (aspect ratio) and it can
be used for every side of the cube. A mapping to spheres
was implemented at first and this showed that images in
a square format are distorted, which reduces the clarity of
the presentation. Hence, we decided to stick with cubes.

e inner-node: these are mapped to radio buttons in the scene
or sections with headlines for the radio buttons (Figure 3).

e parameter: is useful to create sections as HTML divs. We
create one HTML div per parameter.

e superclass: are used to generate hierarchical dependencies
between the radio buttons. Each target node of a superclass
edge is mapped to a radio button. All radio buttons are
grouped in the corresponding div for a parameter.

e meaningful: are useful to specify when (i.e. the conditions
that must be fulfilled by the radio buttons) for a leaf to be
highlighted.

As mentioned above, nodes are containers, edges are paths and
browsing through these elements is a movement, from the view-
point of metaphor theory. Regarding the translation of these
theoretical concepts to UI concepts, nodes (leaves and inner-
nodes) are mapped to three types of Ul containers (cubes, radio
buttons, sections with headlines); the first two types of edges
(parameter, superclass) are mapped to menu elements for the
navigation (paths, see Figure 3, top left); the last type of edge
(meaningful) specifies the cubes the user should navigate to
next, based on their input condition, and hence directs to the
user to the next meaningful destination during their movement.

An important interaction feature is the highlighting of the mean-
ingful thematic map type, given the constraints selected by users.
There are several approaches to realize emphasis in information
visualization (see Hall et al. (2016); Robinson (2011) for a re-
view). Here, we have used a combined variation of the visual
variables of size and colour hue to achieve the desired effect. To
distinctly highlight an object, its size is enlarged to more than
the double size of the not highlighted ones. Also, the name of
the object, displayed as text geometry above the cube, is en-
larged and the colour is changed from grey to black (Figure
3, bottom left). The highlighting happens in real-time, which
means that as soon as a change is made to the radio buttons, it
is applied directly to the scene.

3.3 Prototype

The prototype is available as a web-based application on Git-
Hub. The server is run using Node.js. To speed up the develop-
ment of the frontend, we have used Viftejs. The 3D interactive
scene is implemented using the JavaScript library Three.js. The
choice of Three.js was motivated by the fact that it is 1) open
source, 2) expressive enough to create a variety of 3D scenes in
the browser (see examples at https://threejs.org/examples/), and
3) is actively maintained by a community of contributors.

The website consists of four areas. The first is the decision tree
selection area: this is where the user can choose a decision tree
to be visualized (the selection area is not shown in Figure 3).
As of this writing, the selection area provides two decision trees
from Figure 1 as examples to start with: (Kraak et al., 2020) and
(Degbelo et al., 2020). The user is also given the possibility
of uploading additional decision trees, using the JSON-based
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of JSON enables the use of existing visualization tools for JSON. The screenshots were created using https://jsoncrack.com/.

format introduced in Section 3.1. The second area of the web-
site is the filtering panel where radio buttons can be selected
to navigate the decision tree. This area is displayed after the
user selects a decision tree. The third area shows the interactive
3D scene, which visualizes leaves from the decision tree. The
leaves are converted into cubes arranged in an arc from the cam-
era’s starting position. Three.js offers the possibility of creating
a PerspectiveCamera (projection mode that mimics the way the
human eye sees) or an OrthographicCamera (that enables ren-
dering in a way that an object’s size stays constant regardless
of its distance from the camera). The interactive 3D scene uses
a perspective camera. The camera can be moved by using the
“W”-, “A”-, “S”- and “D”-keys of the keyboard, as is common
in interactive games. The fourth area comprises the descriptions
of the leaves. The fourth area is useful for additional descrip-
tions of a leaf that is currently highlighted. This is the area that
provides introductory information to ‘Choropleth Map’ in Fig-
ure 3. It is only displayed if the user moves close to an object
in the scene and enables the display of the description of the
closest leaf. This can be done by clicking the key “E” on the
keyboard. A function to determine closeness to a cube was im-
plemented. It checks the current distance of the camera to all
objects. If that distance is lower than a given threshold, the pos-
sibility to display additional information about a cube is shown
to the user. Figure 3 shows a screenshot of the prototype.

