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ABSTRACT: 

 
This study investigated the potential relationship between Land Surface Temperature (LST) and Displacement within the context of 

thermal unrest in Taal Volcano using remote sensing. We analyzed a dataset spanning several years to understand patterns of change 

and potential correlations between these variables. The results revealed a weak negative correlation between LST and Displacement, 

with a correlation coefficient of approximately -0.154. However, the statistical analysis indicated that this correlation was not 

statistically significant. To improve future research in this area, we recommended the utilization of time series analysis to explore 
temporal trends, and the diversification of data sources, including information from various satellites. While our specific findings did 

not yield strong correlations, the study's outcomes contributed valuable insights into understanding thermal unrest in the Taal 

Volcano region using remote sensing, with a focus on LST and Displacement. Further research, incorporating these 

recommendations, will help our understanding of this complex relationship. 

 
 

 
* Corresponding author 

1. INTRODUCTION 

Taal Volcano, situated in Batangas, Philippines, is an active 

caldera-type volcano, located in the tectonically complex 
Pacific Ring of Fire. The Philippines, characterized by 

numerous volcanoes and susceptibility to seismic events, 

necessitates a profound understanding of volcanic behavior for 

effective hazard assessment and risk management. This study is 

driven by the need to identify and comprehend patterns of 
thermal unrest in Taal Volcano, which pose a significant risk to 

nearby communities. To achieve this goal, we employ the cost-

effective and efficient approach of analyzing thermal anomalies 

through satellite remote sensing technology (Coppola et al., 

2020).  
 

By examining the temporal variations in thermal activity, we 

aim to gain valuable insights into the volcano's behavior. In 

addition to thermal unrest, we recognize the importance of 

deformation analysis for comprehending volcanic processes and 
assessing volcanic hazards. Consequently, our investigation also 

delves into the deformation patterns within Taal Volcano using 

geodetic data derived from satellite observations. The combined 

analysis of thermal and deformation data through satellite 

remote sensing aims to enhance our understanding of the 
volcano's behavior and its potential for future volcanic activity. 

Understanding these patterns of thermal unrest and deformation 

is of utmost importance for early detection and mitigation of 

volcanic hazards. The timely identification of thermal anomalies 

and deformation signals can greatly assist authorities in 
implementing evacuation plans and taking necessary measures 

to protect vulnerable communities (Jiménez-Muñoz et al., 

2009).  

 

Through the utilization of satellite remote sensing data and 
geodetic analysis, our primary objective is to contribute to the 

body of knowledge related to volcanic activity and its 

underlying dynamics at Taal Volcano. While we employ 

correlation analysis to understand the potential relationship 

between the two patterns, our primary goal is not prediction but 

to maximize the utility of remote sensing in monitoring the 
volcano's behavior. These insights will be invaluable for 

enhancing volcano monitoring and risk management strategies, 

ultimately contributing to the safety and well-being of 

communities residing near Taal Volcano. 

 
 

2. MATERIAL AND METHODS 

2.1. The Study Area 

 

Taal Volcano's prominence in the geological landscape was 
attributed to its unique structural characteristics. It featured a 

large caldera with an approximate diameter of 25.7 kilometers, 

making it one of the world's most noteworthy calderas (Ramirez 

and Abdullah, 2022). This caldera enclosed Taal Lake, a 

substantial body of water that encompassed a diverse 
ecosystem. The lake's pristine waters and surrounding regions 

supported a variety of flora and fauna, and its ecological 

significance was widely recognized. Recent geological records 

highlighted a significant eruption that occurred in January 2020, 

leaving a profound impact on the region (Prasetyo et al., 2021). 
This eruption was characterized by phreatomagmatic activity, 

resulting from the interaction between magma and water. It 

culminated in a series of explosive volcanic events that had far-

reaching consequences. The ash plume generated during the 

eruption reached considerable altitudes, affecting air traffic, and 
causing widespread ashfall across nearby towns and cities (Jing 

et al., 2020). The eruption prompted local authorities and 

researchers to intensify monitoring efforts to better understand 

the volcano's behavior and mitigate potential hazards. The study 

area, situated around Taal Volcano, also features unique 
topographical variations, with elevations ranging from the 

volcanic summit to the surrounding lowlands, contributing to 

microclimatic difference. 
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Figure 1. Location of the study area. 

