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ABSTRACT: 

The development of remote sensing for coastal and marine environment mapping has significantly enhanced our understanding of these 

ecosystems, enabling improved mitigation strategies against the impacts of human activities. However, remote sensing must consider 
the complex interplay of the atmosphere and water column. Ongoing research focuses on refining water column correction techniques, 

including Depth Invariant Indices (DII), Radiative Transfer models, and bathymetry models. This study specifically aims to enhance 

the Stumpf's Ratio model (SRM) for bathymetry by employing the Random Forest (RF) machine learning regression algorithm. The 

resulting bathymetry model, which incorporates visible bands from a Sentinel-2 MSI image, and their Stumpf's ratios, outperforms 
other methods, yielding the highest accuracy with RMSE and R2 values of 1.25 m and 0.854, respectively. This was followed by the 

multivariate SRM with RMSE and R2 values of 2.196 m and 0.554 respectively These findings demonstrate the promising potential of 

using RF machine learning regression with SRM for bathymetry modelling. 

1. INTRODUCTION

An important factor to understand coastal and marine ecosystems 

is their morphological characteristics. Aside from simply 

knowing the resources which are found in such ecosystems, 

understanding their morphological dynamics in terms of 

geospatial context allow further comprehension and analysis not 

just of their interrelationship within their environment but also 

with respect to the adjacent terrestrial environments. In this 

regard, the increasing anthropogenic effects necessitates better 

understanding of marine environments in order to develop 

effective mitigation measures to ensure not just their well-being 

but also of the terrestrial environment. With this, resource 

mapping plays an important role.  

Mapping of marine resources is generally done through 

exhaustive and expensive surveys such as transect and manta 

tow. However, with the development of Earth observation 

satellites which have the capability to capture the Earth’s surface 

including those beneath shallow coastal regions, remote sensing 

has been long considered an alternative due to it being effective. 

But it is undeniable that mapping marine environments using 

remotely sensed data is rather challenging mainly due to the 

sensor limitations and the variable effects of both the atmosphere 

and water column attenuation thus the ongoing attempts of 

improving its use. 

The main consideration when mapping marine resources using 

remote sensing techniques is the correction of the effects of water 

column attenuation. Due to the water acting as a medium which 

light has to pass through before going back to the sensor, 

information about the surface beneath is heavily attenuated. 

Because of this, different techniques of modelling the effects of 

water column are being developed and explored such as Depth 

Invariant Indices (DII) by Lyzenga, Radiative Transfer models, 

and bathymetry models (Tamondong et al, 2014). 

 

Lyzenga’s DII addresses the effects of the water column by 

normalising spectral response values of pixels relative to a 

reference depth thus extracting reflectance or radiance values of 
specific bottom features at shallow and deep regions (Lyzenga, 

1978). Using spectral information at these depths, an attenuation 

coefficient is linearly estimated from the absorption properties of 

the spectral bands using a regression technique which is then used 
to fit the spectral values for the other pixels (Lyzenga, 1978; 

Tamondong et al, 2014). This method however is dependent on 

the bottom type based on their albedo. Due to this, following this 

method would require generating different sets of DII for 
different bottom classes (Lyzenga, 1978). Moreover, this method 

relies on the clarity of the water making it susceptible to variable 

water conditions (Lyzenga, 1978; Tamondong et al, 2014). 

Radiative Transfer Model requires the diffuse attenuation 

coefficient in order to model the propagation of light from the 

surface, down to the bottom and back to the surface (Maltese et 

al, 2008; Tamondong et al, 2014). This method is based on the 
idea that the reflectance value observed at the surface of the water 

is the combined attenuated reflectance of the bottom feature and 

the diffuse reflectance due to the water column (Maltese et al, 

2008; Tamondong et al, 2014). In this regard, in situ information 
about the diffuse attenuation coefficient is therefore required to 

model the water column corrected spectral reflectance of bottom 

features hence the in-situ irradiance measurement in the study of 
Tamondong et al (2014). 

For bathymetry models, the Stumpf’s Ratio Model (SRM) has 

become a commonly used method. Unlike DII and radiative 
transfer, this method was developed to estimate water depth by 

correlating it to the spectral reflectance values (Stumpf et al, 

2003). This method assumes a linear relationship between the 

ratio of the log-transform of high and low absorption bands and 
the water depths. Although this method follows the same 

principle as DII, using the ratio of the high and low absorption 

bands allowed this model to be less susceptible to bottom feature 
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and water condition variability (Lyzenga, 1978; Stumpf et al, 

2003; Tamondong et al, 2014). 

