
* Corresponding author

ACCURACY ASSESSMENT OF A SLAM-ACQUIRED POINT CLOUD DATA USING A 
VARIETY OF CLASSIFICATION APPLICATIONS 

H.A. Ingles, A.M.M. Legaspi, C.J.S. Sarmiento, A.R.C. Claridades* 

Department of Geodetic Engineering, University of the Philippines Diliman, Quezon City, Philippines – 
(haingles, amlegaspi2, cssarmiento, acclaridades)@up.edu.ph 

KEY WORDS: Point Cloud Classification, LiDAR, Accuracy Assessment, SLAM 

ABSTRACT: 

Laser scanning techniques, such as Simultaneous Localization and Mapping (SLAM), produce three-dimensional data representing 
the real world, which may provide significant information for Building Information Models (BIM). These processes produce 3D point 
clouds, which require classification before being used in various applications such as structural assessments. However, most widely 
available software applications for classifying 3D point clouds are proprietary, giving an incomplete depiction of how the data is 
manipulated and processed. Thus, this research aims to assess the accuracy of the different classification applications in classifying 
the 3D point cloud data and perform a comparative analysis of the results. Precision, Recall, F1-score, and Accuracy are the evaluation 
metrics used to assess the classified 3D point cloud data. Results for Precision and Recall show that some of the applications can 
classify a particular class, the Ground and Building classes. However, the overall performance of the classification method, which is 
evaluated through the F1-score, produced low values. Results for the F1-score demonstrate that these low values indicate low overall 
reliability of the classification results despite high values for Accuracy. Based on the conducted experiments, further research is 
suggested to investigate the effect of increasing dataset size and equalizing class sizes used in classification. 

1. INTRODUCTION

Building Information Models (BIM) are essential to the digital 
infrastructure that makes up a Digital Twin (DT). These datasets 
represent real-world physical structures and are crucial for 
generating virtual representations of buildings and performing 
structural analysis or overall lifecycle assessments. In recent 
years, 3D mapping technologies, such as laser scanning, have 
been utilized to generate such models. Laser scanning is a 
procedure where lasers are used to survey and gather 
measurements of the area or object needed to be scanned to 
create a 3D map, resulting in point cloud data (Digiscript 
Philippines, 2021). Point cloud data represent real-life objects 
and surfaces in a virtual environment (Duan et al., 2019). Such 
procedures use Light Detection and Ranging (LiDAR), which 
are sensors that provide precise and accurate measurements of 
3D objects (Elhashash et al., 2022). 

Simultaneous Localization and Mapping (SLAM) is a mapping 
process wherein a device simultaneously positions itself in the 
area where it is mapping. LiDAR-based SLAM produces 
scanning results that are highly accurate due to the flexibility of 
the sensor, even without prior knowledge of the site, and it can 
be used in both indoor and outdoor environments with either 
light or no light conditions since LiDAR is an active sensor.  

Three-dimensional point cloud data undergoes different 
processes depending on the user's purpose, and one of the 
processes that this study focused on is the classification of 3D 
point clouds. This process labels the segmented point cloud data 
(Grilli et al., 2017). Since BIM is a primarily semantic model, 
classification is essential to generate data from 3D point clouds.
If the data from the classification is inconsistent, the unreliability 
of BIM data will also increase and potentially create errors in 
BIM applications.

Available 3D point cloud classification applications may be 
web-based (Day, 2020) or software-based (Pix4D, 2018). These 
applications are usually proprietary and do not publicly disclose 

their algorithms. Hence, users are not usually informed of the 
detailed methodologies of how classified datasets are generated 
and, correspondingly, how accurate the results are. With this, this 
paper aims to assess the accuracy of various point cloud 
classification applications and perform a comparative analysis 
based on specific evaluation metrics. The paper is organized as 
follows. The next section briefly discusses relevant studies, while 
the following section discusses the study's methodology. Then, 
the fourth section contains the results of the accuracy assessment. 
Finally, the last section summarizes and discusses future 
directions for this study. 

2. RELATED LITERATURE

BIM is essential in analyzing smart city infrastructures (MgBere 
et al., 2018). BIM is a technology that can represent 3D 
information models or 3D maps of an infrastructure project, 
aiding stakeholders in planning, designing, constructing, 
operating, and managing a facility in a timely and cost-effective 
manner. (Goyal et al., 2020). Point cloud data from LiDAR and 
classification and segmentation algorithms are used to generate 
such models to create reliable 3D virtual environments (Jaren & 
Arranz, 2021). 