 
2.2. Data Processing 

 

In our data processing, we implemented a rigorous methodology 

to quantitatively evaluate the correlations among the identified 

parameters. Our dataset encompassed various key components, 
including Land Surface Temperature (LST), deformation 

measurements derived from satellite imagery, and geodetic 

observations. A series of pre-processing steps was meticulously 

executed to refine and optimize the data quality, encompassing 

outlier removal, noise reduction, and data normalization. To 
address the non-normality observed in the data distribution, we 

applied robust statistical techniques, effectively mitigating the 

impact of extreme values and enhancing the trustworthiness of 

our analyses. These measures empowered us to delve deeper 

into the relationships between LST variations and deformation 

patterns within the Taal Volcano region, ultimately aiding in 

developing a comprehensive understanding of its volcanic 

behavior. 
 

2.2.1. Satellite Data 

 

The satellite data utilized in this study spanned the period from 

2019 to 2021, employing Landsat 8 OLI/TIRS and Sentinel 1 
SAR platforms. For Landsat 8 OLI/TIRS (see Tab. 1), with a 

resolution of 30m and 100m, a swath width of 185km, and a 

revisit interval of 16 days, the study made use of 59 images.  

 

Information Details Spatial Resolution 

Product Name LANDSAT/LC08/C01/T1_L2  

Date 2019-2021  
Path/Row 116/50, 116/51, 116/57,116/ 59  

Ground Swath 185km  

Cloud Cover 0-25%  

Atmospheric Correction B2, B3, B4, B5, B6 30m 

NDVI B5, B4 30m 
Thermal B10 100m 

 

  Table 1. Landsat-8 images including details used in the study. 
 

The product name associated with this satellite data was 

"LANDSAT/LC08/C01/T1_L2." The data covered Path/Row 

116/50, 116/51, 116/57,116/ 59 and maintained a low cloud 

cover percentage ranging from 0 to 25%. To enhance the quality 
of the data, atmospheric correction was performed on bands B2, 

B3, B4, B5, and B6. The study focused on various spectral 

indices, such as NDVI (utilizing bands B5 and B4) and thermal 

data (band B10), to gain insights into land surface conditions. 

Due to some cloud cover in the images, we apply cloud masking 
on the images and use the monthly mean average land surface 

temperature each month which was used as data for correlation.  

 

The Landsat 8 OLI/TIRS data were sourced from the USGS 

Earth Explorer. In Google Earth Engine, these data were 
accessed using the product name 'USGS Landsat 8 Level 2, 

Collection 2, Tier 1'. This specific product name facilitated the 

extraction of Landsat 8 images for our study. On the other hand, 

the Sentinel 1 SAR data (see Tab. 2), featuring a resolution 

between 5m and 20m, a swath width of 250km, and a revisit 

interval of 6 days, comprised a total of 195 images. The beam 

mode was IW, and the polarization settings included VV and 
VH.  

 

The data spanned Path 50-58, encompassing both ascending and 

descending directions, providing a comprehensive view of the 

study area. These Sentinel 1 SAR data were sourced from the 
LiCSAR portal, a machine learning platform that uses ESA 

Copernicus Sentinel - 1 data. LiCSAR significantly streamlines 

the analysis of time series InSAR data, making it an invaluable 

tool for extracting valuable insights and patterns from radar 

imagery collected over time (Lázecký et al., 2020). These 
satellite datasets were invaluable in the analysis and 

interpretation of various land surface characteristics, temporal 

changes, and geological phenomena over the study period. The 
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information was sourced from reputable references, ensuring 

data quality and reliability for the research. Sentinel -1 also used 

monthly mean images and extract the values on the study area 

in used it to as the data points for correlation test.              

 

Information Details Spatial Resolution 

Product Name L1 Single Look Complex  

Date 2019-2021  
Ground Swath 250km  

Beam Mode IW  

Polarization VV + VH  

Direction Ascending and descending  

Band C 5m – 20m 
Frame Id 032D_07536_111313  

 

Table 2. Sentinel-1 images including details used in the study. 

 
2.2.2. Satellite Data Processing   

 

The study applied atmospheric correction to the Landsat images 

using the COST model (Chavez, 1996). This correction method 

involved utilizing the minimum band values to eliminate haze 
effects and converting the at-satellite radiance of all bands into 

surface reflectance. Top of Atmosphere (TOA) spectral radiance 

was calculated in the initial step, following an equation:  

 

                           (1) 
 

In this equation, Lλ represents the spectral radiance in watts/ 

(m−2 srad−1 μm−1), ML is the band-specific multiplicative 

rescaling factor obtained from the metadata (0.000342), AL is 

the band-specific additive rescaling factor obtained from the 
metadata (0.1), and QCal is the DN value for the quantized and 

calibrated standard product pixel of band 10. The pre-

processing and extraction of land surface temperature were 

conducted using the Google Earth Engine Geospatial platform. 

