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ABSTRACT: 

The sustainable energy transition in the Philippines requires accurate forecasting of solar PV output to optimize energy efficiency 

and grid management. While existing studies have emphasized the positive correlation between solar irradiance and PV production, 

this study aims to explore whether forecasting improves with the inclusion of weather data. This research conducts a comparative 

analysis between relying solely on solar irradiance against integrating various weather parameters to enhance solar PV output 

forecasting. The study focuses on three distinct locations (Pangasinan, Negros Occidental, and Davao Del Norte) and employs two 

models per each site: Model 1 (M1), which relies only on solar irradiance as predictors, and Model 2 (M2), which incorporates solar 

irradiance and weather parameters. Using Fifth Generation ECMWF Reanalysis (ERA5) Data, Principal Component Analysis (PCA) 

is conducted on the significant weather parameters. Extreme Gradient Boosting (XGBoost) with 5-fold nested cross-validation is 

applied for solar PV output forecasting. Models are assessed using Mean Absolute Percentage Error (MAPE) and skill scores. Results 

showthat while solar irradiance alone suffices for predicting solar PV output in Negros Occidental, incorporating weather parameters 

improves forecasting accuracy in Davao Del Norte and Pangasinan. This paper recommends caution in generalizing the findings to 

different regions with varying weather patterns, as the forecasting performance of the models is influenced by data quality, specific 

location, and prevailing weather conditions. 

 

1. INTRODUCTION   

The Philippine government’s focus on sustainable energy 

solutions, driven by the need to adopt renewables and reduce 

carbon emissions, has highlighted the importance of accurate 

solar PV output forecasting for efficient energy utilization and 

grid management. In recent years, the country has made 

remarkable strides in renewable energy generation, marking it 

as one of the emerging economies and photovoltaic (PV) 

markets worldwide (Farias-Rocha et al., 2019). Bertheau 

(2020) emphasized the potential of renewable energy projects 

to stimulate economic growth and contribute to the realization 

of sustainable development goals (SDGs). This has spurred 

intensified research efforts to understand the intricate 

relationship between solar irradiance, other weather 

parameters, and solar PV output. Previous studies have 

revealed a strong positive correlation between solar irradiance 

and PV production (Das et al., 2018). This highlights the 

feasibility of using solar irradiance as the sole predictor for 

forecasting PV output. However, it is widely recognized that 

solar power production is influenced by various weather 

parameters, including temperature, humidity, wind speed and 

direction, cloud cover, and precipitation (Alcañiz et al., 2023; 

Benitez et al., 2022). 

Furthermore, recognizing the pressing need to address climate 

change while promoting sustainable growth, the renewable 

energy sector has witnessed notable expansion with a 

simultaneous focus on optimizing its efficiency by applying 

artificial intelligence (AI) techniques, as observed by Hannan 

et al. (2021). In response to the high demand for accurate 
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short-term solar power forecasts, various machine learning 

methods have gained widespread adoption. Nevertheless, the 

challenge lies in effectively selecting the most suitable 

machine learning models and relevant data features. Extreme 

Gradient Boosting (XGBoost) has gained prominence in solar 

power forecasting because of its superior performance, as 

demonstrated by studies conducted by Grzebyk et al. (2023), 

Dimitropoulos et al. (2021), and Zhong & Wu (2020), 

showcasing its effectiveness compared with other machine 

learning techniques. Additionally, Munawar et al. (2020) 

determined that the combination of the XGBoost method with 

feature selection via Principal Component Analysis (PCA) 

surpasses other approaches in terms of predictive accuracy. 

This study aims to fill research gaps by exploring the accuracy 

of relying solely on solar irradiance predictions versus 

incorporating other weather parameters to improve solar PV 

output forecasting in the Philippines. A comparative analysis 

using the Fifth Generation ECMWF Reanalysis (ERA5) Data 

for solar PV output forecasting was conducted and evaluated 

the model performance of Extreme Gradient Boosting 

(XGBoost). By evaluating the forecast accuracy of the models 

incorporating the two predictor sets, the study seeks to 

determine the most suitable and effective model to enhance the 

accuracy and reliability of solar PV output predictions within 

the context of the Philippine energy landscape. The study's 

findings hold significant implications for informed decision-

making in sustainable energy planning, facilitating the optimal 

adoption of solar PV systems, and advancing renewable 

energy initiatives in the country. 
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Figure 1. Overview of Methodology. 