 
In Tamondong et al. (2014) which compared these three methods, 

it was found out that SRM is an effective and efficient water 

column correction method. Although the radiative transfer model 

produced the best results based on their study, it required 
extensive in situ data collection of water irradiances at different 

water depths whereas bathymetry only required a sufficient 

sample of water depths for the modelling process (Tamondong et 

al, 2014). DII produced the lowest accuracy among the three. 
Aside from being computationally sophisticated, the method is 

susceptible to bottom variability requiring creation of different 

sets of DII for every benthic feature thus making it 

computationally expensive as well (Tamondong et al., 2014). 
Among these three, bathymetry as a water column correction is 

therefore highly suggested. 

 

 
2. RESEARCH BACKGROUND 

 

In Tamondong et al. (2014), the Stumpf’s ratio model (SRM) was 

used to create a bathymetry model which was added to the 
benthic classification process as an additional water variable. 

However, this model can be considered limited due to it being 

linear only. In this regard, this study aims to improve the model 

by utilising machine learning techniques in the modelling 
process. This goal will be implemented through the following 

objectives: 

 

● Generate bathymetry model using different variations of 
linear regression including multivariate and SRM. 

● Develop bathymetry using machine learning, specifically 

Random Forest regression technique. 

● Implement comparative analysis of the generated 
bathymetry models using RMSE and R2 values. 

 

By improving SRM for bathymetry modelling, this study will not 

only create an alternative water depth estimate which can be used 
in navigation and fishing but ultimately, it will contribute in the 

development of an accurate water column correction model 

alternative which can be used to enhance the study of marine and 

coastal ecosystems.  
 

 

3. DATA AND METHODS 

 

3.1 Study area and data 

 

The bathymetry data of Bolinao, Pangasinan, composed of 2,293 

points measured using a Lowrance single-beam echosounder in 
Tamondong et al. (2014) was used in this study. For the satellite 

data, Tamondong et al., (2014) used a Worldview-2 image, a 

commercial high-resolution image having a spatial resolution of 

1.84m. In this case however, a Sentinel-2 MSI image was used 
instead to explore as well its capability given that it is open-

source. According to Hedley, et al., Sentinel-2 MSI serves as a 

better alternative to other open-source satellite images for coastal 
remote sensing applications with its relatively higher spatial 

resolution of 10m, more frequent repeat-cycle and narrower band 

widths making it more capable at capturing benthic features 

(2018).  
 

Google Earth Engine (GEE) was used for processing the images 

mainly due to it being a cloud-computing platform. The Sentinel-

2 MSI image used in this study was also obtained using GEE 
since it has access to petabytes worth of open-source Earth 

observation data including Landsat and MODIS as well (Gorelick 

et al, 2017). An advantage of using GEE is that the users have the 

option to access pre-processed optical images such as the case for 
the Sentinel-2 MSI scene used in this study which was pre-

processed using the Sen2Cor preprocessing toolbox (Gorelick et 

al, 2017). Moreover, various remote sensing tools and functions 

are already available in GEE making it a considerably stand-
alone remote sensing tool (Gorelick et al, 2017). 

 

 
Figure 1. Bolinao, Pangasinan overlaid with points representing 

bathymetric measurements using a single-beam echosounder. 
 

The use of GEE was further leveraged in this study by using the 

GEEMAP, a Python-based API allowing usage of GEE products 

and functions using Python. This was then integrated with 
Python-based data analytics libraries such as Numpy, Scikit-

Learn and Pandas which enabled regression and machine 

learning implementations. 

 
3.2 Methodology 

 

The main goal of this study is to improve SRM by using machine 

learning regression, specifically using Random Forest (RF). RF 
is a robust nonparametric machine learning algorithm which is 

flexible at handling multi-dimensional and non-normalized data 

(Breiman, 2001). This algorithm is used in this study due to its 

capability for regression analysis. Moreover, its nonparametric 
nature based on decision trees could better model the relationship 

between spectral response and water depth compared to linear 

models. Comparing with other machine learning models, RF is 

capable of generating precise outputs allowing it to produce 
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robust, consistent and more accurate models compared to other 

algorithms such as Support Vector Regression (SVR) and 

Artificial Neural Networks (ANN) (Zhou et al., 2016). 
SRM is shown in equation 1. Generally, this is applied to blue 

and green bands due to their penetrability to coastal environments 

compared to red band which is easily scattered and therefore 

diffused by the water media. However, there are studies which 
utilized the red band as well (Stumpf et al., 2003; Caballero & 

Stumpf, 2019). 

