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ABSTRACT:  

Oil spills represent a significant environmental hazard necessitating timely detection to mitigate their detrimental effects. Synthetic 
Aperture Radar (SAR) technology serves as a remote sensing (RS)-based tool capable of detecting oil spills under varying weather 
conditions and at all times of day. SAR polarimetry, which assesses the polarization of the backscattered SAR signal, can effectively 
discriminate oil spills from other features that may manifest as dark regions in the SAR images. The integration of machine learning 
algorithms offers significant potential for enhancing the accuracy and efficiency of oil spill detection through SAR polarimetry. In 
recent years, several studies have introduced machine learning-based methodologies for this purpose, yet a comprehensive evaluation 
of their real-world performance remains essential. This study aimed to assess the efficacy of a machine learning (ML)-based approach 
for oil spill detection utilizing features derived from a dual-polarimetric decomposition method applied to Sentinel-1 SAR data. Results 
show that the machine learning-based approach achieved notable accuracy in oil spill detection reaching a score of 0.569 for intersection 
over union and 72.50 for f1-score of oil spill areas. Overall, this research underscores the potential of ML techniques as valuable tools 
for oil spill detection via SAR polarimetry. 

1. INTRODUCTION

Oil spills are highly damaging to the environment and pose a 
serious threat to ecology and wildlife. Different sources of oil 
spill come from frequent illegal ship discharges or accidents 
involving tankers, barges, offshore platforms, and pipelines 
(Shirvany, Chabert, and Tourneret, 2012, Vijayakumar, 2022). 
The occurrence of oil spills in the ocean has emerged as a grave 
concern which has been particularly evident in the recent oil spill 
accident near the island of Mindoro, Philippines. The aftermath 
of the oil spill accident from the sunken tanker Princess Empress 
has inflicted enduring financial costs and burden and devastating 
marine life and creating serious ecological disaster in the area.   
Accurate detection of oil spills is of great importance to protect 
marine life and environment, as well as to reduce economic 
losses caused by the oil spill. Synthetic Aperture RADAR (SAR) 
is a remote sensing technology that can be used to detect oil spills 
in all weather conditions and at any time of day. Electromagnetic 
waves are emitted and whose echoes are received by SAR 
sensors. Surface and capillary gravity waves are suppressed when 
oil slicks float on water’s surface. This has an impact on the 
Bragg scattering of microwaves, which lowers the normalized 
radar backscatter cross-section (NRCS). This causes oil slicks to 
appear as dark areas on SAR images. However, other objects or 
phenomenon can also appear as dark spots on SAR images, such 
as low wind speed, natural surface films, cold upwelling water, 
divergent flow regimes, dry-fallen sand banks, discharge 
wastewater, or turbulent water. These oil spill look-alikes can 
lead to false detections, so it is important to distinguish these 
from actual oil spills (Alpers, Holt, & Zeng, 2017, Zhang, et. al., 
2022).  
Previous methods for oil spill detection used texture analysis of 
single-polarimetric SAR images. It can be broken down into a 
three-step process: (1) identification of dark areas, (2) extraction 
of features, and lastly (3) oil spill detection (Salberg & Larsen, 
2018; Migliaccio, Gambardella, & Tranfaglia, 2007; Fingas & 
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Brown, 2014). Due to the reliance on thresholding approaches 
and auxiliary external information, single-polarization methods 
are limited to their ability to detect oil spill (Migliaccio, Nunziata, 
and Buono, 2015).  
The technological advancements of the space industry led to the 
launch of several high-performance SAR satellites that are 
equipped with polarimetric modes: X-band TerraSAR-X, L-band 
ALOS-2, the C-band Radarsat-2, and C-band Sentinel-1 satellite 
(Alpers, Holt, & Zeng, 2017). Significant contributions of SAR 
Polarimetry in oil spill detection were initially demonstrated by 
Migliaccio, Gambardella, and Tranfaglia (2007) and further 
supported by Migliaccio, Nunziata, and Gambardella (2009). 
Their research highlighted the crucial role of polarimetric 
information in detecting oil slicks and discriminating them from 
various oil spill look-alikes that characterized weak damping 
properties. Subsequently, several polarization decomposition 
methods have been employed in oil spill detection using quad- or 
dual-polarimetric SAR data, including methods like Cloude 
Decomposition, H/A/Alpha Decomposition, and Stokes 
parameters (Zhang, et. al., 2022). Another study by Salberg et. 
al., assessed various polarized parameters and classifiers for the 
purpose of oil spill detection, utilizing hybrid polarimetric SAR. 
Skrunes et. al. demonstrated that by analysing the geometric 
intensity and real component of the co-polarization cross-product 
of C-band SAR data, it was possible to effectively distinguish 
between biogenic oil slicks and mineral oil types.  
In recent years, the emergence of machine learning and deep 
learning algorithms has led to the adoption in the field of 
polarimetric SAR oil spill detection. The gradual advancements 
of machine learning have resulted to the development of 
powerful and efficient algorithms that leverage the predictive 
potential of complicated datasets. A wide range of machine 
learning algorithms have been used for classification problem 
such as artificial neural network (ANN), support vector machine 
(SVM), decision tree (DT), and deep learning algorithms (Pujari, 
2022). 
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Given the potential benefits that a machine learning algorithm 
and polarimetric decomposition might have to oil spill detection, 
the objective of this study was to assess the performance of a 
machine-learning based approach for oil spill detection with 
features derived from dual-polarimetric decomposition method 
of Sentinel-1 SAR data. Experiments were carried out on 
Sentinel-1 dual pol data. H/A/α dual decomposition method was 
used to generate the features that served as an input for the 
machine learning model, specifically the Extreme Gradient 
Boosting Machine. (Potin et. al., 2014). 
 