 

2. METHODOLOGY 

Figure 1 illustrates an overview of the methodology. Utilizing 

the collected data, weather parameters underwent Principal 

Component Analysis. After selecting the initial components 

accounting for the most variation, two predictors were 

established: solar irradiance alone and the principal 

components. XGBoost forecasting was implemented using a 

5-fold nested cross-validation approach. This iterative process 

encompassed model training, hyperparameter optimization, 

model testing, and validation, resulting in the final optimized 

models: M1 utilizing solar irradiance and M2 integrating solar 

irradiance and weather parameters. The evaluation of 

performance involved mean absolute percentage error and 

skill scores, producing forecast model accuracies as the output.  

2.1 Data Collection and Model Setup 

This study adopted a comparative approach to evaluate solar 

photovoltaic output forecasting in the Philippines, 

incorporating ERA5 data. Table 1 shows the summary of 

datasets used in the study. The time series length encompassed 

January 2020 to December 2021 (8:00 am to 5:00 pm, 

UTC+8), chosen to ensure consistent data availability across 

all sites. The study examined two models: Model 1 (M1) 

utilizing solar irradiance solely as predictors, and Model 2 

(M2) incorporating both solar irradiance and weather 

parameters as predictors. These models provided a 

comprehensive framework to evaluate the predictive 

efficiency of XGBoost when employing distinct sets of 

predictors for solar PV output forecasting. 

 

2.2 Data Preprocessing  

To mitigate multicollinearity among the key weather 

parameters—namely, solar irradiation (ssrd), wind speed (ws), 

wind direction (wd), relative humidity (rh), temperature at 2 

meters (t2m), high cloud cover (hcc), low cloud cover (lcc), 

medium cloud cover (mcc), total cloud cover (tcc), and total 

precipitation (tp)—Principal Components Analysis (PCA) 

was performed. This statistical technique reduced the 

dimensionality of the dataset while preserving the essential 

information contained within these variables (Bro & Smilde, 

2014). The initial stage encompassed the standardization of all 

variables, evaluation of its covariance matrix, and 

transformation of the original data values.  

PCA then employed eigenvectors and eigenvalues to 

decompose the covariance matrix. The eigenvectors 

established orthogonal components, known as principal 

components, whereas the corresponding eigenvalue quantified 

the variance (Alskaif et al., 2020). The principal components
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Source Data Unit 
Resolution 

Temporal Spatial 

ERA5 

Solar Irradiance (ssrd) W/m2 

Hourly 27 km2 

Wind Speed (ws) m/s 

Wind Direction (wd) 
Cardinal 

Direction 

Relative Humidity (rh) % 

Temperature at 2m (t2m) °C 

High Cloud Cover (hcc) 

Low Cloud Cover (lcc) 

Medium Cloud Cover (mcc) 

Total Cloud Cover (tcc) 

octa 

Total Precipitation (tp) mm 

Plant (Pangasinan, Negros 

Occidental, Davao Del Norte) 
Production kW Hourly In-situ 

Table 1. Summary of Datasets 

 

Figure 2. XGBoost Model with 5-Fold Nested Cross-Validation. 

 

were ranked by its eigenvectors in descending order, creating 

a list of components that was arranged from highest to lowest 

variance. Using only the initial components that accounted for 

the most variation allowed for the retention of most of the 

original information while simplifying the dataset's 

complexity (Jolliffe & Cadima, 2016). The cumulative 

proportion of variance explained by these principal 

components was carefully evaluated, ensuring that they 

retained the most critical information while eliminating 

multicollinearity. PCA's characteristics improved the 

interpretability and accuracy of weather parameter influence 

analyses, notably in the context of solar PV output forecasting 

(Chahboun & Maaroufi, 2022). 

