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ABSTRACT: 

The Philippines is recognized as amongst the natural resource-rich countries which has been evident in the influx of extractive 
industry investors, most specifically in the mining industry. An example of this is the case of mining sites in the municipalities of 

Carrascal, Madrid, and Cantilan (CMC) in Surigao del Sur region of the Philippines. In this region, development of mining areas was 

significantly noticeable in a span of seven (7) years since 2015. With this being an alarming case due to its possible negative impacts 

on the surrounding communities, this study developed an open-source monitoring system of mining activities using remote sensing 
technologies employing supervised image classification using the Random Forest algorithm. This study is mainly motivated by the 

need for a monitoring system to ensure responsible mining practices in the country, most especially since there has been an 

increasing global clamour for a more environmental-friendly and climate-sensitive and sustainable practices. The methodology 

developed for this study utilized a post-classification change detection approach in which multitemporal land cover (LC) models 
were produced to capture the land cover changes. To model the LC changes, land cover models for 2015 and 2022 were produced 

obtaining overall accuracies between 0.93 to 0.95, respectively. Using these models, changes due to mining development were 

delineated through a multitemporal overlay analysis approach. This change detection model obtained an F1-score of 0.93 indicating 

high accuracy and satisfactory performance of the model and consequently, the its potential as a mining site monitoring system to 
achieve the goal of ensuring responsible mining industry practice in the country. 

1. INTRODUCTION

The Philippines is one of the world’s major sources of gold, 

chromite, copper and nickel (Domingo, E. G. 1993; MICC, 
2022). In the 1970s, the mining industry has contributed to as 

much as 1.4 percent of the country’s gross domestic product 

(GDP) (MICC Policy Note, 2022).  Although, this is 

considerably minimal, at the regional level, the mining industry 
allowed some regions in the country to experience significant 

economic growth (MICC Policy Note, 2022). However, since 

the 1980s, a decline in the industry has been brought about by 

the country’s environmental sensitivity and awareness. A major 
government intervention was the suspension of 75 Mineral 

Production Sharing Agreements (MPSA) to protect the 

country’s major watersheds (MICC, 2022; Simeon, 2021; 

DENR).  The potential of the mining industry in the country is 
yet to be realized however, its impacts, most especially surface 

mining, on the people and the environment has to be addressed. 

This therefore necessitated an objective and science-based 

evaluation of mining operations (MICC, 2022; Madasa, 2021). 

1.1 Goals and Objectives 

To address the issues of mining industry, this study proposes the 

use of geospatial technologies, particularly remote sensing, to 
develop a monitoring tool. Remote sensing offers an efficient, 

scientific and inexpensive alternative to gain multi-temporal 

information about the Earth’s surface using satellite data. 

The objectives of this study are as follows: 

• Develop land cover models using machine learning to

characterize the study area;

• Explore the use of remote sensing derived geospatial

indices;

• Utilize post-classification change detection to identify

land over change due to mining activities

1.2 Significance 

In 2016, the Mining Industry Coordinating Council (MICC) was 
prompted to implement a more thorough evaluation of existing 

mine operations in the country after revealing from the DENR 

mine audit the violations of 30 out of 41 existing mines (MICC, 

2022). This led to supporting an objective and scientific 
approach to evaluate mining operations (MICC, 2022). 

Therefore, the development of a monitoring tool for mining 

activities using remote sensing could offer an efficient, 

scientific, timely and cost-effective approach to evaluate mining 
operations by gaining insights about the surface dynamics as 

detected by satellites. Moreover, various satellite data 

derivatives could help quantitatively assess the mining 

operations. 

1.3 Related Studies 

This project builds on the works of Madasa et al. (2021) whoh 

developed a remote sensing framework to assess land use and 

land cover changes brought about by the development of mining 
sites in South Africa. Their study however was focused in 

assessing the application of different geospatial indices in 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W8-2023 
Philippine Geomatics Symposium (PhilGEOS) 2023, 6–7 December 2023, Diliman, Quezon City, Philippines

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W8-2023-379-2024 | © Author(s) 2024. CC BY 4.0 License.

 
379



 

improving a land cover image classification model using 

Maximum Likelihood classifier (Madasa et al., 2021). With 

regards the geospatial indices, Normalized Difference Indices 
for vegetation (NDVI), water (NDWI), built-up (NDBI), soil 

(NDSI) and the Global Environmental Monitoring Index 

(GEMI) were assessed in their study to help in discriminating 

general land cover types such as vegetation, water, built-up and 
soil features which resulted in land cover models accuracies 

from 88% to 96% (Madasa et al., 2021). Although the study of 

Madasa et al. produced high accuracy values, this study aims to 

develop it further by utilizing current machine learning 

techniques. 