Simultaneous Localization and Mapping (SLAM) is a method 
becoming more accepted in the field of mapping, as its 
localization feature has been vital in data gathering and 
positioning. The process SLAM uses is identifying an unfamiliar 
environment and localizing while referencing through a map. 
SLAM's objective is to update the position of the equipment 
while understanding its environment (Kuzmin, 2018; Sossalla et 
al., 2021).  

Three-dimensional point cloud data, which may be collected 
through SLAM, are prone to noise due to imperfections of the 
technology and data acquisition; denoising is one of the methods 
used to clean the 3D point cloud before further processing (Cattai 
et al., 2022). Additionally, there are noise points not at the 
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scanned surface called outliers (Landa, 2013). One data 
cleansing process applied for as-built modeling is through outlier 
removal, filling holes and gaps, and balancing its density 
(Rashidi and Brilakis, 2016). 

In point cloud data processing, segmentation and classification 
are the most essential processes since they extract the 
information needed for a specific application (Nygren and 
Jasinski., 2016). Segmentation is the process of identifying and 
grouping points into certain regions with the same attributes, 
while classification or semantic segmentation is the process of 
labeling the segmented data (Grilli et al., 2017). Classifying 
point clouds is considered one of the most helpful processes in 
performing structural analysis on buildings (Ntiyakunze & Inoue, 
2023). As buildings deform over time, overall life cycle 
assessments are crucial, especially with hazard assessments, and 
this could quickly be done through semantic segmentation (Zahs, 
2023). Aside from this application, proper model creation could 
also be generated through point cloud classification (Truong-
Hong et al., 2021).  

A study about a survey on deep learning-based segmentation, 
detection, and classification for 3D point clouds shows that one 
approach to 3D point cloud classification is deep learning. It is a 
classification type involving deep neural networks that assess 
and classify the points in a 3D space. This study surveyed the 
different deep learning classifications to evaluate the efficiency 
of these methods in creating a classification model. These 
models were created through training classification, where strips 
of 3D point clouds are used to gather information about a 
specific class and create a model. These models are then used to 
automatically classify raw data of a 3D point cloud 
(VinodKumar, 2023).  

Statistical metrics of precision and recall can be used to 
determine the accuracy of the classification process of the 3D 
point cloud data. Precision is the percentage of correctly 
identifying the classified points, while recall is the proportion of 
reference points that were classified correctly (Wang L. et al., 
2020). In a similar study about the supervised classification of 
point cloud data, the point cloud classification was assessed 
using precision, recall, overall accuracy, and F1-score. F1-score 
is the harmonic mean function of precision and recall, while 
overall accuracy is the percentage of correctly classified points. 
Results showed that different algorithms for classifying point 
cloud data produce different precision, recall rate, F1-score, and 
overall accuracy. It is important to remember that choosing the 
proper method and parameters will significantly impact the 
classification's accuracy (Atik et al., 2021). The resulting F1-
score is observed to be good if it is more than 50% and poor if it 
is not (Allwright, 2022a). For accuracy, the considered value 
deemed as good is to have more than 60%. Anything lower than 
that is determined to have poor accuracy (Allwright, 2022b). 
These thresholds were generalized values for F1-score and 
accuracy as a whole since there are no studies yet on what 
accuracy fits for structural assessment for BIM. 

In the accuracy assessment of 3D point cloud classification, it is 
essential to note that the overall accuracy is not enough to 
evaluate the performance of a classification method since it only 
gives the overall correctness of the classification method. In a 
study about training data minimization for 3D point cloud 
classification, their data shows that their overall accuracies are 
higher compared to the F1-scores. Even though their overall 
accuracy and F1-score are both acceptable, their value is still 
different (Morsy & Shaker, 2022). The difference in value is 
because accuracy and F1-score evaluate the classification model 

differently. F1-score considers how the data is distributed and is 
often used when the data is imbalanced. It also looks at false 
negatives critically compared to accuracy. For accuracy, it does 
not consider how the data is distributed, and it is often used when 
the data is balanced. Both accuracy and F1-score should exist in 
assessing the accuracy and performance of a classification 
method because they provide complementary insights into 
different aspects of the method's effectiveness (Zach, 2021).  