 

𝑆𝑅𝑀 = 𝑎 ∗ [
log(𝑏1)

log(𝑏2)
] + 𝑐                                    (1) 

 

Where: 

 
a = value of slope resulting from the linear regression; 
b1 = spectral reflectance of lower absorption 
b2 = spectral reflectance of higher absorption 
c = intercept resulting from the linear regression 

 

Other empirical methods which are linear in nature were also 

implemented in this study such as multivariate regression model 
which is a straightforward linear regression analysis between the 

RGB bands of the Sentinel-2 image, multivariate SRM regression 

which is similar to the previous but following SRM and lastly, Li 

et al.’s automatic global shallow water bathymetry (Li et al, 2021; 
Evagorou, et al., 2022). The multivariate linear regression of 

visible bands and the multivariate regression using SRM were 

included to also demonstrate the capabilities of the different 

visible bands for bathymetry. 
 

Li et al. 's implementation of a satellite-derived bathymetry 

simply follows SRM which was modelled using in situ water 

depth data obtained from six globally diverse coastal sites (Li et 
al, 2021). This study produced RMSE values ranging from 1.2 m 

to 1.9 m suggesting its applicability around the world. 

The methodology of this study is a straightforward regression 

analysis to develop a bathymetry model using the in-situ water 
depth data and the RGB bands of the Sentinel-2 MSI image 

following different empirical models as listed below: 

 

● SRM using green and blue bands only 
● Multivariate SRM using red, green and blue bands 

● Multivariate linear regression using red, green and blue 

bands 

● Li et al.’s automatic global shallow water bathymetry 
● Multivariate regression of spectral reflectance (RGB) and 

SRM (B/R, G/R, and B/G) using RF machine learning 

regression 

 
Figure 2 shows the general workflow of this study. The flowchart 

is a generic framework applied to the different models 

implemented in this study. The case of Li et al.’s model however 
did not include training but simply proceeded to validation. 

 

3.3 Image processing in GEE 

 

Using the Earth Engine library, an image collection of Sentinel-

2 was accessed which was filtered by date and using a geometry 

which bounds Bolinao, Pangasinan. Land features were then 

masked out using Hansen et al. ‘s, Global Forest Change dataset 
land mask of 2015 which was also available in GEE’s cloud 

repository. After masking, logarithmic-ratios of the visible bands 

were then derived, adopting the SRM (Stumpf et al., 2003). A 

new stack was created consisting of 6 variables, the visible bands 
and their logarithmic-ratios. After this, spectral and logarithmic-

ratio values were sampled using the bathymetry point data in .csv 

format - which is composed of a total of 2293 samples 

surrounding the whole Bolinao island as shown in the following 
figure - using GEE’s ee.Image.sampleRegions() method. This 

generates a collection of features having additional attributes 

extracted from an image, in this case the newly created stack. 

This feature collection was converted to a dataframe for the 
regression analysis which was done mainly using Numpy and 

Scikit-Learn’s LinearRegression() method. For the machine 

learning model, GEE also includes a set of machine learning-

based image classifiers such as RF which was used in this study. 
 

 
Figure 2. General framework for bathymetry modelling applied 

to different the linear and machine learning models. 

 
3.4 Accuracy assessment 

 

For the accuracy assessment of the generated bathymetry models, 

Root Mean Square Error (RMSE) and the coefficient of 
determination (R2) were computed using statistical aggregation 

and linear fitting respectively. The RMSE was used to indicate 

the models’ accuracy and precision as it computes for the mean 

residual between the true and modelled measurements. The R2 on 
the other hand was used to compare the model and the true values 

by measuring their fit on a scatter plot. Furthermore, these two 

indicators were computed from two sets of data, first is the 

training dataset which is 70% of the total number of data and 
second is the validation dataset which is 30% of the total 

bathymetry points. 

By assessing the accuracy of the model based on the training 

dataset, model performance can be assessed in terms of how well 
it is able to correlate the independent variables from the 

dependent variable, in this case the spectral reflectance and water 

depth respectively. Assessing the accuracy using a separate set of 

ground truthed data will provide insight as to how the produced 
model will hold true when applied to a different set. This is done 

to show as well if the model created is applicable to a different 

set of data which is not known to the model. 