The study of Fargas et al. (2021) which developed an agri-urban 

land conversion monitoring using post classification change 

detection technique was also adopted in this study. Their study 
utilized Random Forest algorithm to produce LULC maps of 

their agriculture-dominant area for 3 different years and agri-

urban conversion was then segmented through a boolean 

filtering approach between the pre- and post- LULC models 
(Fargas et al., 2021). The boolean filtering process identified 

pixels classified as agricultural from the pre LULC model 

which were then compared to their corresponding class in the 

post LULC model (Fargas et al., 2021). Pixels which 
transitioned from agriculture to either built-up or bare soil were 

segmented and identified as agri-urban conversion (Fargas et 

al., 2021). 

With regards the use of machine learning for land use and land 

cover mapping applications, machine learning algorithms such 

as Random Forest and Support Vector Machines (SVM) are 

generally utilized. In the study of Talukdar et al. (2020), 

machine learning algorithms for image classification were 
tested which resulted in Random Forest (RF) obtaining highest 

accuracy of 0.89 which suggests that it is the best LULC 

classifier. Moreover, aside from being non-parametric and 

flexible to highly dimensional data, RF could produce 
consistent accuracies compared to other algorithms (Talukdar et 

al., 2020; Torbick et al., 2016; Pelletier et al., 2016; Fargas et 

al., 2021). However, in the study of Basheer et al. (2022), SVM 

was reported to perform better than RF in terms of overall 
accuracy. 

 

 

2. METHODOLOGY 

2.1 Study Area 

The CMC Mining Sites in Surigao del Sur experienced 

significant expansion of the existing mining tenements in the 

region. This area is covered by the municipalities of Carrascal, 
Madrid and Cantilan in the province of Surigao del sur. In these 

municipalities, Mineral Production Sharing Agreements 

(MPSA) were granted to three nickel mining corporations, the 

Carrascal Nickel Corporation, Marcventure Mining and 
Development Corporation (MMDC) and the Madrid Surigao del 

sur Nickel Mining Corporation. 

The case of CMC Mining Sites is found to be a suitable case for 

this study due to the environmental issues which can be found 
in the region such as the overlapping of MPSA tenements with a 

National Integrated Protected Area Systems (NIPAS) in 

Surigao, as well as the adjacency of the mining sites to 

agricultural lands and to resource-rich coastal areas.   

 
Figure 1. CMC overlaid with existing mining tenements 

obtained from MGB’s mining tenements control map and 

NIPAS obtained from NAMRIA’s Geoportal. 

Moreover, inspecting the study area in Google Earth Pro, it can 
be seen that there was significant change in the area due to 

mining expansion in the last seven years which should be 

subjected to active monitoring given its possible implications to 

its surrounding ecosystems. 

 
Figure 2. High resolution satellite images of the study area for 

2015 and 2021. 

2.2 Data  

This study used 2015 and 2022 Landsat 8 images covering the 

study area. Annual cloud-free images were produced by 

masking out cloud-covers from the images and mosaicking all 

images by computing the median value at pixel level.  

Aside from optical images, the Shuttle Radar Topography 

Mission (SRTM) Digital Elevation Model (DEM) was also used 

to derive elevation and slope data to account for the study area’s 

topography. 

Table 1 shows a summary of indices used in this study which 

were mainly adopted from the study of Madasa et al., (2021). 

Index Equation 

NDVI (NIR – Red) / (NIR + Red) 

NDWI (Green – NIR) / (Green + NIR) 

NDBI (SWIR – NIR) / (SWIR + NIR) 

BSI ((Red + SWIR) - (NIR + Blue)) / ((Red + 
SWIR) + (NIR + Blue)) 
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GEMI Xi = ((NIR^2 - Red^2) * 2 + (NIR * 1.5) + 
(Red * 0.5)) / (NIR + Red + 0.5).  

 

GEMI = Xi * (1 - (Xi * 0.25)) - ((Red - 

0.125) / (1 - Red)) 

Table 1. Summary of equations of geospatial remote sensing 

indices. 
 

2.3 Image Classification 

Random Forest (RF) algorithm was used due to its flexible 

nature allowing it to handle non-normalized and high 
dimensional data (Fargas et al., 2021; Pelletier et al., 2016). 