2.3 XGBoost Model 

The application of XGBoost forecasting with 5-fold nested 

cross-validation is shown in Figure 2. The implementation 

involved the utilization of the TimeSeriesSplit() function 

within the outer loop, where a 5-fold configuration was 

employed. This procedural choice inherently encompassed the 

automated management of index slicing. The method adopted 

herein adhered to a walk-forward paradigm, wherein the 

dimensions of the training dataset were progressively 

augmented with the progression of each successive fold. 

Within the inner loop, an allocation scheme of 80% and 20% 

was assigned for training and validation purposes, 

respectively. For illustrative purposes, in the initial fold, 20% 

of the data was reserved for the training set of the outer loop, 

while an equivalent proportion was designated for testing. 

Within this 20% training set of the outer loop, a further 

division ensued, partitioning it into an 80-20 ratio to 

accommodate hyperparameter tuning. 

Within each fold of the outer loop, the model was trained with 

a predefined number of estimators, utilizing the Outer Train 

dataset. Then, each resultant model, in conjunction with its 

corresponding validation errors, was evaluated on the Outer 

Test dataset. This iterative process continued for each fold 

until the entirety of the folds had been completed. Afterwards, 

the scores obtained from each individual test were subjected 

to averaging. The hyperparameter denoted as "n-estimator," 

associated with the lowest computed average test score, was 

identified as the optimal value. This optimal value then served 

as the basis for the refinement of the subsequent set of 

hyperparameters. 
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Hyperparameter 
Pangasinan Negros Occidental Davao Del Norte 

M1 M2 M1 M2 M1 M2 

objective reg:squarederror reg:squarederror reg:squarederror reg:squarederror reg:squarederror reg:squarederror 

n_estimators 100 100 100 100 100 100 

max_depth 2 1 1 1 1 1 

min_child_weight 50 50 5 5 50 50 

gamma 0 0 1 1 1 1 

subsample 1 1 0.9 0.6 1 1 

colsample_bytree 0.4 0.5 1 0.5 1 1 

colsample_bylevel 1 0.9 0.9 1 1 1 

learning_rate / eta 0.1 0.3 0.2 0.1 0.3 0.3 

Table 2. Summary of XGBoost Model Hyperparameters. 

 

The optimal configuration of the XGBoost forecasting 

models for solar PV output was determined through a 

systematic exploration of various hyperparameter 

combinations. This process was crucial because it enabled 

fine-tuning of the models, enhancing its predictive accuracy 

and robustness. 

In Table 2, a thorough summary of the XGBoost model 

hyperparameters used in this study was presented, 

encompassing variations across different geographical 

regions and model iterations (M1 and M2). The chosen 

combinations cater to the unique characteristics of each 

location and model, balancing the need for accuracy, while 

preventing overfitting. 

2.4 Performance Evaluation  

Each model was assessed using Mean Absolute Percentage 

Error (MAPE) presented in Eq. (1) and computation of skill 

scores based on Yang (2019) presented in Eq. (2): 

MAPE = 
100%

𝑛
∑ |

𝑎𝑐𝑡𝑢𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡𝑖  − 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡𝑖

𝑎𝑐𝑡𝑢𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡𝑖 
|𝑛

𝑡=1  

(1) 

skill score = 1 - 
𝑒𝑟𝑟𝑜𝑟𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑

𝑒𝑟𝑟𝑜𝑟𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

 (2) 

where n is the total number of data points, errorproposed is the 

MAPE value of M2 per fold for each location, and 

errorreference is the MAPE of M1 per fold for each location. 

Skill scores ranging between 0.3 and 0.5 denote 

improvement, while higher skills such as 0.5-0.7 can be 

achieved but not over an extended validation period such as 

a year (Yang, 2019). 