4. EVALUATION

Since the approach touches on the representational and commu-
nicative aspects of decision trees, the evaluation uses two cri-
teria, one for each aspect: expressiveness (representation) and
usability (communication).

As for expressiveness, the controlled vocabulary presented in
Section 3.1 was used to describe all three decision trees intro-
duced in Figure 1. This demonstrates the pertinence of the ap-
proach to decision trees of the Cartography literature in this
form. Decision trees a) and b) could be encoded using the
vocabulary right away. As for decision tree c), we transformed
it first into a pseudocode (available as supplementary mater-
ial, Section 7) before encoding it in JSON using the controlled
vocabulary. The transformation does not happen without loss
of information though. Indeed, the meaningfulness of an op-
tion (expressed at the moment through the meaningful edge) is
binary in the case of decision trees a) and b). For decision tree
¢), the meaningfulness is graded (poor/marginal/good). We dis-
cuss options to incorporate graded meaningfulness in Section 6.

As for usability, the prototype was evaluated through a lab-
based study, with the aim of learning about the advantages and
disadvantages of the interactive 3D scene in comparison to a
presentation as text+images. The rest of this section presents
background information about the user study and the results.

4.1 Variables and study design

The independent variables of the study were the two different
decision trees (extracted from Kraak et al. (2020) and Degbelo
et al. (2020)) and the two formats for communicating these trees
to users: interactive three-dimensional scene (henceforth called
the 3D condition) and the use of text and picture (henceforth
called the traditional condition). The dependent variables of the
user study were effectiveness (number of correct answers), effi-
ciency (time taken to solve tasks), and the explicit memorability
of the transferred knowledge. In line with Stusak et al. (2015),
explicit memorization denotes the fact that the users were told
to memorize the facts because they will be asked about them
again later. This stands in contrast to implicit memorization
when this warning is not given (Stusak et al., 2015).

The study followed a within-group design. That is, the parti-
cipants were exposed to both the 3D and traditional conditions.
The order of the conditions was counterbalanced, and so was
the order of the decision trees used within these conditions.
This resulted in four different groups of participants. Hence-
forth, the decision tree for the “adaptive maps algorithm” from
(Degbelo et al., 2020) is referred to as DecisionTree A. The
“common thematic map types”-decision tree from (Kraak et al.,
2020) is referred to as DecisionTree B. Group 1 first worked
through decision tree A in the interactive format and then ex-
ample B in the traditional format. Group 2 had the same or-
der of the examples, but the formats were interchanged. Group
3 processed example B in the traditional format before work-
ing on example A in the interactive format. The order of ex-
amples was the same for Group 4, however, the formats were
exchanged. The allocation of the participants to the groups was
determined by a random number generator.

4.2 Procedure

The study was created via LimeSurvey and executed remotely.
The users received a link to a Zoom meeting via e-mail along
with the consent form. After joining the meeting and reading
and accepting the consent form, they received another e-mail
with the link to the survey and were asked to share their screen.
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Figure 3. A screenshot of the prototype. When filtering options are selected (top left), the meaningful maps for these options are
highlighted to users (bottom left). Users can also display text messages about meaningful maps for their filtering options (top middle).

To ensure the correct execution and order, and the understand-
ing of the controls, each participant stayed in the Zoom meeting
with the researcher and shared their screen during the whole
study. The first questionnaire of the study was about demo-
graphic questions. Afterwards, they started with the main tasks.