For the machine learning model however, hyperparameter tuning 
was not included in the scope of this study. Aside from the 
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number of trees, which was set to 1000 for this study, other 

parameters were set to default values only. 

 
 

4. RESULTS AND DISCUSSION 

 

4.1 Correlation of water depth and Surface Reflectance and 

SRM 

 

When comparing the correlation of water depths with surface 

reflectance values only and SRM values, the latter produced 
better results having correlation values which are approximately 

67% better than that of the surface reflectance values only. The 

multivariate linear model only correlated the spectral reflectance 

per band with the water depths which failed to address the 
exponential decrease of light penetration in water bodies as the 

depth-increases (Stumpf et al, 2003; Tamondong et al, 2014). 

Unlike spectral reflectance only, using the logarithmic-ratio of 

two bands or the SRM as suggested by Stumpf et al. is able to 
normalise that non-linear relationship between depth and the 

spectral reflectance producing a linear-like correlation thus 

reducing the RMSE and resulting in a better model fit (2003). 

This linear-like relationship can be inferred from figure 3 which 
shows a comparison of the scatter plots of the reflectance and 

SRM values to the water depths. This linear-like trend is most 

noticeable using the SRM for blue and green bands. 

 

 
Figure 3. Scatter plots comparing reflectance values (left 

column) and logarithmic-ratios of the reflectance values (right) 

and water depth. 

 
In figure 3, the scatter plots for SRM vs water depths showed 

clustering of samples as bounded by the red ellipse which have 

linear relationship; however, there is a secondary clustering that 

can be extracted from the plot bounded by the orange ellipse 
which is relatively lesser than the previous. This can be attributed 

to the variable bottom features in terms of albedo (Lyzenga, 

1978; Stumpf et al, 2003). This is most prominent in the band 

ratios with the red band due to its low penetrating capability 
unlike blue and green bands (Lyzenga, 1978). Although the use 

of blue and green bands reduced this non-linear characteristic due 

to variable bottom features, table 1 summarizes the different R-

square values produced when fitting non-linear models such as 
logarithmic, exponential and quadratic functions. Based from the 

table, non-linear models such as logarithmic and quadratic 

models produced better fit between SRM and water depths 

compared to linear models even when using the SRM for blue 
and green bands. This therefore suggests the use of non-linear 

approach in modelling water depths when using remote sensing 

data thus this study’s attempt to analyse the applicability of a 

machine learning technique. 
 

Looking at the R-square values for surface reflectance of the 

visible bands and water depths, the generally low R-square values 

indicate low correlation between the two variables. This implies 
that the use of empirical models with surface reflectance values 

only is significantly inferior to SRM. 

  
R^2 

Linear Logarithmic Exponential Quadratic 

R 0.1123 0.2739 0.1297 0.2976 

G 0.0702 0.061 0.0695 0.0712 

B 0.0149 0.0011 0.0144 0.0512 

B/R 0.2072 0.5613 0.1722 0.58 

G/R 0.0998 0.4143 0.0842 0.51 

B/G 0.2935 0.3555 0.2885 0.3246 

Table 1. Non-linear fitting of water depth values with surface 

reflectance and SRM values. 

 

4.2 Random Forest-derived bathymetry 

 

Comparing the RMSE and R-square values of the different 

models developed in this study, RF produced superior results 

with RMSE of 1.26 m using the validation dataset. This implies 

that RF was able to best minimise the error of the model 

compared with the other models. The RMSE of the RF model is 

51% less than the mean RMSE of the three linear models, not 
including the model of Li et al (2021). As for the linear fit of the 

modelled and actual values, the RF model produced an R-square 

value of 0.85 which does not only show strong fit between the 

model and the true values, but it is also 56% greater than the other 
three linear models. Based on these results, there is a significant 

improvement in the model when using RF. 

Table 2. RMSE and R-squared values obtained using various 
models. 

Model 
Training Dataset Validation Dataset 

RMSE R-squared RMSE R-squared 

Multivariate 

Linear Model 
2.53 0.29 2.81 0.27 

SRM (B/G) 2.56 0.27 2.77 0.29 

Multivariate 

SRM 
2.08 0.52 2.20 0.55 

Li et al (2021) - - 4.60 -0.96 

Random Forest 

Regression 
0.86 0.92 1.26 0.85 
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As for the other linear models, the multivariate SRM also showed 

significant improvement in terms of fit between the modelled and 
actual values. In terms of the RMSE, while the error was reduced, 

it was still greater than 2 m which is a significant magnitude 

especially for shallow water regions. Nevertheless, using a 

multivariate SRM showed significant improvement as compared 
to the multivariate linear model only and SRM using blue and 

green bands only.  