Subsequently, Land Surface Temperature (LST) was derived 
from the Landsat OLI/TIRS data band. The Brightness 

temperature was computed utilizing the original equation. To 

obtain the radiance value, it was then converted into Brightness 

Temperature (BT) using the following equation: 

 

                                                                 (2) 

 

In this equation, Ts represents the Brightness Temperature, and 

K1 and K2 are thermal conversion constants, which are detailed 

in Table 3 and can be in the metadata file of the Landsat image 

(Bendib et al., 2017). The formula is based on the methodology 

paper of another researcher (Rongali et al., 2018b). Emissivity, 

as defined in research studies is a fundamental radiative 

property of objects, indicating their ability to emit radiation 
(Rhinane et al., 2012). It plays a crucial role in the 

determination of surface temperature. To achieve this, a set of 

formulas for estimating emissivity for both urban and natural 

surfaces that are proposed in other research study was adapted 

(Meng and Li, 2019) and (Yang et al., 2014c). 
 

For urban areas, the emissivity (E_town) was calculated using 

the formula:  

 
    ɛtown = 0.9608420 + 0.0860322Pv − 0.0671580Pv 

2              (3) 

 

For natural surfaces, the emissivity (E_natural) was estimated 

using: 

 
    ɛnatural= 0.9643744 + 0.0614704Pv − 0.0461286Pv 

2             (4) 

 

Furthermore, in these equations, Pv represents the vegetation 

proportion (Carlson and Ripley, 1997). 

 
                 Pv = [ NDVI – NDVIs / NDVIv – NDVIs]

2              (5) 

 

The NDVI, which stands for Normalized Difference Vegetation 

Index, is computed as a ratio of two bands: near-infrared NIR 

and Red. The NDVI formula is expressed as:  
 

 NDVI = NIR – Red / NIR + Red                   (6)

 

Thermal constant Band 10 Band 11 

K1 777.89 480.89 
K2 1321.08 1201.14 

 

Table 3. K1 and K2 values. 
 

The LiCSAR Sentinel-1 InSAR Processor, in conjunction with 

LiCSBAS, played a pivotal role in our research for constructing 

time series data related to volcano monitoring (Morishita et al., 

2020). Our analysis started by accessing the Comet Volcano 
Portal, where we pinpointed our specific volcano of interest. 

Each volcano project corresponded to a distinct data frame ID, 

and in our study, we opted for frame number 

032D_07536_111313. Once we selected the geographical area 

of interest, the platform seamlessly transitioned us to the 
interferometry machine learning environment. Here, we 

conducted data analysis effortlessly by manipulating interactive 

graphs, using slide bars to dissect the temporal displacement 

trends, and precisely defining our reference and target areas. 

The system proved its robustness by automatically correcting 

delicate data points, enhancing the clarity of our data analysis. 

Upon concluding our analysis, we were able to extract the 

interferometry images. Subsequently, we tabulated the resulting 
data points efficiently using microsoft excel spreadsheet. 

Additionally, the Comet Volcano Portal offered a web-based 

analysis toolkit with clear instructions on how to evaluate 

potential deformation and changes (Anantrasirichai et al., 2018). 

Throughout our research, it was imperative to acknowledge and 
cite the pertinent sources while harnessing this potent tool for 

volcano monitoring (Morishita et al., 2020). This 

comprehensive approach facilitated the extraction of valuable 

insights for our volcano research and monitoring endeavours.
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Figure 2. Flow chart of satellite data processing and analysis. 

 

2.3 Statistics   
 

In our research, we employed Spearman's rank correlation 

coefficient (Spearman's rho) as a fundamental non-parametric 

statistical method. This approach proved essential due to the 

non-normally distributed nature of the data we collected. By 
ranking the data, calculating differences between these ranks, 

and subsequently computing Spearman's rho, we could 

effectively assess the strength and direction of monotonic 

relationships between variables (Eden et al., 2021). Our choice 

of this statistical method was particularly valuable when 
exploring associations in cases where the data didn't adhere to 

normal distribution or were measured on ordinal scales. 

Certainly, Spearman's rank correlation coefficient (Spearman's 

rho) is determined by the formula:  

 

                                                          (7) 
 

where ρ represents the Spearman's rank correlation coefficient, 
d signifies the difference between the ranks of paired 

observations, and N is the total number of data points. This 

formula quantifies the strength and direction of the monotonic 

relationship between variables based on the ranks of the data 

(Eden et al., 2021).  
 