3. METHODOLOGY

Figure 1 illustrates the overall methodology of this study. We 
begin by collecting and denoising a SLAM-based LiDAR data in 
the study area and proceed with the classification using various 
point cloud classification software programs. We then analyze 
the accuracy of the results and compare the resulting accuracy 
metrics for each program. The following sections detail each step 
in this methodology. 

Figure 1. Methodological Framework 

3.1 Study Area and Data Collection 

The study area chosen is the National Institute of Molecular 
Biology and Biotechnology (NIMBB), a building in the 
University of the Philippines, Diliman. NIMBB provides an 
optimal site for the research's scanning process since the 
infrastructure does not have too many obstructions around it, 
making the objects easily distinguishable. The Foxtech SLAM 
100, a handheld mobile LiDAR laser scanner, was utilized in 
scanning the area. 

This study's scanning route will follow the existing pathway 
surrounding the study area. Figure 2 shows the path of the 
scanning proper. It was ensured that the route was in a loop 
closure and that there was a 15-meter overlap from the starting 
to the ending mark. The green arrows represent the direction 
followed during the scan, and the dashed blue lines represent the 
overlap done. During the scanning proper, there must be little to 
no moving entity in the scanning area, so there will be less noise 
in the gathered point cloud data. Moreover, before moving 
around the study area, the equipment requires a 60-second 
initialization time to scan the starting point of the scanning proper. 
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Figure 2. Scanning Route around the Study Area 

3.2 Data Processing

The scanned data were denoised in SlamGo Post Pro Software, 
the included application of the equipment. After denoising, the 
ground truth data was manually by annotating the surfaces of the 
3D point cloud. One process of manually labeling 3D point 
clouds is through the use of software that contains annotation 
tools that make use of volumetric shapes like cuboids, cylinders, 
spheres, and other free-hand annotation tools; data extracted 
from these annotation tools are Class name, Class ID, Instance 
ID, and several points (Ibrahim et al., 2021). In the study, the 
researchers used CloudCompare software to manually label the 
3D point cloud to obtain the ground truth data.    

Table 1 shows the different classification applications utilized 
and their access features. The classification model employed 
follows the ASPRS standard for point cloud classification, 
although there are some added features to some of the 
classification models. Additionally, deep learning classification 
was utilized for most applications except for VisionLiDAR. In 
Vision LiDAR, training classification was first done to create a 
model for the deep learning classification of the 3D point cloud. 

Table 1. Classification Applications Overview 

The automatic classification was done in Vercator, a web-based 
proprietary application. The process done by the application was 
to segment the 3D point cloud first, which pertains to grouping 
up points with the same attributes. Classification for deep 
learning was done in LiDAR360MLS, a software-based 
application. There were two processes done using VisionLiDAR. 
This first process used the manually classified data for training 
to create a classification model. The second process used a pre-
trained model already in the application for training. This 
generated a classification model based on the researcher's 
gathered data. In the training process using the manually 
classified data, the researchers divided the data into thirds, where 
one-third was used for validation, and two-thirds were used for 
training. 

3.3 Accuracy Assessment

A confusion matrix was used in the study to evaluate the 
effectiveness of the classification process for both the automated 
classified data and the ground truth data (actual value). In a 
classification model from a web-based and software-based 
application, the 3D point cloud data is subjected to different class 
predictions, which can be analyzed through the confusion matrix. 
The retrieved elements are the data predicted by the program of 
the application, and they contain points marked as True Positive 
(TP) (which are the correctly predicted classified data) and points 
marked as False Positive (FP) (which are the incorrectly 
predicted classified data). Outside the retrieved True Positive (TP) 
elements are the relevant data, also called False Negatives (FN). 
These are the true classified data that have been excluded from 
prediction. Lastly, True Negatives (TN) are correctly identified 
false classified data excluded from the prediction (Poux et al., 
2020). The results of the confusion matrix were further processed 
to assess the accuracy and performance of the classification 
process. 