2. STUDY AREA  
 
2.1 Study Area  
 
On the morning of February 28, 2023, the MT Princess Empress 
carrying 900,000 liters of industrial fuel oil sank off the coast of 
Naujan, Oriental Mindoro, Philippines. The spill affected the 
waters of the provinces of Antique, Batangas, Oriental Mindoro, 
and Palawan. The oil tanker was enroute from Limay, Bataan to 
Iloilo City when it experienced rough sea conditions and sank. 
The spill released 900,000 liters of industrial fuel oil into the sea, 
which is a highly toxic substance and spread quickly due to 
strong currents and winds and reached the shores of several 
coastal communities within days. The spill has had significant 
impact on marine life and coastal communities. It is the second 
largest oil spill in the Philippine history, after the 1996 Sea 
Empress Oil Spill (DENR, 2023). Fig. 1 shows the extent of the 
oil spill near Oriental Mindoro mapped by the Philippine Space 
Agency as of March 2023.  

 
Figure 1. Oil Spill Map near Oriental Mindoro created by the 

Philippine Space Agency. 
 

3. MATERIALS AND METHOD  
 
The methodology is grouped into two major procedures: (1) 
Sentinel-1 image processing (Fig. 2), and (2) Model training and 
validation using Extreme Gradient Boosting Machine 
(XGBoost), Light Gradient Boosting Machine (LightGBM), and 
CatBoost (Fig. 3).  

 
Figure 2. Schematic illustration showing the workflow for 

Sentinel-1 image pre-processing using SNAP. 

3.1 Sentinel-1 Image Processing  
 
3.1.1 Image Pre-processing  
 
This study used the Copernicus Sentinel-1 Level 1 Single Look 
Complex (SLC) downloaded in the Copernicus Hub. Sentinel-1, 
equipped with a phase-preserving dual polarization SAR system, 
has the capability to capture multiple images within the same 
pulses using its antenna to receive specific polarization 
simultaneously. In this study, the Level-1 Single Look Complex 
(SLC) product which has a VH and VV polarization was acquired 
between the period of February to March 2023. SNAP was used 
to process the Sentinel-1 Level-1 SLC product. The SLC product 
contain complex values, enabling enhanced analysis of 
backscattering properties in addition to the measurement of 
backscatter intensity from each individual polarization. A 
radiometric calibration was first applied to the Sentinel-1 Level 
1 SLC in which pixel values can be directly related to the scene 
backscattering. The image then undergoes De-bursting process, 
in which, individual scans are merged, and swath lines are 
removed. The resultant image was then further subdivided into a 
smaller area. After subdividing the image, a frequency domain 
multilook was applied to the image. This divides the bandwidth 
of the image into several parts called looks, each of which is used 
to form its own image. The images are then combined resulting 
to representation with a much greater Signal-to-noise (SNR) ratio 
at the given range solution. At this point all the image 
preprocessing which is needed for the decomposition process was 
completed.  
 
