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ABSTRACT: 

Coral reefs are among the most vulnerable ecosystems to coastal and land-based anthropogenic factors. Aside from sudden increase in 

sea temperatures, external factors such as local and regional disturbances are found to influence coral reef environments which often 

lead to bleaching events. According to the Status of Coral Reefs of the World: 2020 report, from 2009 to 2018, there has been a 
progressive loss of live corals at the global level which may be attributed to the increasing anthropogenic activities (Souter et al., 2021). 

Due to coral’s sensitivity to environmental stressors, it is significantly considered as an indicator for global climate conditions. In this 

regard, this study developed a remote sensing change detection technique to segment coral bleaching from satellite images. Using a bi-

temporal image stack composed of Sentinel-2 images showing pre and post bleaching, a machine learning classification model was 
developed to capture typologies of changes visible between the two images which included bleaching. Random Forest (RF) algorithm 

was employed to classify changes. This model obtained overall accuracies and kappa statistics of 0.97 and 0.94 respectively with 

minimum consumer and producer accuracy of 0.91. Moreover, the identified changes showed 78% agreement with the in-situ data 
composed of 31 monitoring stations distributed around Sekisei Lagoon, Okinawa, Japan. This study demonstrated a promising potential 

of machine learning for change detection for coral bleaching monitoring. 

1. INTRODUCTION

In 1998, a mass coral bleaching occurred and killed 

approximately 8% of the world’s corals and from 2009 to 2018; 

there was a progressive loss of coral reefs resulting in a 14% loss 

of world’s coral reefs (Souter et al., 2021). This study uses the 

case of Japan, specifically the coastal regions of Iriomote and 

Ishigaki islands which can be found at the south western tip of 

the country. Between these two islands is the Sekisei lagoon 

which is considered as the largest coral lagoon in the country 

which helped in maintaining the coral reef ecosystem across the 

archipelago by being a major source of coral spawn and larvae 

(Takeda et al., 2021). This area however has been severely 

affected in both the 1998 and 2009 to 2018 global-scale coral 

bleaching event resulting in a 98% death rate for 10 of the 11 

major coral species in the lagoon. In 2022, another coral 

bleaching was observed which affected more than 90% of the 

corals in the area (Takeda et al., 2021; Shimbun, 2022). 

Coral reef ecosystems play an important role in supporting 

marine life. Despite covering only 0.2% of the seafloor, 

approximately 25% of marine species are being supported by 

coral reefs, which also provides coastal protection, well-being, 

and food security to millions of people (Souter et al., 2021). This 

underscores the importance of rehabilitation to induce regrowth 

of corals. 

Key to effective management and monitoring of coral reef 

environments is information about their spatial and temporal 

distributions which allow experts and the authority to identify 

effective decisions and measures to maintain its condition (Mora, 

2008; Hedley et al., 2012). Thus, in the case of coral bleaching, 

spatial and temporal information about such events is all the more 

 

necessary not just to support strategic rehabilitation efforts but 

also to help experts gain other insights significant to related 

studies. 

While there are monitoring methods implemented on the ground 
such as actual ground surveys or airborne image capture, satellite 

remote sensing is now becoming a viable option which offers a 

cost-effective and efficient data acquisition process for coastal 

applications such as coral reef monitoring. Having the capability 
to capture information at large spatial extents and at an almost 

real-time rate, remote sensing technology can help researchers 

and experts better obtain relevant information about such 

environments (Hedley et al., 2012). Several studies have already 
explored the capability of remote sensing to such applications 

establishing baseline data for satellite data obtained using either 

Landsat ETM+ or SPOT Earth observation satellites (Andréfouët 

et al., 2001, Caplosini et al., 2003, Mumby et al., 1997).  

This study therefore aims to further support the viability of 

remote sensing technology for coastal applications, specifically 

for coral reef environments, by developing a remote sensing-

based monitoring tool to detect coral bleaching events. Unlike 
other studies, Sentinel-2 data was used in this study for its higher 

spatial and temporal resolution and narrower spectral bands 

(Hedley et al., 2012). 