3. RESULTS AND DISCUSSIONS 

This paper examines and compares the solar PV output 

forecasting performance of two models: one that used only 

solar irradiance (M1) and another which combined solar 

irradiance with weather parameters (M2). The application 

of Principal Components Analysis (PCA) to streamline the 

selection of weather variables obtained from ERA5 for 

inclusion in M2 is presented in Table 3. Through this 

analysis, the original weather parameters are condensed into 

five principal components, each accounting for a 

cumulative proportion of 80% or greater of the total 

variance in the data. These principal components, labeled as 

PC1 to PC5, play a crucial role in simplifying the 

complexity of the weather data. 

The values within Table 3 represent the correlations or 

loadings, between the original weather variables and the 

five principal components across three locations: 

Pangasinan, Negros Occidental, and Davao del Norte. 

These loadings indicate both the strength and direction of 

the relationship between each weather variable and 

principal components. A high magnitude indicates that the 

variable has a substantial impact on the principal 

component, while values near zero suggest minimal 

influence. The sign (- or +) of a loading denotes whether 

there exists a positive or negative correlation between a 

variable and a principal component. For instance, in 

Pangasinan, the first principal component exhibits high 

loadings for high cloud cover (0.4), total cloud cover 

(0.422), and relative humidity (0.446), while wind speed has 

the least influence (-0.012). Also, PC1 demonstrates a 

negative correlation with wind speed, temperature at 2m (-

0.312), and solar irradiation (-0.339).  This dimensionality 

reduction simplifies the weather data analysis and provides 

valuable insights into meteorological dynamics across 

various geographic locations. 

Moreover, in Table 4, the MAPE values recorded from the 

validation fold form the basis for assessing the 

improvements achieved by Model 2 (M2) over Model 1 

(M1) in terms of predictive accuracy. These values reflect 

the actual forecasting errors for each fold and location, 

allowing for a direct comparison between the two models. 

Analyzing the MAPE results reveals that in Pangasinan, M2 

(25.951%) outperforms M1 (29.850%), yielding lower 

MAPE values on average. However, in Negros Occidental, 

M2 (31.051%) exhibits slightly improved average MAPE 

values compared to M1 (31.683%), with relatively minor 

overall improvements. In contrast, Davao Del Norte 

experiences significant improvements when using M2, 

consistently yielding superior performance to M1 across all 

folds. 

Table 5 introduces the skill scores computed based on the 

MAPE values in Table 4, employing Equation (2) to assess 

the extent of improvement, fold by fold, for each location. 

Pangasinan's case is marked by a mix of improvements, 

highlighting a varied response to the inclusion of weather 

variables. As indicated by the skill scores, the forecast 

accuracy exhibits improvements in specific instances, 

reflecting the potential advantages of incorporating 

weather-related insights for this location. On the other hand, 

Negros Occidental demonstrates low overall improvements, 

as indicated by skill scores close to zero. The skill scores 

suggest that, for this site, the inclusion of weather 

parameters may not lead to a substantial improvement in 
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predictive accuracy. Davao Del Norte, on the other hand, 

showcases gain in each fold. The varying impact becomes 

more apparent when the skill scores across different 

locations are compared. While Pangasinan witnesses a 

notable improvement at skill score of 0.356 (Fold 3) and 

Davao Del Norte at skill score of 0.398 (Fold 1) with the 

incorporation of weather data, this improvement is not 

observed for Negros Occidental. This distinction underlines 

that the solar irradiance factor alone sufficiently captures 

the underlying dynamics of solar PV output for this 

installation in Negros Occidental, a conclusion supported by 

relatively stable skill scores. 

These skill scores underscore the location-specific impact 

of weather parameters on solar PV output forecasting, 

emphasizing the necessity for tailored modeling approaches 

that consider the unique weather dynamics of each region. 

