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ABSTRACT:  

 

The increasing availability of remotely sensed data have offered unprecedented possibilities for monitoring and analysis of 

environmental variables, including boosting recent studies in the field of ecosystem resilience relying on indicators derived from 

timeseries analysis, such as the temporal autocorrelation of vegetation indices. A forest ecosystem with decreased resilience will be 

more susceptible to external drivers and their change and could shift into an alternative system configuration by crossing a tipping 

point. Nevertheless, remote sensing data quantifying vegetation and forests properties inherently carry information related to the 

climate as well, which has to be accounted for before performing any modelling exercise. In this paper, we aim to present the general 

workflow and the challenges encountered in processing and analysing the historical, high-frequency and high-resolution timeseries of 

vegetation and climatic data. The final aim is training a machine learning model (Random Forest) in order to model and explore the 

performance and importance of a set of climatic and environmental metrics in predicting an indicator of the resilience of forests. In 

this case, the resilience of forests is quantified through the temporal autocorrelation (TAC) of the kernel NDVI (kNDVI). Climatic 

and environmental predictors include 2-meter air temperature, total precipitation, vapour pressure deficit, surface solar radiation, 

forest cover and soil organic carbon content. Results show a good performance of the Random Forest model and the ranking in the 

importance of the predicting variables captured in terms of background climate and climate variability. This application allows to 

separate and identify the main drivers of the temporal autocorrelation of kNDVI.  
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1. INTRODUCTION 

The increasing availability and ease of access of global, 

historical, and high-frequency remote sensing data have offered 

unprecedented possibilities for monitoring and analysis of 

environmental variables. Recent studies in the field of 

ecosystem resilience relied on indicators derived from 

timeseries analysis, such as the temporal autocorrelation and the 

variance of a system signal (Dakos et al., 2015). The 

aforementioned availability of global, temporally and spatially 

dense timeseries of indicators of biomass and greenness of 

vegetation, such as the normalized difference vegetation index 

(NDVI), among others, has boosted ecosystem resilience 

scientific applications to forests as well. The ecological 

definition of resilience corresponds with the capacity of a 

system to absorb and recover from a disturbance (Forzieri et al., 

2022). When dealing with ecosystems increasingly affected by 

natural and anthropogenic pressures such as forests, monitoring 

their health is particularly relevant.  

 

Forest ecosystems play a crucial part in the global carbon cycle 

and in any climate change mitigation strategy, despite being 

increasingly affected by natural and anthropogenic pressures. 

While anthropogenic action on forests is mainly represented by 

stand replacement, natural perturbations include wind throws 

and fires, as well as extended insects and disease outbreaks, 

such as the recent outbreak affecting Central Europe (Bárta et 

al., 2021; Thonfeld et al., 2022). These natural disturbances are 

strictly interconnected with climate change. A forest ecosystem 

with decreased resilience will be more susceptible to external 

drivers and their change and could shift into an alternative 

system configuration by crossing a tipping point. 

 

However, remote sensing data quantifying vegetation and 

forests properties inherently carry information related to the 

climate as well. If not accounted for, these confounding factors, 

such as short-term climate fluctuations, may hide the actual 

vegetation anomalies focus of a study and the importance of 

other drivers in vegetation itself. In addition, the comparison of 

the same vegetation property between different geographical 

areas naturally affected by different climates is hindered.  

 

In order to explore the relationships of a set of environmental 

and climatic metrics with an indicator of the resilience of 

forests, a machine learning (ML) model is implemented. In this 

paper, we aim to present the general workflow and the 

challenges encountered in processing and analysing the 

timeseries of vegetation and climatic. The focus of this paper 

will be on a workflow implemented to analyse the 

aforementioned timeseries and on the methods and tools 

implemented to account for the background climate effect on 

vegetation. A key aspect to assess resilience of ecosystems is 

the treatment of the signal to remove long-term trends and 

seasonal cycle of the signal. Being aware of the variety and 

heterogeneity of methodologies existing in the field of 

timeseries analysis, in this contribution we will describe tools 

and methods for deseasonalization, detrending, growing season 

identification and accounting for short-term climate effects. 
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The final aim is to present one of the many workflows that can 

be implemented when dealing with timeseries of vegetation-

related data in the geospatial domain, where climate plays a 

crucial role. The importance of the availability of open data and 

open-source tools and platforms in making this big data analysis 

possible is also strongly highlighted.  