Moreover, the algorithm can provide insight about variable 

importance which would help in better assessing the different 

geospatial indices used in this study. 

 
Figure 3. Land cover modelling methodology using Random 

Forest classifier. 

Figure 3 shows a flow chart of the methodology for this study 

which simply follows a straightforward image classification 

process using Random Forest classifier. A significant feature of 

this method, however, is the stacking of spectral bands, 
geospatial indices, elevation and slope data into one variable 

which aims to improve the classification framework of Madasa 

et al. (<year>) by creating a variable which are supposed to 

capture the differences of the different land cover features. 

With regards the training of a classifier, train and test pixels 

were selected using both the before and after mining 

development Landsat images in Google Earth pro. ‘Unchanged’ 

areas were mainly sampled to ensure that spectral responses 
were consistent. 200 pixels per class were sampled which were 

then divided into train and test set. 70% and 30% distribution 

were used for train and test, respectively. 

Although in most studies it is suggested to pool a large number 

of train pixels to ensure model accuracy, to optimize the 

workflow, the study of Foody and Mathur in 2004 was followed 
in which they argued that it is not necessary to select a huge 

training size. In fact, their study found out that machine learning 

algorithms, such as SVM, are capable of learning from a limited 

number of training pixels. In their study, out of 150 train pixels, 
only 37 pixels were used to delineate hyperplanes which act as 

boundaries to differentiate one class from another (Foody and 

Mathur, 2004). 

 
 

3. RESULTS AND DISCUSSION 

One of the objectives of this study is to implement the method 

using an open-source platform to ensure the accessibility of the 
developed framework for possible future use. In this case, 

Google Earth Engine (GEE) was used to access the data and to 

implement the methodology of this study. GEE is an open-

source platform which has access to repositories of different 
open-source satellite data such as Landsat, Sentinel and MODIS 

(Gorelick et al., 2017). It also has built-in remote sensing 

functions which can be implemented to automate remote 

sensing processes (Gorelick et al., 2017). 

3.1 Cloud-free Composite Images 

For this study, annual cloud-free composite for years 2015 and 

2022 were produced using GEE. The following figure shows the 

produced cloud-free images. These images were produced by 
collecting a year worth of Landsat 8 images covering the study 

area. The image collection was then subjected to cloud-masking 

using Landsat’s QA pixels to segment cloud covers. After 

which, the image collection was aggregated into one image 
using the median function which selects the median cloud-free 

value at pixel level producing a cloud-free composite image of 

the study area. 

 
Figure 4. Annual cloud-free composite of CMC region using 

Landsat 8 Image collections for 2015 and 2022. 

3.2 Land Use Land Cover Models 

Figures 5 and 6 show the LULC models for years 2015 and 
2022 respectively. The selected land cover classes for this study 

include cropland, bare soil, built-up, forest, grassland and water 

features. Croplands in this case include cultivated and 

uncultivated areas. Grasslands pertains to both grasslands and 
shrublands. For bare soil, it includes open barren areas and 

mining sites. 

The following tables summarize the overall, kappa, producer 

and users’ accuracies for each model which were computed 

from the confusion matrix derived in GEE. 
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Figure 5. The 2015 land cover distribution in the CMC Region. 

 
Figure 6. The 2022 land cover distribution in the CMC Region. 

Based on the test data, the models have significantly high 
overall accuracies and kappa statistics ranging from 0.93 to 

0.95. The producer and user accuracies also obtained high 

values. Among the classes, the model had most difficulty 

classifying built-up features obtaining lowest producer and user 
accuracies of 0.86 and 0.88 respectively for both years. 

Although the values are still sufficiently high. This implies that 

the trained models were able to sufficiently differentiate the 

land cover classes set for this study. 

Model Overall Accuracy Kappa Statistics 

2015 0.94 0.93 

2022 0.95 0.93 

Table 2. Overall accuracy and kappa statistics of the land cover 
models. 

 

Producer’s Accuracy 

 2015 2022 

Cropland 0.98 0.98 

Bare Soil 0.92 0.95 

Built-up 0.95 0.86 

Forest 0.93 0.93 

Grassland 0.89 0.98 

Water 0.98 0.98 

Table 3. Producer’s accuracy of the land cover models. 

 

User’s Accuracy 

 2015 2022 

Cropland 0.97 0.98 

Bare Soil 0.97 0.97 

Built-up 0.88 0.93 

Forest 0.90 0.95 

Grassland 0.95 0.90 

Water 0.98 0.95 

Table 4. User’s accuracy of the land cover models. 