Elements of the confusion matrix are used to calculate the 
evaluation metrics, Precision, Recall, F1-score, and Accuracy. 
These metrics are essential because they provide complementary 
insights into the effectiveness of the classification method of 
each application (Zach, 2021). These metrics are illustrated in the 
following equations. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

   (1) 

𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

  (2) 

𝐹𝐹1 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 2 × 𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅
𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+ 𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅

    (3) 

𝐴𝐴𝑃𝑃𝑃𝑃𝐴𝐴𝑃𝑃𝑅𝑅𝑃𝑃𝐴𝐴 = 𝑇𝑇𝐹𝐹 + 𝑇𝑇𝑇𝑇
𝑇𝑇𝐹𝐹 + 𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇

  (4) 

4. RESULTS AND DISCUSSION

Figure 3 shows the manually classified data, which was the basis 
for assessing the accuracy and performance of each classification 
model per application. The colors represent the different classes 
the researchers assigned to each part of the 3D point cloud. These 
classes were combined classes based on the ASPRS standard. To 
have an overview of how the researchers set these classes, here 
are the following definitions for each class is summarized in 
Table 2. 

ASPRS Point 
Cloud Class 

Description 

Vehicles Cars and Motorcycles 
Vegetation Medium and High Vegetation 

Unclassified Anything that is not within the study area, 
along with the human and vehicle 
movements in the 3D point cloud data 

Building The main building of NIMBB 
Manmade Fences, Street light poles, Signages, Utility 

poles, and Electrical wires 
Ground Low vegetation, Road surface, and Soil 

ground 
Table 2. Description of the classes used for classification 
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Since the different applications for classification have produced 
different classes for its classification, it was standardized based 
on the set classes of the researchers. All standardization 
processes were done manually in CloudCompare using its 
annotation tools. 

Figure 3. Manually Classified 3D Point Cloud 

Table 3 shows the confusion matrix formed from the automatic 
classification of Vercator. The values of the confusion matrix are 
the number of points of the correctly and incorrectly classified 
data for a particular class. Additionally, the zero values in the 
table mean that the class has not been subjected to incorrect 
classification. Table 4 shows the different accuracy metrics used 
to evaluate the performance and accuracy of the automatic 
classification of Vercator. The red and green highlights specify 
if the obtained data passed the threshold of 75% for each 
accuracy metric. The thresholds set for each accuracy metric 
mean that the classification method performed well in the data 
prediction of classes. 

Table 3. Confusion matrix for Vercator 

Table 4. Accuracy assessment computation for Vercator 

Based on the precision, the classification model of Vercator does 
not perform well in predicting which classes are relevant to the 
ground truth for Building and Unclassified (highlighted in red), 
resulting in an average precision of 63.8610%. For the recall, the 
classification model of Vercator does not perform well in 
predicting the Building, Vegetation, Manmade, and Vehicle 
classes (highlighted in red), resulting in an average recall of 
65.3537%. Now, for the F1-score, the classification model of 
Vercator has the best performance in predicting the data of the 
Vegetation, Ground, and Vehicle classes, as highlighted in green 
in Table 3. Due to the low performances in F1-score, it obtained 
an average of 43.2168%. Lastly, since the application predicted 
all classes well, the accuracy of prediction of these classes is 
good (highlighted in green), with an average accuracy value of 
85.3933%. 

The confusion matrix for Table 5 contains the data obtained from 
the deep learning classification of LiDAR360MLS, while the 
same accuracy metrics are used in Table 6 are employed to assess 
its accuracy. 

Table 5. Confusion matrix for LiDAR360MLS 

Table 6. Accuracy assessment computation for LiDAR360MLS 

As shown in Table 4, values of the precision metric is not 
performing well in predicting the classes relevant to the ground 
truth for Manmade, Vehicle, and Unclassified (highlighted in 
red), resulting in an average precision of 51.7525%. Its recall 
data does not accurately predict the classes of Vegetation, 
Ground, Vehicle, and Unclassified classes (highlighted in green), 
resulting in an average recall of 64.1588% (Xiang et al., 2017). 
Now, for the F1-score, the classification model of 
LiDAR360MLS performed well in predicting the data of the 
Building, Vegetation, and Ground classes. Due to the low 
performances in F1-score, it obtained an average of 46.6064%. 
Lastly, the accuracy of classification for the LiDAR360MLS is 
also considered good with an average value of 90.8187%. 

Shown in Table 7 is the confusion matrix formed from the 
classification generated by VisionLiDAR using the manually 
classified data for training, and different accuracy metrics used 
to evaluate the performance of the classification done by 
VisionLiDAR using the manually classified data for training are 
seen in Table 8. 