 

 

2. OBJECTIVE 

The main objective of the presented paper is to illustrate a 

thorough methodology to pre-process and analyse timeseries of 

vegetation and climatic data in order to retrieve a vegetation 

signal and a derived metric of resilience, in this specific case in 

terms of lag-1 temporal autocorrelation, as close as possible to 

representing the actual response of the system accounting for 

short-term climate fluctuation.  

In order to do so, it has to be considered firstly that the 

timeseries of vegetation and climatic variables are constituted of 

three main components: a long-term trend, the seasonality 

cycles and the remaining part representing the anomaly that 

deviates from the average conditions. In the following equation 

representing a decomposed timeseries, the Y represents either 

the vegetation or the climate variable timeseries (Sun et a;., 

2022).  

 

 Y = Trend + Seasonality + Anomaly,            (1) 

 

In order to obtain an accurate estimate of vegetation and its 

resilience, the vegetation timeseries used in any model needs to 

be stationary, hence without periodical seasonal cycles and 

long-term trends (Forzieri et al., 2022).  

 

Secondly, a Random Forest (Breiman, 2001) model is used to 

explain the observed long-term lag-1 temporal autocorrelation 

(TAC) of vegetation, by accounting simultaneously for climate 

fluctuations and the temporal autocorrelation of the climate 

itself.  

 

TAC = RF(X ) + ε,                            (2) 

 

In the previous equation the X represents a series of climatic 

and environmental predictors used to estimate the vegetation 

long-term TAC and ε are the residuals of such estimation. This 

allows to explain TAC at different pixels accounting for the 

differences in climate and environmental conditions. 

 

 

3. MATERIALS AND METHODS 

All data and most of the tools leveraged for this study are open. 

In the following sections the main datasets and tools are 

described.  

 

3.1 Tools 

The data processing takes place mainly within Google Earth 

Engine (GEE) and the Joint Research Centre (JRC) Big Data 

Analytics Platform (BDAP).  

Google Earth Engine is a cloud-based geospatial analysis 

platform providing a multi-petabyte catalogue of satellite 

imagery and geospatial datasets coupled with large analysis 

capabilities (Gorelick et al., 2017).  

The JRC Big Data Analytics Platform is a petabyte-scale 

storage system coupled with a processing cluster. It includes 

open-source interactive data analysis tools, a remote data 

science desktop and distributed computing with specialized 

hardware for machine learning and deep learning tasks (Soille et 

al., 2018).  

GEE is mainly used to pre-process MODIS data and secondary 

datasets. The ERA5 pre-processing and the core timeseries 

analysis are performed within the JEODPP, where main tools 

include R (R Core Team, 2022), Climate Data Operator (CDO) 

and netCDF Operators (NCO). The whole machine learning 

model is instead trained and run in R. The different platforms 

and tools implemented in the study highlight the heterogeneity 

of data as well involved, data availability and data formats, 

ranging from TIFF, netCDF and R objects. 

 

3.2 Datasets 

This section is going to illustrate main datasets used in the 

analysis divided by category and the main filtering and 

resampling steps applied to each dataset in order to create a 

coherent ensemble of data to be used in the subsequent model in 

terms of temporal and spatial resolution. All data have been 

retrieved over Europe.  

 

3.2.1 Vegetation: The long-term kNDVI timeseries was 

retrieved by processing the full timeseries of daily MODIS 

Terra and Aqua Surface Reflectance at 500m from 2003 to 2021 

(Vermote et al., 2021). A simplified version of kNDVI is 

defined as: 

 

KNDVI = tanh( NDVI3/ | NDVI | ),                 (3) 

 

The kNDVI is a nonlinear generalization of the NDVI that 

shows stronger correlations than NDVI and NIRv with forest 

key parameters. kNDVI is also more resistant to saturation, bias, 

and complex phenological cycles, and it is more robust to noise 

and more stable across spatial and temporal scales (Camps-

Valls et al., 2021).  

MODIS daily data have been filtered in order to select only the 

highest quality data for the bands of interest (1 and 2) and 

MODIS pixels have been masked for clouds, clouds shadows, 

water, snow and ice by referring to the data product state QA 

(Quality Assessment) bit flags. After quality filtering, MODIS 

derived kNDVI daily data have been reduced as mean into a 

timeseries with an 8 days’ time-step and resampled at 0.005° 

resolution to facilitate comparison with climatic data.  

Each of the 0.005° kNDVI pixel in the timeseries was afterward 

masked with a binary forest mask including only pixel with at 

least 50% of forest cover. Afterwards, the kNDVI was 

averagely aggregated to 0.05° resolution.  