 
Figure 7. Bare-soil classified as built-up. 

 
Figure 8. Cropland classified as grassland. 

However, while the results of the confusion matrix for the 2015 
and 2022 models suggest that they are considerably accurate, 

there were still misclassifications in the classified images which 

can be noticed through visual inspection. The previous figures 

show some examples of misclassifications especially for cases 
between bare soil and built-up and between cropland and 

grasslands. 

Confusion in classifying these classes is mainly explained by 

their high similarity in spectral response and visual 
characteristics. Built-up and bare soil, specifically gravel-

dominant areas have almost identical responses. Croplands on 

the other hand, depending on the season may look similar to 

either grasslands or bare soil features. Nevertheless, land cover 
classification models developed using Random Forest produced 

considerably high results. 

3.3 Separability Analysis 

For this section, separability of the different land cover features 
is assessed based on the train pixels collected spectral and 

geospatial index information. The following graphs are 

collection of the box plots for each land cover class for each 

variable used in the LULC modelling.  

Using spectral bands only, water and forest features are easily 

separable. For the other classes, significant overlap was found 

between built-up and bare soil and between cropland and 

grasslands. Among these classes, built-up class has the widest 
spectral response range in the RGB bands due to the wide range 

of colour characteristics of built-up features. 
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Figure 9. Comparison of responses per class per spectral band 

using the train data summarized using boxplots. 

The significant overlap between most of the land cover classes 

highly suggested the use of derived variables such as geospatial 

indices. With that, five indices were explored in this study, 

NDVI, NDWI, BSI, NDBI and the GEMI. 

 
Figure 10. Comparison of geospatial index value per class 

using the train data summarized using boxplots. 

Among these indices, GEMI and NDVI were able to 

discriminate the four confusing classes. In terms of separating 

croplands from grasslands, GEMI exhibited best performance. 

NDVI on the other hand have shown similar capabilities in 

terms of discriminating bare soil and built-up features. 

 
Figure 11. Variable importance graphs for the 2015 (top) and 

2022 (bottom) land cover models. 

 
Figure 12. Variable importance graphs for the 2015 (top) and 

2022 (bottom) land cover models. 

Consistent to the findings of separability analysis are the 

contributions of GEMI and NDVI to the Random Forest image 
classification models. Figures 11 and 12 show that for both the 

2015 and 2022 models, GEMI and NDVI performed better 

compared to the other indices. NDBI, NDWI and BSI were 

ranked among the lowest implying their low contribution to the 
models. GEMI and NDVI are among the top 10 variables which 

had significant contributions to the image classification process. 

3.4 Change Detection Analysis 

After generating the LULC models of the study area for 2015 
and 2022, a change detection map was produced to indicate 

changes due to mining expansion. The red regions shown in the 

following map indicate converted vegetated lands to mining 

lands. 

To delineate changes which were brought about by mining 

expansion, changes from vegetation to bare soil was set as the 

phenomena’s main indicator for this study. By identifying areas 

which were converted from vegetation to bare soil, the 
researchers were able to produce a change detection map that is 

supposed to model the changes brought about by the 

development of the mining sites in the region. 

This result was assessed using a confusion matrix as well. 100 
pixels were sampled for changed areas and another 100 pixels 

were sampled for unchanged areas which were used to detect 

true and false positives and true and false negatives. 
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Figure 13. Change detection map of Carrascal, Madrid and 

Cantilan from 2015 to 2022. 

The following confusion matrix summarized the accuracy of the 
detected changes produced from the multi-temporal LULC 

models. For this study, the unchanged region was limited to the 

mining tenement regions only as this implies likeliness of 

experiencing land cover change. 

Based on the confusion matrix, the change detection map was 

able to sufficiently identify land cover changes brought about 

by the development of mining sites in the area with an overall 

accuracy of 0.94. User and producer accuracies ranged from 

0.88 to 0.99 indicating high capability to detect land cover 

changes. 

 Test Data 

C
la

ss
if

ie
d
  Changed 

No 

Change 

User's 

Accuracy 

Changed 88 12 0.88 

No Change 1 99 0.99 

Producer's 
Accuracy 

0.99 0.89 0.94 

Table 5. Change detection accuracy matrix. 