3.1.2 Polarimetric Decomposition  
 
The actual process of decomposition is started by creating a 
Polarimetric Matrix using SNAP’s built-in Polarimetric Matrix 
Generation tool. This tool creates a matrix wherein each element 
of the matrix represents the backscatter response of the target in 
a particular polarization channel. Despite the significant decrease 
in signal-to-noise ratio caused by Polarimetric Matrix 
Generation, an additional speckle filtering was done and 
implemented using the Lee Refined Speckle Filtering. Geometric 
Terrain Correction was then applied to the image to reduce the 
level of distortion. A Polarimetric Decomposition process was 
then applied to the correctly oriented image which breaks down 
the image into Entropic, Anisotropic, and Alpha 
Decompositions. The image was then saved as GeoTIFF file and 
was converted into HSV color space to further enhance the 
contrast of oil spill from other resolvable features in the image 
(Figure 3).   
 

 
Figure 3. Geotiff file of the decomposed SAR image of 

Mindoro Oil Spill in HSV format 
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3.1.3 Dataset Tiling 
 
The SAR dataset consisted of decomposed Sentinel-1 dual-pol 
SAR data from the Mindoro coast. The image was divided into 
small patches of 256 x 256 x 3 pixels for training, testing, and 
validation. A total of 242 images were generated from one single 
image.  
 
 
 
 
 
 
 

Figure 4. Structure of the dataset for model training and 
validation where n = tile number, w = number of rows, h = 

number of columns, and b = number of bands 
 
The dataset was structured as such since one scene of the oil spill 
covers a very large area, classification of this image cannot be 
done without experiencing memory limitations. Thus, the image 
was tiled into 256 x 256 x 3 pixels.  
 
3.2 Model Training and Validation 

 
Figure 5. Schematic illustration showing the workflow for 

model training and validation. 
 

3.2.1 Classification using Machine Learning Algorithm  
 
Extreme Gradient Boosting Machine (XGBoost), Light Gradient 
Boosting Machine (LightGBM), and Categorical and Boosting 
(CatBoost) were used for the model training and validation of oil 
spill. The dataset used for model training were further split into 
training dataset and test dataset. The training dataset was used to 
train the machine learning algorithms and tune its 
hyperparameters and the test dataset was used to evaluate the 
models. The hyperparameters of the XGBoost, LightGBM, and 
CatBoost were determined from the training and test data using 
the randomized search approach based on 5-fold cross validation 
method. The RandomizedSearchCV method of the Sklearn 
Library implements a “fit” and “score”, in which the model with 
a set of hyperparameters is fitted with the training dataset and the 
score of the model is evaluated using the test dataset. The process 
of fitting and evaluating is repeated until the optimal 
hyperparameters of XGBoost, LightGBM, and CatBoost were 
identified (Pedregosa, Varoquaux, Gramfort, and Thirion, 2011). 
Table 1 shows the hyperparameters of the XGBoost, LightGBM, 
and CatBoost that were tuned using the randomized search 
approach.  

Model Hyperparameters 

XGBoost 

max_depth 
learning_rate 

subsample 
colsample_bytree 
colsample_bylevel 

reg_alpha 
reg_lambda 

min_child_weight 
n_estimators 

LightGBM 

num_leaves 
min_child_samples 
min_child_weight 

subsample 
colsample_bytree 

reg_alpha 
reg_lambda 
n_estimators 

CatBoost 

depth 
iterations 

learning_rate 
l2_leaf_reg 

Table 1. Hyperparameters of the XGBoost, LightGBM, and 
CatBoost tuned using the RandomizedSearchCV method. 

 
Image patches were first converted to array and were stacked 
accordingly. The training dataset was then split into five folds; 
four folds were used to train model and the remaining fold was 
used to evaluate the model. The process of training and 
evaluation was repeated until all the folds were used as a test. The 
process was again repeated but with different set of hyper 
parameters. To prevent the model from over fitting, the best set 
of hyper parameters were selected based on cross-validation 
score. The hyperparameters of each machine learning algorithm 
that were tuned using the RandomizedSearchCV method are 
shown in Table 1.  
 
3.3 Accuracy Assessment  
 
The classification performances were estimated from the 
validation images that includes oil spill at different proportion. 
This accuracy metric was measured using Intersection over 
Union (IoU), F1-score, Precision, and Recall. Intersection over 
Union (IoU) is an evaluation metric used to measure the 
similarity between two sets of data. It quantifies the accuracy of 
the overlap between the predicted and the ground truth. The IoU 
is calculated as follows (Eq. 1):  
 
IoU = (Area of Intersection) / (Area of Union)   (1) 
 
The IoU can take on a value between 0 to 1. A value of 0 indicates 
that there is no overlap between the predicted and ground truth, 
while a value of 1 indicates that the predicted matches perfectly 
with the ground truth. The study also measured the pixel-wise 
precision, recall, and f1-score (Dice coefficient). The precision 
can be defined as follows: 

 n x w x h x b 

XGBoost 
LightGBM 
CatBoost 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W8-2023 
Philippine Geomatics Symposium (PhilGEOS) 2023, 6–7 December 2023, Diliman, Quezon City, Philippines

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W8-2023-101-2024 | © Author(s) 2024. CC BY 4.0 License.