 

The forest mask used was obtained from a forest cover 

percentage layer. The latter was obtained as the percentage of 

forest covered pixels in a 0.005° cell, accounting as forest 

covered pixels all the 30m pixels from the Hansen tree cover 

2000 layer (Hansen et al., 2013), only where tree cover is higher 

or equal 30% and retaining only patches of at least 6 connected 

pixels, accounting for a surface higher than 0.5ha. In addition, 

any pixel undergoing a forest loss in the time period was 

removed in order to account for managed or disturbed forest 

patches, where disturbances may include forest fires or clear-

cutting. Indeed, such events can artificially boost the lag-1 TAC 

of the vegetation signal.   

This pre-processing resulted in a 0.05° resolution timeseries of 

8-days averaged kNDVI, derived exclusively from forested 

pixels.  

 

In order to account for the phenology, MODIS Land Cover 

Dynamics yearly data at 500m (Friedl et al., 2022) were used. 
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From these, the circular mean of greenup (as the date when 

EVI2 first crossed 15% of the segment EVI2 amplitude) and 

dormancy (as the date when EVI2 last crossed 15% of the 

segment EVI2 amplitude) was calculated, after yearly dates of 

greenup and dormancy have been translated in their respective 

angular measure of their respective day of the year. Average 

greenup and dormancy were obtained for the time period 2001-

2021. Finally, the growing season products were aggregated at 

0.05° resolution, accounting again only for pixels cover at least 

for 50% by forests.  

 

3.2.2 Climate: Hourly ERA5-Land data at 10km resolution 

(Copernicus Climate Change Service (C3S), 2017) were used to 

retrieve the set of climatic and environmental predictors 

including 2-meter air temperature (t2m), total precipitation (tp), 

vapour pressure deficit (vpd) and surface solar radiation (ssr). 

These variables were computed as 8-days averages or sums 

according to the specific variable and as well resampled at 0.05° 

resolution in order to be coherent with the vegetation data.  

 

3.2.3 Others: Additional datasets included in the final RF 

model are the forest cover (fc) layer previously described in the 

Vegetation section aggregated at 0.05° resolution and the soil 

organic carbon content layer at 30cm depth (socc30cm) from 

OpenLandMap Soil Organic Carbon Content at 250m (Hengl et 

al., 2018) and aggregated at 0.05° resolution. 

 

3.3 Timeseries pre-processing 

This section is going to illustrate the main pre-processing steps 

applied to each timeseries involved in the study, prior to the 

calculation of the lag-1 temporal and other statistics. Each step 

is important in timeseries analysis in order to maximise the 

representativeness of the resulting signal, being either of 

vegetation or climatic variables.  

 

3.3.1 Deseasonalisation: The kNDVI and climatic variable 

were firstly deseasonalised by subtracting from each time-step 

the long-term average (2003-2021) of each 8 days timestep, 

resulting in removing the climatological average at each 

timestep. This removes the dominant seasonal component of the 

vegetation cycle. 

 

3.3.2 Growing season selection: A climatological growing 

season was identified as the 20 years (2001-2021) circular mean 

of greenup and dormancy from the MODIS Land Cover 

Dynamics product. This climatological growing season was 

used in order to retain only 8 days timesteps that are within the 

greenup day of the year and the dormancy day of the year. This 

allows the background environment metrics to not be strongly 

affected by the dormient months of the vegetation.  

 

3.3.3 Detrending: As a final step in the pre-processing of the 

timeseries, a linear regression model has been fitted to each 

pixel’s timeseries and the resulting fitted values have been 

subtracted from the kNDVI and climatic variables values, in 

order to remove any linear trends from the timeseries, because 

these trends result for long-term climate trends (i.e., global 

warming).  

 

3.3.4 TAC and other statistics calculation: The previously 

explained pre-processing steps leaves anomalies from the 

seasonal cycle in the vegetation and climatic timeseries, as 

shown in Figure 1. Figure 1 shows the evolution of the 

timeseries of kNDVI for a representative pixel undergoing each 

step of the presented pre-processing.  

 

The vegetation and climatic anomalies are finally used to 

compute the long-term (2003-2021) lag-1 temporal 

autocorrelation (TAC) of both kNDVI anomalies and each 

climatic variable anomalies involved in the study.  

In addition, the average and coefficient of variation (CoV) of 

kNDVI and climatic data are computed for the climatic growing 

season. 

 

Figure 1. kNDVI timeseries for a sample pixel at each pre-

processing step. 