With that, this study presents a time series change detection 
technique for coral bleaching events using the visible bands of 

pre and post event Sentinel-2 data. Train and test data were 

obtained and a bi-temporal supervised image classification was 

implemented using Random Forest classifier to delineate 
bleached corals. To test this proposed method, the coral 
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bleaching incident recorded in Sekisei Lagoon, Japan in 2022 

was used as a case study. 

 
 

2.  RELATED STUDIES 

2.1 Coral bleaching 

The main objective of this study is to capture coral bleaching 

events using satellite remote sensing techniques. This 

phenomenon can be described as the loss in colour of coral reefs 

due to the loss of zooxanthellae and pigments resulting in the 
change of colour from something greenish or darkish to white, 

thus being called ‘bleaching’ (Call et al., 2003; Li et al., 2011). 

This is mainly caused by the upwelling of sea surface 

temperatures, but it can also be attributed to diseases and 
environmental pressures brought about by land-based and coastal 

anthropogenic factors (Call et al., 2003; Souter et al., 2021). 

Monitoring this kind of phenomena using visible satellite 
imagery can be detected depending on the severity of coral 

bleaching and the specifications of satellite data. Accordingly, if 

a coral undergoes bleaching, its color will transition to white 

which can be translated as an increase in spectral reflectance in 
the visible region (Call et al., 2003). Thus, this should be visible 

in a satellite image, depending on the severity of the bleaching, 

specifications of the satellite’s sensor specifications and the 

percent cover of corals in a pixel of the image (Call et al., 2003; 
Yamano & Tamura, 2004). The difference in spectral response 

between a live coral and a bleached coral are significant, making 

the two types of corals sufficiently separable. 

2.2 Preprocessing of Satellite Data  

In the context of coastal and marine applications, various remote 

sensing methodologies were developed to model its 
environments such as benthic habitat modelling which segments 

benthic features from satellite data, depth estimation, water 

quality modelling and even the detection of coral bleaching. 

While most of the studies have shown sufficient performances in 
achieving their goals, there seems to be an agreement that while 

remote sensing is capable, coastal mapping is a challenging 

application mainly due to the environment's characteristics which 

hinders satellite-based sensors to effectively capture sub-water 
features. Aside from the heterogeneity of benthic features which 

is not really captured by satellite sensors primarily because of 

their limited spatial resolution, effects of water attenuation, its 

temporal variability and the effects from atmosphere also play 
major roles to remote sensing technology’s success in coastal 

mapping applications (Hedley et al., 2018; Call et al., 2003; 

Nurdin et al., 2019). In this regard, preprocessing of satellite data 

has been of great importance.  

Among these challenges, reduction of the effects due to water 

column attenuation has contributed to improve the accuracy of 

remote sensing-based coastal applications thus its importance in 

the process (Minghelli-Roman & Dupouy, 2014; Siregar et al., 
2018). In most studies, the Depth Invariant Indices (DII) 

following the Lyzenga algorithm is being adopted in which it 

estimates an attenuation coefficient for every 2 bands of the 

visible spectrum producing three DII from the combination of 
red, green and blue bands of most remote sensing data (Nurdin et 

al., 2019; Siregar et al., 2018; Tamondong et al., 2013). However, 

the study of Tamondong et al. (2013), suggests that the Simple 

Radiative Transfer model (SRTM) and bathymetric models 
derived from the satellite data can be considered as alternatives 

to water column correction. Based on their study which compared 

SRTM, SRM and DII, SRTM performed best, followed by SRM 

and then by DII in terms of producing accurate benthic maps 

from satellite data (Tamondong et al., 2013). It was also argued 
that while DII can remove effects of water column, the process 

would require producing DIIs for each substrate therefore 

resulting in an expensive processing approach to the study 

(Tamondong et al., 2013).  

Aside from water column corrections, the study of Watanabe et 

al. (1993) was able to improve separability of benthic substrates 

such as red soil, turbid water, corals and clear water using ratios 

of the visible bands of Landsat TM obtaining an overall accuracy 
of 80% for their time series analysis. This suggests the use of the 

band ratios of red, green and blue bands for coastal remote 

sensing applications. 