 
103



 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇+𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇
  (2) 

 
And the recall can define as given by: 

 
𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇 + 𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃𝑇𝑇 𝑁𝑁𝑇𝑇𝑁𝑁𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇
                  (3) 

 
Lastly, the f1-score is defined as: 

 
𝑓𝑓1 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 2 ∗ 𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗𝑅𝑅𝑇𝑇𝑃𝑃𝐹𝐹𝐹𝐹𝐹𝐹

𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑇𝑇𝑃𝑃𝐹𝐹𝐹𝐹𝐹𝐹
   (4) 

 
 

4. RESULTS AND DISCUSSION 
 
A total of 227 image patches with a resolution of 256 x 256 x 3 
were generated from one single image. The three-machine 
learning algorithm (XGBoost, LightGBM, and CatBoost) was 
trained and validated on the patched dataset via five-fold cross-
validation. Model hyperparameters were selected based on the 
five-fold cross-validation of the training and test dataset. Table 2 
shows the value of optimal hyperparameters for each machine 
learning algorithm.  
 

Model Hyperparameters Optimal Values 

XGBoost 

max_depth 3 

learning_rate 0.5 

subsample 0.70 

colsample_bytree 0.70 

colsample_bylevel 0.60 

reg_alpha 0.5 

reg_lambda 5 

min_child_weight 5 

n_estimators 100 

LightGBM 

num_leaves 28 

min_child_samples 398 

min_child_weight 10.0 

subsample 0.75 

colsample_bytree 0.8814 

reg_alpha 0.1 

reg_lambda 1 

n_estimators 500 

CatBoost 

depth 10 

iterations 100 

learning_rate 0.01 

l2_leaf_reg 1 
Table 2. Optimal values of hyperparameters for XGBoost, 

LightGBM, and CatBoost trained using 227 image patches and 
five-fold cross-validation. 

 
Hyperparameter tuning is an essential component within the 
domain of machine learning. The choice of hyperparameters 

wield a significant impact on the performance of machine 
learning models. Several studies in the field (Bergstra and 
Bengio, 2012; Bergstra, et. al., 2011) have established that tuning 
of hyperparameters plays a vital role in improving model’s 
accuracy, precision, and the capacity to generalize unseen data. 
Furthermore, hyperparameter tuning serves as a robust strategy 
for mitigating the issue of overfitting. Hyperparameter tuning 
operates as mechanism to find the trade-off between model 
complexity and simplicity, thereby reducing the susceptibility of 
machine learning models to overfitting (Chen, et. al., 2012).  
 

(a) 

                                 (b) 

(c) 
 

Figure 6. Binary-labelled classification maps from the 
decomposition of dual-pol S1 SAR images using (a) XGBoost, 

(b) LightGBM, and (c) CatBoost models. Yellow pixels are 
areas affected by oil spill.  
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Model Image Metric Oil Spill Non-Oil Spill 
 

XGBoost 

Image 1 

Precision 90.390 87.000  
Recall 60.040 97.670  

f1-score 72.200 92.000  
IoU 0.565  

Image 2 

Precision 77.580 77.380  
Recall 54.550 90.790  

f1-score 64.100 83.500  
IoU 0.471  

LightGBM 

Image 1 

Precision 90.340 87.140  
Recall 60.550 97.640  

f1-score 72.500 92.100  
IoU 0.569  

Image 2 

Precision 77.540 77.500  
Recall 54.920 90.710  

f1-score 64.300 83.600  
IoU 0.474  

CatBoost 

Image 1 

Precision 90.730 86.860  
Recall 59.510 97.780  

f1-score 71.900 92.000  
IoU 0.561  

Image 2 

Precision 77.560 77.180  
Recall 53.990 90.880  

f1-score 63.700 83.500  
IoU 0.467  

 
Table 3. Evaluation metrics of dual-polarimetric decomposition and three machine learning models (XGBoost, LightGBM, and 

CatBoost) using precision, recall, f1-score (dice coefficient), and intersection over union
 
The binary-labelled maps, which were classified from the 
decomposition of dual-polarimetric Sentinel-1 SAR images by 
XGBoost, LightGBM, and CatBoost models, was seen in Fig. 6. 
Significant difference could not be found in the three 
classification maps. Several oil spill areas were classified as non-
oil spill by the three machine learning models. The general shape 
of the oil spill was properly delineated for the three machine 
learning models. Table 3 shows the evaluation metrics 
intersection over union, precision, recall, and f1-score (dice 
coefficient) for each machine learning models. 
 