The results highlight that although weather parameters can 

significantly enhance forecasting accuracy in some 

locations, its effect can vary significantly, reinforcing the 

importance of location-specific modeling in renewable 

energy planning

 

 

Variable 
Pangasinan Negros Occidental Davao del Norte 

PC1 PC2 PC3 PC4 PC5 PC1 PC2 PC3 PC4 PC5 PC1 PC2 PC3 PC4 PC5 

ssrd -0.339 0.51 0.008 -0.061 -0.033 -0.458 -0.263 0.124 -0.072 -0.076 -0.459 -0.209 -0.065 -0.062 0.197 

ws -0.012 0.082 -0.592 -0.048 0.737 -0.319 -0.157 -0.136 0.481 -0.032 -0.206 -0.085 -0.461 -0.5 -0.128 

wd 0.149 -0.008 -0.346 -0.84 -0.192 0.11 -0.267 0.048 -0.782 -0.085 0.272 0.209 -0.094 -0.274 0.825 

rh 0.446 -0.298 0.048 -0.067 -0.11 0.514 0.138 -0.127 0.019 -0.048 0.506 0.179 -0.018 0.01 -0.145 

t2m -0.312 0.507 0.076 -0.15 -0.167 -0.476 -0.234 0.199 -0.159 0.037 -0.488 -0.225 0.07 0.056 0.18 

tp 0.243 0.257 -0.398 0.262 -0.238 0.021 -0.326 -0.522 -0.153 0.559 0.093 -0.278 -0.392 0.579 0.383 

lcc 0.271 0.21 -0.298 0.098 -0.457 0.049 -0.334 -0.476 0.026 -0.762 0.14 -0.1 -0.641 -0.28 -0.135 

mcc 0.309 0.244 -0.184 0.375 0.04 0.104 -0.378 -0.297 0.201 0.28 0.203 -0.381 -0.246 0.35 -0.194 

hcc 0.4 0.318 0.368 -0.162 0.264 0.306 -0.418 0.441 0.163 0.074 0.222 -0.532 0.329 -0.235 0.086 

tcc 0.422 0.342 0.324 -0.127 0.205 0.28 -0.475 0.356 0.188 -0.068 0.244 -0.554 0.192 -0.277 0.02 

Table 3. Summary of Principal Components. 

 

Location 
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average 

M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 

Pangasinan 21.857 20.605 32.723 30.081 51.318 33.027 16.049 17.959 27.572 28.081 29.850 25.951 

Negros Occidental 24.682 24.121 31.638 31.291 30.135 29.801 38.477 37.097 33.484 32.946 31.683 31.051 

Davao Del Norte 37.026 22.284 34.603 32.917 44.928 43.756 39.264 35.743 48.485 38.913 40.861 34.723 

Table 4. Summary of Validation MAPE Results 

 

Location Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 

Pangasinan 0.045 0.081 0.356 -0.119 -0.018 

Negros Occidental 0.023 0.011 0.011 0.036 0.016 

Davao Del Norte 0.398 0.049 0.026 0.090 0.197 

Table 5. Summary of Skill Scores.

4. CONCLUSIONS AND RECOMMENDATIONS 

The study examines solar PV output forecasting accuracy in 

the Philippines, focusing on the incorporation of Fifth 

Generation ECMWF Reanalysis (ERA5) data. The 

investigation involved a comparative evaluation of two 

models: Model 1 (solar irradiance) and Model 2 (solar 

irradiance and weather parameters), using the XGBoost 

toolkit. Results showed that, in the case of the solar PV 

installations considered in this study, relying solely on solar 

irradiance as a predictor was sufficient to predict solar PV 

output for installations in Negros Occidental. However, for 

Davao Del Norte and Pangasinan, incorporating weather 

parameters improved the accuracy of solar PV output 

forecasting. These results emphasize the need for a tailored 

approach to solar PV output forecasting, considering the 

unique weather patterns and conditions of each region in the 

Philippines. 

A limitation of this study is that the forecasting performance 

of the models is also dependent on the quality of the data, the 

specific location, and the prevailing weather conditions. These  

 

factors can introduce uncertainties and variability that may 

affect the accuracy of solar PV output predictions. Therefore, 

it is imperative to note that the study's findings are specific to 

the dataset used and the locations considered, and should not 

generalize the results and apply the same to other regions of 

the country or periods with distinct weather patterns.  

As the Philippines continues to explore and expand its 

renewable energy sector, harnessing the full potential of solar 

power necessitates the use of forecasting methodologies that 

account for the dynamic nature of weather patterns across 

different regions. 
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