 

3.4 Random Forest (RF) model 

In order to predict the long-term kNDVI TAC accounting for 

the impact of climate and other environmental factors, a RF 

regression model was implemented using as predicted variable 

the long-term kNDVI anomaly TAC and as predictors: the long-

term TAC of each climatic anomaly, the average and coefficient 

of variation (CoV) of each climatic variable computed on the 

climatic growing season, as well as the average and coefficient 

of variation (CoV) of kNDVI computed on the climatic growing 

season. The CoV represents of the variability of climate, whilst 

the average represents the background climate. In addition to 

these vegetation and climatic variables, additional datasets 

including the forest cover and soil organic carbon content were 

included in the RF model. Predicting the long-term lag-1 

kNDVI TAC with a series of climatic and environmental 

predictors allows to separate and identify the drivers of forest 

resilience in terms of long-term TAC.  

 

The RF model was trained with 500 trees and with a proportion 

of training equal to 70% of the whole dataset and 30% for the 

testing.  

 

 

4. RESULTS AND DISCUSSION 

In this section, the results of the pre-processing applied to the 

timeseries will be illustrated specifically for the kNDVI 

timeseries. In addition, the performance and outcome in terms 

of predictors ranked by variable importance of the trained RF 

model will be presented. 
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Figure 2 illustrates the long-term lag-1 TAC of kNDVI without 

any pre-processing applied to the timeseries and the same lag-1 

TAC of kNDVI following the timeseries pre-processing, as 

illustrated in the previous section.  

As it can be seen from the two maps, the long-term lag-1 TAC 

of kNDVI strongly changes whether calculated over a non-pre-

processed timeseries and after pre-processing. In the first case, 

the TAC is strongly dominated by seasonality, while in the 

second case the TAC shows patterns that are instead more 

coherent with general climatic conditions.  

 

 

Figure 2. Long-term lag-1 TAC of kNDVI computed over an 

untreated timeseries (above) and over a pre-processed 

timeseries (below). 

 

Figure 3 presents the performance of the trained RF model, in 

terms of predicted versus observed values of the kNDVI long-

term lag-1 TAC on the testing data and in performance 

indicators of the RF model itself. The RF model achieves a R2 

of 0.898, with a mean squared error (MSE) of 0.0045 and an 

average overestimation (PBIAS) of -0.782.  

 

 

Figure 3. Observed versus modelled long-term lag-1 TAC. 

Number of binned records (N), coefficient of determination 

(R2), mean squared error (MSE) and percent bias (PBIAS) of 

the RF model are shown in the labels.  

 

In order to quantify and rank the influence of individual 

environmental and climatic factors on TAC, variable 

importance metrics have been extracted. These metrics allow to 

separate and identify main drivers of the kNDVI TAC. Figure 4 

shows the environmental and climatic predictors ranked by 

variable importance in the Random Forest model. The 

percentage increase in MSE represents the mean decrease of 

accuracy in predictions when a variable is permuted, meaning 

the mean increase in MSE contribution by variable divided by 

its variability.  

 

 
 

Figure 4. Predictors and corresponding variable importances of 

the RF model of TAC.  Statistics indicated by mean (mu), 

coefficient of variation (cv) and temporal autocorrelation (tac). 

Acronyms of the environmental and climatic variables indicated 

in the Material and Methods section. 
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From Figure 4, it is clear how the most important predictor is 

forest cover, followed by the temporal autocorrelation of the 

climatic variables (2-meter air temperature, surface solar 

radiation and total precipitation).  

 

Finally, in Figure 5 a map of the predicted values of long-term 

lag-1 TAC of kNDVI extended over the whole dataset and a 

map of the residuals from the Random Forest model are 

presented.  

 

 

Figure 5. Predicted long-term lag-1 TAC of kNDVI and 

residuals of the RF model. 

 

5. CONCLUSION 

The study presents an overview of the pre-processing of 

historical, high-frequency and high-resolution timeseries of 

vegetation and climatic data with the aim of training a Random 

Forest model to explain a general resilience indicator, the long-

term temporal autocorrelation of kNDVI, with climatic and 

environmental variables. The overall pre-processing highlighted 

the importance of retrieving stationary timeseries before the 

data are input in the machine learning model. The application of 

the RF model highlighted the strong influence of climatic 

variables as drivers of vegetation temporal autocorrelation.  

 

 

REFERENCES 

Bárta V., Lukeš P., Homolová L., 2021: Early detection of bark 

beetle infestation in Norway spruce forests of Central Europe 

using Sentinel-2. International Journal of Applied Earth 

Observation and Geoinformation, Volume 100, 2021, 102335, 

ISSN 1569-8432, doi.org/10.1016/j.jag.2021.102335. 

 

Breiman, L., 2001: Random forests. Machine learning, 45, 5-32. 