2.3 Change detection techniques 

In detecting cases of coral bleaching, a general methodology is 

the use of sea surface temperature often derived thermal bands 
from satellite images. However, with the development of the 

Sentinel-2 optical imagery, optical data have now been 

considered in various studies mainly due to its relatively high 

spatial resolution of 10m and its narrow band widths making it 
an additional alternative data for coastal and marine applications 

(Xu, et al., 2021; Wouthuyzen, et al., 2019; Liu, et al., 2021; 

Collin, et al., 2016; Hedley et al., 2012; Hedley et al., 2018) 

This study explores the implementation of a change detection 

process in order to segment bleached corals from optical satellite 

imagery. In relation to that, there are different change detection 

techniques which have been utilised to detect coral bleaching in 

an area. One of the techniques is the post-classification change 
detection technique in which an image classification process is 

separately implemented on both pre and post image processing 

and after which, a change image is produced by differencing the 

classified images (Nurdin et al., 2019; Collin et al., 2016; Gapper 
et al., 2019, Mishra et al., 2017). This approach however requires 

a supervised process to classify the images, moreover, after 

image differencing, the typologies of the detected changes will 

have to be strategically identified, unless the analysis of changes 

is mainly visual (Nurdin et al., 2019; Fargas et al., 2021). 

Another approach to detect changes, not just in the case of coral 

bleaching, are automated techniques such as straight-forward 

image differencing and image ratios in which the post image is 
either subtracted from or divided by the pre- image (Mishra et al., 

2017). These techniques however, despite being automated in 

nature, require threshold values to accept changed areas and 

additionally, these methods are usually implemented on single-

band images or indices which are supposed to be describing the 

surface (Mishra et al., 2017). Moreover, these techniques are also 

susceptible to atmospheric variability between the two images 

(Mishra et al., 2017). 

Change vector analysis such as the Spectral Correlation Mapper 

and Spectral Angle Mapper, is another technique to detect 

changes in which vectors using the spectral response of pre and 

post image at pixel level are computed resulting in a magnitude 
and direction of the change describing the nature of change which 

occurred at pixel level (Carvalho et al., 2013; Mishra et al., 2017). 

However, while this method could provide directionality of the 

change, its value is still lacking in order to help the users classify 

the detected change (Carvalho et al., 2013; Mishra et al., 2017). 

Lastly, direct multi-date classification is another change 

detection alternative in which it employs image classification of 
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a straightforward stack of multi-temporal images into one dataset 

(Mishra et al., 2017; Fargas et al., 2021). The multi-temporal 

image stack is supposed to capture the phenological patterns of 
surface features such as in the case of mapping agricultural 

resources, which may be extended to surface changes (Fargas et 

al., 2021). This method however requires selection of train and 

test data in a multi-temporal sense which may be a challenge in 
most cases due to the added dimension for the analysis.  

 

 

3. MATERIALS AND METHODS 

3.1 Study area 

The areas of interest of this study are the coastal regions of the 

islands of Ishigaki and Iriomote, Japan, and the Sekisei lagoon 

located in between the two islands (Figure 1). This has been 
selected as the study area due to the recent observed coral 

bleaching incident in September 2022 in which 90% of the largest 

reef has been affected (Shimbun T. Y., 2022). 

 
Figure 1. Cloud-free Google Earth satellite image of Sekisei 

lagoon overlaid with the September 2022 coral bleaching 

monitoring report of the Ministry of Environment of Japan. 

3.2 Data processing 

The bulk of the processing of this study was implemented in 

Google Earth Engine using the GEEMAP library in Python (Wu, 
2020). Google Earth Engine (GEE) is a cloud computing, open-

source, and code based remote sensing visualisation platform 

developed by Google which offers various processing tools and 

functions (Gorelick et al., 2017). This platform has access to 
petabytes worth of Radar-based and open-source Earth-

Observation (EO) data such as those obtained by Landsat, 

Sentinel and MODIS (Gorelick et al., 2017). Moreover, it also 

has a repository of derivatives of said satellite data developed by 
various contributors, researchers and developers around the 

world (Gorelick et al., 2017). 