 

For the case of Li et al.’s variation of SRM, results showed that 
the model performed the weakest. Despite the use of training data 

sampled in six diverse coastal sites around the world, the model 

has been constrained to those areas only suggesting that 

bathymetry models derived from remotely sensed data are 
location specific. Moreover, the strong variability of 

environmental conditions can significantly affect the modelling 

process as well. Figure 4 shows a scatter plot of modelled water 

depth and actual depth using Li et al.’s version of SRM. The 
inverse proportionality and negative correlation therefore prove 

that their model is not applicable to all coastal regions, thus the 

automatic shallow bathymetry model’s weak performance in this 

study.  
 

 
Figure 4. Li et al.’s modelled water depth vs actual water 

depths. 

 
Figure 5 shows the scatter plots of the different bathymetry 

models using the independent validation set. Generally, the 

models generated positive correlation between modelled and 

actual values but the RF model produced the best fit. This can be 
explained by its non-parametric nature which allowed it to model 

non-linear relationships such as the case of spectral reflectance, 

SRM and water depth. Moreover, looking at the range of values 

for the modelled and measured there is significant difference 
between the performance of RF and the other linear models. RF 

was able to model a similar value range whereas the linear 

models underestimate the values at deep regions. This suggests 

that the RF model have exhibited sensitivity to minute value 
changes unlike the linear models which were not able to capture 

the exponential decrease of reflectance values at deep values, 

despite the use of the SRM or the logarithmic-ratio which is 

supposed to emphasize minimal changes in values (Tamondong 
et al, 2014; Stumpf et al, 2003). This exponential decrease has 

been exhibited by the scatter plots of the visible bands versus 

water depth values in figure 3.  

 

 
Figure 5. Scatter plots of modelled and actual water depth 

values. 

 
Lastly, an advantage of using RF as a machine learning algorithm 

is its capability to evaluate the importance of the variables used 

in the process. For this study, multivariate regression was 

implemented using RF where all the variables from the stacked 
image, that is composed of the bands and their logarithmic-ratios 

resulting in a total of six variables, were included in the 

regression. Figure 6 shows the variable importance for this study 

in increasing order. 
 

Consistent with Stumpf, et al., (2003) the logarithmic-ratio of the 

blue and green bands are the best variables for modelling water 

depth. From the six variables used for the RF model, the blue-
green logarithmic-ratio contributed most in the regression 

process. Figure 7 shows a scatter plot showing the fit of the 

generated model using only the blue-green logarithmic-ratio. 

From this plot, there is a decrease when only using this variable 
but this result is still superior than the other linear models. 

 
Figure 6. RF variable importance. 
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Figure 7. Scatter plot of modelled and actual water depth values 

for RF regression using SRM for blue and green bands only. 

 
 

5. CONCLUSION AND RECOMMENDATIONS 

 

This study demonstrated the use of machine learning in 
modelling bathymetry from remotely sensed data, specifically 

using Sentinel-2 MSI image. Aside from deriving bathymetry 

models, a comparative analysis of using linear models including 

SRM and non-parametric models using machine learning was 
also implemented in this study. Based on the results, the use of 

machine learning can significantly improve SRM for bathymetry 

modelling, in this case reducing SRM’s RMSE by 51% and 

increasing correlation between modelled and actual depths by 
56%. This does not only mean more accurate water depth 

estimates, but further improvement of this method could help 

develop a better alternative to addressing the effects of water 

column to spectral reflectance information. By doing so, coastal 
and marine mapping and other studies can also be improved, 

helping better address the current problems that such an 

environment is facing. 

 
However, some recommendations for this study would include, 

first, considering other alternatives for preprocessing of the 

satellite data which are more focused for coastal applications. 

Second is the use of the same satellite data which this study was 
derived from to ensure temporal consistency with the in-situ data. 

Lastly, implementing hyperparameter tuning for the machine 

learning model used in this study is recommended. Despite these 

recommendations, this study nevertheless showed the potential 
of machine learning, specifically RF, for bathymetry modelling. 
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