2.3.1. Hypotheses 

 

H0: There is no correlation between Land Surface Temperature 

and Displacement. 
  

H1: There is a correlation between Land Surface Temperature 

and Displacement.  

3. RESULTS AND DISCUSSIONS 

In this section of the paper, we conduct an analysis and provide 

visual representations of cartographic and graphical data 

derived from datasets obtained through Landsat-8 and Sentinel-

1 satellite platforms. These visual materials emphasize the 

consistent findings related to thermal activity in the Taal 
Volcano in the Philippines, which ultimately led to its eruption 

on January 12, 2020 (Bato et al., 2021). The use of these remote 

sensing satellites has resulted in harmonious observations, 

demonstrating parallel trends in thermal activity and 

deformation within the specified study area. 
 

3.1. Land Surface Temperature 

 

During its orbital trajectory and scan over the Taal volcano, the 

Landsat-8 Satellite accumulated data spanning both pre-eruption 
and post-eruption periods. In our research, we employed the 

Google Earth Engine to analyze Land Surface Temperature 

(LST) images. The year 2020 marked a significant turning point 

as a volcanic eruption generated a thermal anomaly within the 

volcano, which was vividly depicted in Figure 3. During this 
period, the images faced the substantial challenge of volcanic 

clouds. To overcome this challenge, we applied a masking 

technique to effectively filter out undesirable elements. 

Additionally, we overlaid the image acquired at the end of 

January, enabling us to calculate the mean average temperature. 
This calculation was pivotal in facilitating the extraction of LST 

data for each subsequent month, thereby providing us with 

comprehensive insights into temperature fluctuations over time. 

Notably, the images revealed a remarkable feature—the Taal 

region exhibited remarkable temperature spikes, with 
temperatures soaring beyond 40 degrees Celsius. In contrast, 

other regions maintained a more moderate temperature profile. 
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The significance of this specific image lay in its portrayal of the 

highest recorded maximum temperature throughout our three-

year study period. 

 
 

Figure 3.  Land surface temperature in year 2020 captured by 

landsat-8. 
 

3.2. Interferometry  

 

 
 

Figure 4. Interferometry images in year 2020 as the volcanic 

activity been more active. 
 

The unwrapped line-of-sight (LOS) change wrapped LOS 

change, and coherence images (as shown in Fig. 4), delineated 

the formation of interferograms and coherence estimation 

within the designated area. These images helped to clarify the 
fringe patterns, which became visible after the interferogram 

was filtered to make the prominent fringes more noticeable. 

Particularly prominent in the upper region   and partially in the 

lower region, these patterns resulted from the precise 

calculation of the distance between the satellite and the ground 
target. Fringes denoted incremental displacement indicative of 

deformation, with denser fringes correlating with greater 

deformation. It is essential to note that the images were captured 

within the timeframe of January 9 to January 15, 2020, 

effectively preceding the eruption that commenced on January 
12. This temporal context was crucial, as it allowed us to 

comprehend the volcano's behavior leading up to the eruption 

event. The imagery encapsulated the dynamics of the Taal 

Volcano just prior to the eruption, providing a valuable 
snapshot of its pre-eruption state. This insight into the days 

preceding the eruption enhanced our understanding of the 

evolving conditions within the volcano and facilitated the 

identification of potential precursory signs. Furthermore, Figure 

4 underscored the prevalence of dense fringes encircling Taal 

Volcano. The coherence image, a product of the conducted 

interferometry, served as a yardstick for gauging the quality of 

phase images produced. The coherence output, as observed in 

(Fig. 4), manifested as a gradient ranging from dark to light. 
Darker regions with low coherence lacked distinct fringes in the 

interferogram, while areas with higher coherence, indicated by 

lighter shades, exhibited clearer fringes. Furthermore, the initial 

sequence included Wrapped LOS change, Unwrapped LOS 

change, and coherence data as the satellite traversed the study 
area.  

 

3.3. Correlational Analysis 

 

In this study, we assessed two key variables, land surface 
temperature and ground displacement, to understand the data 

and determine the most suitable correlation method for 

addressing the research hypothesis. The descriptive statistics 

presented in the tables provided insights into the central 

tendencies and distribution characteristics of these parameters. 
Regarding Land Surface Temperature (see Table. 4), the dataset 

consisted of 36 data points. The mean Land Surface 

Temperature was found to be approximately 18.82°C, giving an 

estimate of the central value. The standard deviation, at 8.42, 

indicated the extent of variability in the temperature data. With 
a negative kurtosis value of -1.49, the distribution was 

considered platykurtic, having lighter tails and a less 

pronounced peak than a normal distribution. A positive 

skewness value of 1.18 pointed to a positively skewed 
distribution, indicating a longer right tail and a concentration of 

lower values on the left side. Notably, the Shapiro-Wilk Test 

revealed a p-value of 0.00000382, signifying a significant 

departure from normal distribution, suggesting non-normality in 

the data.  As for Ground Displacement (see Table. 5), the 
dataset also comprised 36 data points. The mean Displacement 

was around 76.98, representing the central value. The standard 

deviation, at 49.13, indicated a moderate degree of variability.  