The user was told to open the website via a hyperlink in the
survey. Then the researcher told them the format to choose,
either the “interactive” or “traditional”, determined by the ran-
domly assigned group. (If the choice was the interactive format,
the controls of the camera were explained and practised shortly
with the user.) For both formats, the participant was informed
that the second questionnaire can be answered while exploring
the selected decision tree (effectiveness task). These were nine
questions, which could be answered with ‘yes’, ‘no’ or ‘not ap-
plicable’ (see supplementary material, Section 7) and were use-
ful to assess the effectiveness of a condition. The participant
was also informed that they need to answer questions about
what they remembered from the website afterwards, with the
website closed. They were not informed that time was meas-
ured. After completing these tasks, they closed the website and
were then handed the third and last questionnaire (memorab-
ility task). This third questionnaire was used to assess what
participants just recalled. The users were handed over five/six
questions depending on the decision tree interacted with. The
questions were a mix of questions with the forms “please write
down everything you remember about...” and “what do you re-
member about...”. After completing the tasks for the first condi-
tion, the participants went again through the effectiveness task
and the memorability task, with the second condition and a dif-
ferent decision tree. The study was approved by the institutional
ethics board and pilot-tested, after which the wording of some
questions was adjusted.

4.3 Participants

12 participants were recruited via personal messages and e-
mail, three of these were female and nine were male. The av-
erage age was between 25 and 26 and the ages ranged from
23 to 28. Three participants had a high-school diploma as the
highest degree of education, three have completed their appren-
ticeship and the other six have achieved a bachelor’s degree.
Six participants stated to have no experience at all in the field
of Geoinformatics, four claimed to be slightly experienced and
two considered themselves very experienced. None of the par-
ticipants had read any of the literature which was used for the
examples (Kraak et al., 2020; Degbelo et al., 2020). Further-
more, a moderate level of English was required, as well as a
desktop computer or laptop with access to the Internet.

4.4 Results

Effectiveness was assessed by the number of right answers in
the questionnaires filled out during the interaction with the in-
formation. Efficiency was assessed by the time the participants
used to answer these and memorability by the questions answered
after closing the website. Since the questions to assess memor-
ability required answers in free text, each answer was evaluated
using keywords. That is, for each answer it was checked if
different keywords were mentioned. Similar expressions (for
example point map instead of dot map, were also accepted).
The same applied to misspelt, but clearly assignable names and
meaningful descriptions of the maps. False statements did not
give a point deduction. The results are shown in Figure 4.

Efficiency. The average efficiency values observed for the 3D
condition were: DecisionTree A: 480 seconds (sd: 276s); De-
cisionTree B: 587 seconds (sd: 243s). For the traditional con-
dition, the average values obtained were: DecisionTree A: 436
seconds (sd: 164s); DecisionTree B: 392 seconds (sd: 198s).
The efficiency values averaged over the two decision trees were
about 534 seconds for the interactive 3D condition and about
414 seconds for the traditional condition. That is, completing
the tasks using the traditional condition took about 2 minutes
less than completing them using the 3D condition. None of
these differences was statistically significant though.

Effectiveness. The average effectiveness values observed for
the 3D condition were: DecisionTree A: 78% (sd: 27%); De-
cisionTree B: 100% (sd: 0%). For the traditional condition, the
average effectiveness values obtained were: DecisionTree A:
93% (sd: 8%); DecisionTree B: 70% (sd:24 %). The effective-
ness values averaged over the two decision trees were 89% for
the 3D condition and 82% for the traditional condition respect-
ively. Though the differences across the two decision trees were
not statistically significant, users performed significantly better
when using the 3D interactive scenes instead of picture+text
when answering questions about DecisionTree B.

Memorability. The average memorability values observed for
the 3D condition were: DecisionTree A: 40% (sd: 11%); De-
cisionTree B: 44% (sd: 30%). For the traditional condition, the
average values obtained were: DecisionTree A: 51% (sd: 27%);
DecisionTree B: 24% (sd: 22%). The effectiveness values aver-
aged over the two decision trees were 42% for the 3D condition
and 38% for the traditional condition. That is, answers given
by participants about facts they recalled from their interaction
with the two conditions were, on average, more accurate in the
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Figure 4. Interactive 3D vs. picture+text. Left: performance per decision tree; right: performance averaged for the two decision trees.