By default, GEE uses Javascript to automate its tasks and 

functions, but with the use of GEEMAP, Python can be used to 
develop remote sensing scripts using GEE together with its data 

visualisation and analytics features (Wu, Q., 2020) 

3.3 Satellite Data 

For this study, satellite data obtained by Sentinel 2 were used. 
Landsat 8 image can also be used for coastal applications, 

however, Sentinel 2’s spatial and temporal resolution offers a 

better option. For coral bleaching, the capability of Landsat 8 to 

detect changes in benthic habitats is mainly limited to cases of 

drastic changes such as severe coral bleaching and as for Sentinel 

2, the narrowness of its spectral bands is more capable of 

detecting variabilities while its spatial resolution is more capable 
of approximating the heterogeneous characteristics of benthic 

features (Hedley et al., 2012; Hedley et al., 2018) 

Using GEE, Sentinel 2 images for the year 2022 were inspected 

and filtered based on cloud-cover percentage and cloud-free and 

glint-free images over the study area were selected. It is 

important to select glint-free images as they may have effects on 

the quality of the data, else a sun-glint correction must be 

implemented to preprocess your satellite data (Hedley et al., 

2018).    

To capture the coral bleaching incident in the study area in 2022, 

Sentinel 2 images in March and in September were obtained since 

the coral bleaching incident occurred progressively since the start 

of the year until September (Shimbun T. Y., 2022). 

Although the Sentinel 2 image is composed of 12 bands spanning 

from the visible to short wave infrared (SWIR), for this study, 

only the visible bands were used since the infrared bands are 
being absorbed by water (McFeeters, S.K., 1996). Additionally, 

band ratios between the visible bands were included producing 3 

new data to the stack consisting of the band ratios of blue-red, 

green-red, and green-blue to further increase separability of 

benthic features (Watanabe et al., 1993). 

3.4 Selection of train and test 

Through visual inspection and image interpretation, 3 types of 

change and no change cases were identified. First is bleaching 
which is characterised by the visible change in colour from dark 

green or grey to white of supposed coral features from the pre- to 

post-bleaching images. Second case is for evidence of algal or 

seagrass growth in the seabed which can be described as change 
in colour from white to green of some benthic features, mostly 

found on areas which can be interpreted as mud-bottom, sand or 

rubble surfaces.  

 Pre-bleaching Post-bleaching 

Coral 
bleaching 

  

Seagrass / 

Macro-algal 
growth 

  

Cloud cover 

and ocean 
waves 

  

Figure 2. Pre and post bleaching Sentinel-2 snapshot of each 

change detection class identified for this study. 

Cases for change due to cloud covers and ocean waves were also 

identified. There were observable changes in which there was an 
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initial presence of cloud-cover or ocean waves in the initial image 

and were not found in the second image. And there were also 

observed changes in which there were no cloud cover and ocean 

waves in the initial image. 

For each class of change case, at least 50 train pixels were 

selected and 20 pixels were selected for the validation. A no-

change train and test data were also selected which included cases 

of shadows. Figure 2 shows samples of change for each case. 

3.5 Methods 

The methodology of this study as shown in Figure 3 follows a 

general supervised image classification workflow for remote 
sensing. The Random Forest image classification algorithm, a 

non-parametric ensemble learning classifier based on decision 

trees, was used in this study due to its robustness and flexibility 

in terms of handling high dimensional and non-normalized 
datasets while obtaining consistent accuracies compared to other 

algorithms (Fargas et al., 2021; Torbick et al., 2016; Pelletier et 

al., 2016). The input to this process is a multi-temporal stack 

composed of the Sentinel 2 visible bands and band ratio 
derivatives of the pre- and post-bleaching images. The land mask 

from the Hansen global forest cover change in Google Earth 

Engine repository was used to mask out the land features from 

the multi-temporal Sentinel 2 stack (Hansen et al., 2013).  

 
Figure 3. General workflow for change detection time series 

image classification. 