Based on Table 3, the IoU score ranges between the values of 
0.467 to 0.569. The LightGBM model produced the highest IoU 
among the machine learning models for both the two validation 
images with a score of 0.569 and 0.474. Although, LightGBM 
achieved the highest IoU score, there is no significant difference 
among the other two machine learning models. Furthermore, it is 
evident among the machine learning models that the recall of oil 
spill areas achieved low scores. Low recall in classification 
accuracy means that the model is not effectively identifying a 
substantial portion of the actual positive instances which means 
that there is a high rate of false negatives. Recall, also known as 
sensitivity, measures the model’s ability to correctly identify all 
positive instances. When recall is low, the model is missing 
significant positive instances which could be problematic. This is 
accurately portrayed on the labelled image of each model, 
wherein, the area of oil spill for the predicted mask is 
significantly lower compared to the actual or ground truth. 
In this study, the challenge of detecting oil spills from the 
decomposition of dual-polarimetric Sentinel-1 SAR images was 
addressed using three different machine learning models. Our 
approach relies on the utilization of features generated by the 
H/A/α dual polarimetric decomposition (Entropic, Anisotropic, 
and Alpha) as opposed to the traditional approach which employs 
textural features and other features as input data for the 
classification.  

Polarimetric features derived from the decomposition were used 
as input for the oil spill classification since they are directly 
related to the physical properties of the scattering of the surface. 
The polarimetric scattering characteristics of the oil-covered sea 
surface depends on several contributing factors such as substance 
type, SAR instrument specific parameters (polarization, 
incidence angle, noise floor), and geophysical parameters (wind, 
presence of capillary waves, surface currents). The notion of 
using polarimetric SAR data for oil spill detection was initially 
examined by Gade et. al., and was subsequently demonstrated on 
fully polarimetric ALOS PALSAR data by Migliaccio, et. al.  
 
The study of Migliaccio, et. al. proposed Eigenvalue 
decomposition as a method for oil spill detection. Eigenvalue -
based polarimetric features (Entropy, Anisotropy, and Mean 
Scattering Angle) are used to classify oil spills using a single 
SIR-C/X-SAR L-band dataset. While the classical H/A/α 
parameters in the fully polarimetric case also offers physical 
insights (predominant scattering), it is essential to acknowledge 
that they only capture a portion of the complete physical 
phenomena of the scatterer. In the case of oil-covered sea surface, 
Entropy tends to zero, therefore it is a dominant scattering 
mechanism scenario. On the other hand, pollution-free sea 
surface is dominated by relative high Entropy, representing 
random scattering mechanisms (Singha, et. al., 2016).  
Based on the results, the following can be concluded: (i) 
polarimetric features (entropy, anisotropy, and mean scattering 
angle) derived from the decomposition of dual-polarimetric 
Sentinel-1 SAR image could be used to classify oil spill; (ii) 
combining polarimetric features with machine learning models 
could be an alternative approach in detecting oil spill as opposed 
to using textural features or intensity; and (iii) The machine 
learning models produced an IoU score ranging from 0.467 to 
0.569, and an f1-score for oil spill areas ranging from 63.70 to 
72.50, with LightGBM model producing the highest IoU and f1-
scores.  
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5. CONCLUSION 
 

In this study, polarimetric features derived from the 
decomposition of dual-polarimetric Sentinel-1 SAR image was 
used in combination with machine learning model to identify oil 
spill. The methodology starts with the decomposition of Sentinel-
1 SAR images using the H/A/α decomposition method. The 
resulting image was split into patches of 256 x 256 x 3. Image 
patches are then provided to the three machine learning models 
(XGBoost, LightGBM, and CatBoost) that was trained on 80.0% 
of the patches and was validated via five-fold cross-validation. 
LightGBM achieved the highest accuracy among the three 
machine learning models with a value of 0.569 for IoU and 72.50 
for f1-score in oil spill labels.  
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