3D condition by 4%. This difference was also not statistically
significant. Finally, there was a drop in accuracy of about 45%
(Confidence interval: [35% - 55%]) between the answers users
gave during their interaction with a condition (3D or traditional)
and the answers they gave recalling their interaction. The drops
in accuracy were 47% for the 3D condition and 44% for the
traditional condition, but these were not statistically significant.

Participants’ background. We also checked if the background
of the participant (gender, education, experience) had an impact
on the results. The differences were significant in two cases:
efficiency (participants who reported being very experienced in
Geoinformatics were significantly faster in the traditional con-
dition) and memorability (the group who reported having com-
pleted their apprenticeship has a significantly higher memorab-
ility score in the 3D condition: 39% vs 8%). Other background
characteristics did not have a significant impact on the results.

5. DISCUSSION

The evaluation did not aim to answer the question whether or
not the 3D condition is better/worse than the picture+text con-
dition. Instead, results from previous work on learning with
3D models (Keehner et al., 2004; Huk, 2006; Korakakis et al.,
2009) suggest that it may be more interesting to find out when
it is better/worse and for whom. As for the when, decision tree
B was less complex than decision tree A because the hierarch-
ical structure between its elements (displayed as radio buttons)
was easier to recognize. The graph density values were 0.13
and 0.07 for decision trees A and B respectively. We conjec-
ture that 3D4DT could lead to effectiveness gains for (sparse)
decision trees with simple hierarchical structures for the para-
meters, similar to Figure 1b. As for the whom, despite a few
dissimilarities, the differences observed are not conclusive at
this point overall and need further investigation. For now, a safe
takeaway is that an interactive 3D scene could be used as a com-
plementary means to help users understand how thematic maps
are created, especially when designers wish to convey this in-
formation most accurately. We were however surprised by how

little users could remember, immediately after the interaction
with the trees, in both conditions.

5.1 Implications

Representational aspects. The key value of the 3D4DT ap-
proach is to foster the reuse of decision trees for geosoftware
design. In particular, a key notion of map/geovisualization re-
use across contexts is transferability (see e.g. Griffin et al.
(2017)). Because the 3D4DT approach relies on storage in a
machine-readable format, it contributes to that goal. For in-
stance, we have shown in Figure 2 that storing the decision trees
in JSON enables their reuse not only to create interactive 3D
scenes but also as input for existing tools for the visualization
of decision trees as graphs. Thus, the 3D4DT is a ‘store once,
use many times’ approach (e.g. for the creation of a 2D visu-
alization, and 3D visualization, or visualization in virtual real-
ity, visualization on multiple devices), in line with the vision of
‘map plasticity’ (Kray and Degbelo, 2019).

Communication aspects. Decision Tree A is the ‘brain’ of
the AdaptiveMaps prototype that helps create web maps semi-
automatically (Degbelo et al., 2020). Hence, by helping users
visually explore that decision tree, the 3D4DT approach offers
one way of realizing the requirement of ‘algorithmic transpar-
ency’ for intelligent geovisualizations from (Degbelo and Kray,
2018). In addition, as Gahegan (2005) pointed out in his call for
visual support for the entire process of GIScience: “Although
it is still difficult to share data between researchers and sys-
tems, it is even more difficult to share functionality. [...] As a
result, a lot of research funding and effort results in outcomes
that have reduced practical impact”. Through the encapsula-
tion of the conceptual structure underlying a software system
into a decision tree, the encoding/sharing of that structure as
machine-readable data, and the visualization of that conceptual
structure as an interactive scene, the 3D4DT approach is one
step in the direction of functionality sharing across systems.
Hence, it can support the reuse of systems for geovisualiza-
tion creation and contribute to the vision, outlined in (Degbelo,
2022), of reusable geovisualizations across multiple datasets
and scenarios. Furthermore, the work examined memorability
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and one of the facets of memorability is the storage of inform-
ation in short-term memory or long-term memory (see Camina
and Giiell (2017)). The fact that users were able to correctly
answer questions related to the trees during the interaction, but
their effectiveness at doing so dropped substantially after the
interaction is an indication that the information conveyed was
stored in the short-term memory quite well, but not in the long-
term memory. Since both conditions were equally affected, this
calls for further investigations that explore designing for mem-
orability during the exploration of the decision trees.