 

For accuracy assessment, a confusion matrix was produced using 

the output classified change detection image and the test dataset 

to compute for the overall, Kappa, producer and consumer 
accuracies. This followed an iterative process to fine tune the 

change detection model until sufficient accuracy is achieved. 

After which, the output change detection map was then compared 

with the results of the coral bleaching spot survey implemented 
by the Ministry of the Environment of Japan done in September 

2022. The data is composed of bleaching percentage results at 31 

monitoring stations distributed over Sekisei Lagoon. Using this 

data, a binary comparison was implemented in this study. 
 

 

4. RESULTS AND DISCUSSION 

4.1 Variable importance 

Using the Random Forest image classifier, variable importance 

can be computed from the model which provides information 
about which variable has the most contribution to the 

classification model. Figure 4 shows the level of importance, in 

ascending order, of the different variables used for the 

classification. Combining the pre- and post-bleaching images 
into a single image stack produced a total of 12 variables which 

are supposed to capture the temporal trends of the different cases 

of changes observed. The blue and red bands, B2 and B4 

respectively, and the ratio of blue and green have contributed the 
most to the classification model while the green band contributed 

the least. The increase or decrease in reflectance for observed 

cases of change in the scene may explain this trend since the 

observable changes can generally be characterised by the shift of 
colour from dark to light in which there is significant change in 

reflectance for the red band. Although blue and green bands were 

considered to have better water column penetrating capability 

compared to the red band, in the classification process, the green 
band might have been considered as a redundant variable due to 

the presence of the blue band. 

 
Figure 4. Variable importance produced using Random Forest 

image classification. 

4.2 Separability of selected train and test data 

To assess the selected train and test data, pre-bleaching values 
were subtracted from the post-bleaching values per change class. 

The box plots in Figure 5 provide a statistical summary of the 

sampled reflectance values for the train and test data. 

For cases of coral bleaching, the most observable characteristic 
is the change from dark to light colour. Based on its 
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corresponding box plots, there is significant increase in 

reflectance values for the blue and green bands from pre to post 

bleaching image. Although there are observed outliers which 
have contradicting values, the majority lie in the positive range. 

As for the red band, although it may be expected to also have 

positive difference values, the box plots show otherwise which 

implies how corals have better interaction with blue and green 
bands. It may also be attributed to the red band’s high absorption 

characteristic for water surfaces since its energy approaches the 

infrared region already making it susceptible to underwater 

attenuation.  

Using the band ratios however, difference values were 

dominantly in the positive ranges especially for Blue/Red (BR) 

and Green/Red (GR) implying how coral’s response to the red 

band is very minimal. For Blue/Green (BG), since their 
penetration capabilities are very similar, their ratios tend to be 

equal to 1 thus resulting in difference values close to 0. 

Changes due to growth of seagrass or seaweeds on the other hand 

shows almost the opposite of the trends produced for bleached 
corals most especially for the blue and green bands. For the box 

plots of the band ratios however, detected change in reflectance 

values are found to be less than the magnitude of change for 

observed cases of bleaching. And for cases of no changes, 
obtained differences in reflectance tend to range close to 0 

implying that if there are variations in reflectance values, they are 

very minimal. 

 
Figure 5. Comparison of boxplots for bleaching, seagrass or 

macroalgal growth and unchanged features. 

Figure 6 show the boxplots for changes due to presence of clouds 

or waves in either the post or pre-bleaching image using box 

plots. These covers are mainly characterised by their white 
colour, thus whenever there are clouds or wave foams, 

reflectance values approach max values. Therefore, the presence 

of such covers in the pre would result in negative trends whereas 

for post image, positive trends.  

 
Figure 6. Comparison of boxplots for clouds and waves visible 

in the post- and pre-bleaching images. 

Using the band ratios however, difference values tend to lie in the 

positive range for changes due to clouds and waves in the pre-
bleaching image, whereas, for the post-bleaching image, the 

difference ranges from 0 to the negative. 

Although the use of band ratios is highly suggested, using it in a 

multitemporal approach may not necessarily produce significant 

results as evidenced in the boxplots (Watanabe et al., 1993). 