Table 7. Confusion matrix for VisionLiDAR (Model trained 
using manually classified data) 

Table 8. Accuracy assessment computation for VisionLiDAR 
(Model trained using manually classified data) 

The precision metric shows that the classification by 
VisionLiDAR did not perform well in predicting which classes, 
highlighted in red, are relevant to the ground truth for Manmade, 
Vehicle, and Unclassified classes, resulting in a low average 
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precision of 54.5292%. Correspondingly, the recall metric 
resulted in an average of 45.5540% which indicates that the 
classification model produced classes that were not relevant to 
the ground truth. Only one class, Ground, was in the range of the 
good recall rate and is highlighted in green. Nevertheless, the 
average recall was not considered to be in the range of an 
acceptable recall rate. The average F1-score is 46.7722% coming 
from the unsatisfactory performance of precision and recall in 
predicting some of the classes, specifically, the classes 
highlighted in red which are Manmade, Vehicle, and 
Unclassified. This F1-score result is not considered good. 
However, the average accuracy is 90.3138%, indicating that 
there is a high accuracy and is considered acceptable in the 
classification of VisionLiDAR using the manually classified 
data for training. 

The confusion matrix from the classification model formed by 
VisionLiDAR using a pre-trained model from the classification 
application can be seen in Table 9 and seen in Table 10 are the 
different accuracy metrics used to assess the classification done 
in the VisionLiDAR pre-trained model for training. 

Table 9. Confusion matrix for VisionLiDAR (Pre-Trained 
Classification Model) 

Table 10. Accuracy assessment computation for VisionLiDAR 
(Pre-Trained Classification Model) 

The precision metric showed that VisionLiDAR did not perform 
well in predicting which classes are relevant to the ground truth 
for the Manmade, Vehicle, and Unclassified classes. These 
classes are all highlighted in red. Using the installed model for 
training in VisionLiDAR still had an average precision of 
54.5688%. The recall metric also showed that VisionLiDAR did 
not perform well, averaging 46.0874%. The result indicates that 
the classification model produced classes irrelevant to the 
ground truth. The average F1-score is 47.2377% and is 
considered poor. This result is due to the unsatisfactory 
performance of precision and recall in predicting some of the 
classes. However, the average accuracy is 90.5329%, 
comparable to previous platforms’ results. 

Table 11 summarizes the resulting values of the metrics for the 
different classification applications used in this study. The 
precision and recall values of the classification model for 
Vercator, Lidar360MLS, VisionLIDAR manual, and pretrained 
classification produced values lower than 77.5%, which is an 
indicator that the classification method did not perform well in 
predicting which classes are relevant to the ground truth and in 
predicting the correct point clouds for each class. Since F1-score 
is the harmonic mean between precision and recall, the average 
values were also considered a poor score (Allwright, 2022a). 
Although the average accuracy of each classification application 

was deemed high, the F1-score proves it is a good metric for 
checking the overall performance of the classification model of 
Vercator, especially if the data is imbalanced. 

Table 11. Summary of accuracy assessment 

Taking the case of the LiDAR360MLS application, which 
produced values that are lower than 77.5% for precision and 
recall, which means that the classification method did not 
perform well in predicting which classes are relevant to the 
ground truth and in predicting the correct point clouds for each 
class. Its average F1-score is 46.6064%, which is considered a 
poor score for classification performance. However, the average 
accuracy of 90.8187% demonstrates a good level of accuracy in 
correctly predicting the classes. This further proves that relying 
solely on accuracy as a classification metric may not be entirely 
reliable. (Allwright, 2022b).   

Since most of the precision and recall values are low, the 
performances of the different classification models did not 
correctly predict the classes of the 3D point cloud. These low 
results produced poor F1-score values (Allwright, 2022a; Xiang 
et al., 2017). These results imply that the different classification 
models have their strengths and weaknesses, as seen in how they 
predicted the classifications of the researcher's 3D point cloud 
data. Vercator was able to efficiently assess the Vehicle class 
while for LiDAR360MLS, the Building class. Both the 
classification model based on the manually classified data and 
the pretrained classification model in VisionLiDAR assessed the 
Ground class effectively. These classes were the ones that had all 
the accuracy metrics highlighted in green from the tables, 
indicating the adequate classification done by the applications. 

In contrast with the other evaluation metrics, the accuracy of the 
classification applications is relatively high. This discrepancy 
between the accuracy and F1-score proves the need for both in 
evaluating the classification application. This contrast in results 
has been evident since some classes perform better than others 
on the various classification applications. Accuracy does not 
consider the false negative values and the data distribution, 
which the F1-score does (Zach, 2021). 
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