 

The kurtosis value of -0.03 indicated a distribution nearly 
mesokurtic, with tails and peakness like a normal distribution. 

However, a negative skewness value of -1.15 suggested a 

negatively skewed distribution, characterized by a longer left 

tail and a concentration of higher values on the right side. The 

Shapiro-Wilk Test, with a p-value of 0.09, indicated a departure 
from normal distribution, although less pronounced than in the 

case of Land Surface Temperature. Additionally, the 

Kolmogorov-Smirnov Test, with a p-value of 0.19, suggested a 

deviation from normality. In summary, both Land Surface 

Temperature and Displacement data exhibited non-normal 
distributions, skewness, and kurtosis characteristics. 

Understanding these distribution properties is vital for informed 

statistical analysis and modelling decisions related to these 

parameters. In our research, we conducted a hypothesis test to 

investigate the relationship between Land Surface Temperature 
and Displacement. We formulated a null hypothesis (H0) stating 

that there is no correlation between these two variables and an 

alternative hypothesis (H1) suggesting the presence of a 

correlation. The results showed (see Table. 6) that the 

correlation coefficient between Displacement and Land Surface 
Temperature was approximately -0.154, indicating a weak 

negative correlation. However, the p-value associated with this 

correlation was 0.369. Since this p-value exceeded our chosen 

significance level of 0.05 (2-tailed), we could not find enough 

evidence to reject the null hypothesis. In simpler terms, our 
analysis did not provide strong support for a significant 

correlation between Land Surface Temperature and 

Displacement. 
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Descriptive Statistics 

 Land Surface Temperature °C 

 statistic std. error z-values p-value 

N 36    

Mean 18.82 1.40   
Standard Deviation 8.42    

Kurtosis -1.49 0.39 -3.79  

Skewness 1.18 0.77 1.53  

Shapiro-Wilk    0.00000382 

Kolmogorov-Smirnov    0.00020484 

Note: Significance level is set to >0.05. 

 

Table 4. Land surface temperature descriptive statistics. 

Descriptive Statistics 

 Ground Displacement (mm) 

 statistic std. error z-values p-value 

N 36    
Mean 76.98 8.19   

Standard Deviation 49.13    

Kurtosis -0.03 0.39 -0.07  

Skewness -1.15 0.77 -1.50  

Shapiro-Wilk    0.09 
Kolmogorov-Smirnov    0.19 

Note: Significance level is set to >0.05. 

 
Table 5. Ground displacement descriptive statistics. 

 

Non -Parametric Correlations 

 Spearman's rho 

 correlation coefficient p-value H0 H1 result 

Displacement vs. Land 

Surface Temperature 
-0.154 0.369 Not Rejected Not Accepted 

Weak negative 

Correlation 

Note: Significance level is 0.05 (2-tailed). 
 

Table 6.  Spearman’s rho correlation coefficient results. 

4. CONCLUSION 

This study conducts a statistical analysis to investigate the 

potential relationship between Land Surface Temperature and 

Displacement in the study area. The study formulates 

hypotheses to explore whether there is a correlation between 

these two variables. The results of the analysis indicate a weak 
negative association between Land Surface Temperature and 

Displacement, with a correlation coefficient of approximately -

0.154. However, the p-value associated with this correlation 

was 0.369, which was not statistically significant. Therefore, 

based on the analysis, the study could not confirm the presence 
of a meaningful correlation between Land Surface Temperature 

and Displacement in the study area. In other words, changes in 

Land Surface Temperature are not likely to be substantially 

linked to changes in Displacement as suggested by the data.  

 
These findings indicate that other factors or influences may be 

affecting Displacement. Further research or additional variables 

need to be explored to better understand this relationship. 

Incorporating additional data types such as sulfur dioxide and 

wind direction, and utilizing satellite data with higher revisit 
times, may provide more insights into the relationship between 

Land Surface Temperature and Displacement. Landsat's high 

resolution makes it sensitive to cloud cover, so alternative 

satellite data sources may prove to be beneficial. 
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