 

Camps-Valls G., Campos-Taberner M., Moreno-Martínez Á., 

Walther S., Duveiller G., Cescatti A., Mahecha M.D., Muñoz- 

Marí J., García-Haro F.J., Guanter L., Jung M., Gamon J.A., 

Reichstein M., Running S.W., 2021:  A unified vegetation index 

for quantifying the terrestrial biosphere. Science Advances, 7 (9) 

(2021), Article eabc7447. 

 

Copernicus Climate Change Service (C3S), 2017: ERA5: Fifth 

generation of ECMWF atmospheric reanalyses of the global 

climate. Copernicus Climate Change Service Climate Data 

Store (CDS), cds.climate.copernicus.eu/cdsapp#!/home.  

 

Dakos V., Carpenter S.R., Van Nes E.H., Scheffer M., 2015: 

Resilience indicators: prospects and limitations for early 

warnings of regime shifts. Phil. Trans. R. Soc. B 370: 

20130263. 

 

Forzieri G., Dakos V., McDowell N.G. et al., 2022: Emerging 

signals of declining forest resilience under climate change. 

Nature 608, 534–539 (2022). doi.org/10.1038/s41586-022-

04959-9. 

 

Friedl M., Gray J., Sulla-Menashe D., 

2022: MODIS/Terra+Aqua Land Cover Dynamics Yearly L3 

Global 500m SIN Grid V061 [Data set]. NASA EOSDIS Land 

Processes DAAC. Accessed 2023-05-05 from 

doi.org/10.5067/MODIS/MCD12Q2.061.  

 

Gorelick N., Hancher M., Dixon M., Ilyushchenko S., Thau D., 

Moore R., 2017: Google Earth Engine: Planetary-scale 

geospatial analysis for everyone. Remote Sens. Environ., 202, 

18–27. 

 

Hansen M. C., Potapov P. V., Moore R., Hancher M., 

Turubanova S. A., Tyukavina A., Thau D., Stehman S. V., 

Goetz S. J., Loveland T. R., Kommareddy A., Egorov A., Chini 

L., Justice C. O., Townshend J. R. G., 2013: High-Resolution 

Global Maps of 21st-Century Forest Cover Change. Science 342 

(15 November): 850-53. 10.1126/science.1244693 Data 

available on-line at: https://glad.earthengine.app/view/global-

forest-change. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W7-2023 
FOSS4G (Free and Open Source Software for Geospatial) 2023 – Academic Track, 26 June–2 July 2023, Prizren, Kosovo

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W7-2023-41-2023 | © Author(s) 2023. CC BY 4.0 License.

 
45



Hengl T., Wheeler I., 2018: Soil organic carbon content in x 5 g 

/ kg at 6 standard depths (0, 10, 30, 60, 100 and 200 cm) at 250 

m resolution (Version v02) [Data set]. Zenodo. 

10.5281/zenodo.1475457.  

 

R Core Team, 2022: R: A language and environment for 

statistical computing. R Foundation for Statistical Computing, 

Vienna, Austria. URL https://www.R-project.org/. 

 

Soille P., Burger A., De Marchi D., Kempeneers P., Rodriguez 

D., Syrris V., Vasilev V., 2018: A versatile data-intensive 

computing platform for information retrieval from big 

geospatial data. Futur. Gener. Comput. Syst., 81, pp. 30-40. 

 

Sun N., Liu N., Zhao X., Zhao J., Wang H., Wu D., 2022: 

Evaluation of Spatiotemporal Resilience and Resistance of 

Global Vegetation Responses to Climate Change. Remote Sens. 

2022, 14, 4332. 10.3390/rs14174332. 

 

Thonfeld F., Gessner U., Holzwarth S., Kriese J., da Ponte E., 

Huth J., Kuenzer C., 2022: A First Assessment of Canopy 

Cover Loss in Germany’s Forests after the 2018–2020 Drought 

Years. Remote Sensing. 2022; 14(3):562. 

doi.org/10.3390/rs14030562.  

 

Vermote E., Wolfe R., 2021: MODIS/Terra Surface Reflectance 

Daily L2G Global 1km and 500m SIN Grid V061 [Data set]. 

NASA EOSDIS Land Processes DAAC. Accessed 2023-05-05 

from doi.org/10.5067/MODIS/MOD09GA.061.  

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W7-2023 
FOSS4G (Free and Open Source Software for Geospatial) 2023 – Academic Track, 26 June–2 July 2023, Prizren, Kosovo

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W7-2023-41-2023 | © Author(s) 2023. CC BY 4.0 License.

 
46