5.2 Limitations

There are limitations related to the implementation. The map-
ping from the inner nodes to radio buttons is an easy and in-
tuitive way to display the inner nodes. However, these inner
nodes can also be mapped to the scene itself for more inter-
activity (this could have induced a more cluttered interactive
scene though). Another possible improvement of the prototype
would be to hide radio buttons that are currently disabled, in-
stead of just showing them as disabled. The arrangement of the
radio buttons could also be changed to mimic a tree visualisa-
tion, to communicate in a more direct way that users are inter-
acting with a decision tree. Finally, the prototype supports the
visualization of two decision trees extracted from the literature
(Figures 1a,b) because these were readily available. While we
anticipate that the JSON-based modelling language suggested
is generic enough to model decision trees similar to these, more
examples are needed to confirm this empirically.

The user study also had some limitations, notably the relatively
small sample size and the relatively homogeneous group of par-
ticipants. Furthermore, since the study was executed remotely
on different devices, the differences in screens (number and
size of the screens used) and input devices (e.g. touchpad and
mouse) could have affected the results (especially the interact-
ive 3D condition), but these were not controlled for explicitly.

6. CONCLUSION AND FUTURE WORK

The representation of decision trees in a machine-readable format
and their exploration as an interactive 3D scene were addressed
in this work through the 3D4DT approach. The results obtained
from testing the approach on exemplar decision trees suggest
that it is promising. There are several directions in which it
could be extended in future work.

Representational aspects. As mentioned in Section 4, a useful
extension to the current work could be a means of modelling
graded (instead of binary) meaningfulness. A simple option
could be to remove the current ‘meaningful’” edge type and re-
place it with new types of edges instead. For the example in Fig-
ure lc, this would mean three new edges: ‘poor_effectiveness’,
‘marginal _effectiveness’ and ‘good_effectiveness’. Realizing this
could happen through the metadata property of the JSON Graph
specification (e.g. {“metadata”: { “type”: “poor_effectiveness”,
“super-type”: “effectiveness”})}. Another option could be the
use of hyperedges (JSON Graph Format, 2022). Another direc-
tion for future work is the evaluation of the learnability of the
approach, especially for non-computer scientists (e.g. how long
do they need to accurately translate their own decision trees in
machine-readable formats using the controlled vocabulary?).

Communication aspects. The evaluation could focus on identi-
fying the upper bound of the approach (how many tree elements

maximum until cluttering becomes unbearable) and learning
about the scalability of the approach (how does user experi-
ence evolve as a function of the number of nodes/edges/leaves).
Controlling more systematically for characteristics that could
impact the ease of manipulation of the 3D interactive scenes
(e.g. experience with computer games/virtual reality, size of
the device) to learn about user groups that benefit the most/least
from it, is also an interesting direction for future work.

Beyond thematic cartography and map creation. It would
be interesting to explore how the lessons learned about the ex-
ploration of decision trees for meaningful map creation could
transfer to other areas of GIScience, notably the exploration of
decision trees for spatial analysis (e.g. meaningful spatial pre-
diction and aggregation discussed in (Stasch et al., 2014)).

7. DATA AND SOFTWARE AVAILABILITY

The data collected during the user study, the analysis script
and all questionnaires are available at https://doi.org/10.6084/
m9.figshare.21723512. The code of the prototype, the JSON
schemas, and the encoding of the decision trees as JSON are
available at https://github.com/aurioldegbelo/3D4DT.
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