The F1-score for change detection was also computed using the 

model’s precision and recall which mainly pertain to the 

Changed class user and producer accuracies respectively. The 

model obtained an F1-score of 0.93 

3.5 Land Cover Change Analysis 

  2015 2022 

Diff. 
Class 

Area 

(ha) 
% 

Area 

(ha) 
% 

Croplands 4505.19 7.64 5,430.82 9.21 1.57 

Forest 37444.00 63.50 35,500.00 60.26 -3.25 

Water 992.39 1.68 872.63 1.48 -0.20 

Built-up 552.80 0.94 500.40 0.85 -0.09 

Grassland 12530.98 21.25 12,700.00 21.53 0.28 

Bare soil 2938.84 4.98 3,935.87 6.68 1.69 

Table 6. Land cover distribution values for 2015 and 2022. 

 
Figure 14. Land cover distribution for 2015 and 2022 in CMC 

region. 

The land cover models of 2015 and 2022 captured the increase 

in bare soil which is mainly due to the development of mining 
in the area. Within 7 years, almost 1,073 hectares of vegetated 

areas were mined and converted to bare soil which indicated 

mining expansion. 

Aside from this, a noticeable change was the decrease of forest 
distribution which may be explained by the increase in 

classification of forest as grasslands. 

The increase and decrease in distribution of croplands and built-

up, respectively can be attributed to the misclassification 

between croplands and grasslands and between bare soil and 

built-up features. 

 
Figure 15. Palay production trend graph of Surigao Del Sur 

from 2002 to 2022 obtained from PhilRice Palay Stat website 

(https://palaystat.philrice.gov.ph/). 

Looking at the possible impacts of this change, rice production 
data for Surigao Del Sur from 2002-2022 was obtained from the 

Palay Stat website of PhilRice. From 2015 to 2022, a decrease 

in rice production was observed. This may be attributed to the 

significant increase in mining activity in the province although 
it would require further studies since the trend in croplands 

indicates otherwise. 

From 2015 to 2022, there is an observed increase in the 

distribution of croplands however, this may not accurately 
represent the actual use of land since this study uses one image 

for a year only and croplands may exhibit variability within a 

year. Using a single image only to model such land use is 

indicative and is susceptible to misclassification of croplands as 
either bare soil or grassland, and vice versa which could explain 

the distribution trend between 2015 and 2022. 
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4. CONCLUSION 

This study was able to develop a monitoring system using open-

source technology for change detection about brought by 
mining development. For the satellite imagery, Landsat 8 

images were utilized for land cover modelling and 

representation. Google Earth Engine, an open-source remote 

sensing platform, was also leveraged in this study proving the 

possibility of an accessible monitoring system which can be 

used by the authorities (Gorelick et al., 2017). 

With regards the land cover change modelling, multi-temporal 

land cover maps were generated using Random Forest 
approach. Although the generated maps were susceptible to 

misclassifications especially between bare soil and built-up and 

between croplands and grassland, which are mainly attributed to 

the high spectral response similarity between these classes, the 
multi-temporal models were still able to capture the changes 

due to mining development in the region. 

Moreover, indices such as NDVI, NDWI, NDBI, BSI and 

GEMI were included in the generation of land cover maps. 
Among these geospatial indices, NDVI and GEMI have shown 

good performance in terms of contribution in the land cover 

modelling. In discriminating ambiguous features, both indices 

were also able to separate croplands from grasslands and built-

up from bare soil. 

Overall, the study showed potential in terms of developing a 

monitoring system for mining sites. Land cover change analysis 

can therefore be implemented using machine learning and open-
source remote sensing data. 

 

 

RECOMMENDATIONS 

The main challenge encountered in this study was 

discriminating ambiguous features such as croplands, 

grasslands, bare soil and built-up. For croplands, generally, the 

use of land for agricultural purposes can be challenging to 
capture most especially when using a single image analysis such 

as the case of this study. Integration of a multi-temporal dataset 

to capture phenological properties of land cover classes can be 

implemented to further improve discrimination of such land 
cover class. The use of SAR data, which is cloud penetrating, 

therefore not susceptible to cloud covers, can be modelled in 

such a way that it is capturing phenological characteristics of 

surface features. 

With regards to remotely sensed data, aside from Landsat 8, 

Sentinel 2 MSI is another open-source satellite imagery which 

has higher spatial and temporal resolution. Creating cloud-free 

composites may be better with the use of Sentinel 2 data for 

more recent analysis. 

Lastly, since a multi-temporal analysis is being implemented in 

this study, relative calibration of images could also be 

implemented such as histogram matching. This way, the 
monitoring system can be made more robust and adaptive to 

localize implementations. 
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