4.3 Change detection using supervised image classification 

Finally, as for the model’s capability to detect changes, Table 1 
shows the model’s confusion matrix showing sufficiently high 

accuracies with 0.91 as minimum.  Misclassification is mainly 

between bleaching and change due to presence of clouds and 

wave foams in the pre- image. This either may be due to incorrect 
selection of training points or due to atmospheric haze. 

Nevertheless, the model produced high classification accuracy. 

This produces overall accuracies and kappa statistic values of 

0.97 and 0.94 respectively. 

 B CW2 CW1 G NC Producers 

B 49 0 5 0 0 0.91 

CW2 0 50 0 0 0 1 

CW1 0 0 86 0 0 1 

G 0 0 0 60 0 1 

NC 0 0 0 0 60 1 

Consumers 1 1 0.95 1 1  

Table 1. Confusion matrix of the time series image 

classification where B is for bleaching, G is for 
seagrass/macroalgal growth, NC is for cases of no change, CW1 

and CW2 are for presence of cloud and wave foams in the pre- 

and post-bleaching images respectively. 

4.4 In situ data validation 

The coral bleaching monitoring report of the Ministry of 

Environment of Japan showed an average of 92% bleaching for 

the 31 monitoring stations which translated to an average of 19% 
bleaching incidence when adjusted using coral cover percentage 

in the monitoring sites. Out of these monitoring stations however, 

4 stations were not included in the comparison since they were 

not covered by the Sentinel-2 scenes used in this study due the 
cloud mask. In total, only 27 stations were used. Out of these 

stations, 21 showed agreements with the change detection map 
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which is approximately 78% agreement. This indicates that the 

model performed well in terms of segmenting bleaching 

incidence from a time series image stack. For the other 6 stations, 
although they did not overlap with any bleaching-classified 

pixels, they still showed proximity to bleaching-classified pixels 

suggesting that the change detection map can be used to indicate 

possible bleaching in nearby regions. 
 

 

5. CONCLUSION AND RECOMMENDATIONS 

Although the coral bleaching is visually evident from the bi-
temporal image, a limitation of this study can be attributed to the 

lacking in situ samples. While the coral bleaching report provided 

for 31 monitoring stations allowed binary comparison with the 

change detection map, the sample size is still limited to enable 
comprehensive accuracy assessment of the model. If sufficient 

sampling for ground data is available, better modelling may be 

produced. Aside from that, the methodology also lacked relative 

radiometric calibration assuming that GEE’s repository already 
calibrates data relatively similar to the Landsat collections 

(Gorelick et al., 2017). With these, it would be recommended to 

have ground truth data for better validation process, and as for 

relative calibration, to implement calibration techniques to 
ensure that the bi-temporal data do not have shifted or skewed 

histograms which may result in erroneous results. With regards 

the change detection performance, most of the misclassification 

were due to bleaching and change because of the presence of 
clouds and wave foams in the pre-image. To mitigate this kind, a 

possible strategy to consider is the removal of clouds and wave 

foams from the pre- and post- images before performing the 

change detection process. In that case, classification will be 

constrained to bleaching and non-bleaching cases only. 

Additionally, even though this study showed good classification 

results, a consideration for application of this model to other 

cases would be the intensity and magnitude of the bleaching. In 
this case, the bleaching is significantly visible in the satellite 

hence the good results but for cases where the bleaching is 

minimal, this model may not perform accurately. 

Nevertheless, the researchers were able to develop a 
methodology that has the capability to detect changes in benthic 

habitats using the coral bleaching case of the coastal area of the 

Iriomote and Ishigaki, Japan islands in 2022. Detected changes 

include those due to coral bleaching and seagrass or macroalgal 
growth and other changes which were observed from the bi-

temporal scenes, primarily other covers such as cloud covers and 

wave foams. This also demonstrated the applicability of Sentinel 

2 data for coastal applications. Moreover, through this study, the 
use of Random Forest classifier on multi-temporal dataset can be 

said to have effective performance therefore having the capability 

to recognize temporal patterns. 
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