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ABSTRACT: 

 

Long-term climate changes, including increased temperature, shift in precipitation, wind patterns, and other climate factors, can disrupt 
the balance of nature and have significant implications in the transmission of dengue fever. This study investigated the spatial and 

temporal dynamics of dengue cases in Cebu City, a key metropolitan area in the Philippines characterized by a significant rat e of 

urbanization in recent years. Climate Engine (CE), a cloud-based computing and visualization tool, was utilized in this study for 

database sources of Landsat 8 pre-processed satellite images. Time-series dataset of land surface temperatures (LST) and varying 
environmental indices such as Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), and 

Normalized Difference Built-up Index (NDBI) were examined to investigate the effects of increased urban surface temperatures, 

expanding urban structures, and diminishing vegetation in Cebu City on dengue cases from 2015 to 2022. The spatial distribution of 

dengue cases was analyzed through GeoDA to identify hotspots within the city. The annual dengue cases in Cebu City exhibit a 
temporal trend with a peak in 2016 (4637 cases) and a lowest point in 2021 (399 cases), the year when the pandemic struck. Most 

dengue cases were recorded between June and December, exhibiting a strong seasonal pattern, and primarily concentrated within the 

wet season. Barangay Guadalupe topped the number of cases (1781) followed by Barangay Lahug (1219 cases), and Barangay 

Labangon (1128 cases) from 2015 to 2022. These three residential barangays are in proximity to each other, indicating a potential 
localized clustering of dengue cases in neighboring areas. The equation derived from the linear regression model serves as a predictive 

tool for estimating dengue cases in Cebu City and is expressed as Dengue cases = -28.436 + 2.137 (LST) - 13.943 (NDVI) + 8.565 

(NDWI) - 10.217 (NDBI). The findings of this study will have practical implications for urban planning and the development of local 

policies aimed at mitigating the rise in dengue cases. 
 

1. INTRODUCTION 

Long-term changes in climate patterns, including increase in 

temperature, changes in precipitation rate, and wind patterns, are 
constantly occurring over several decades. They are primarily 

caused by anthropogenic activities, specifically the burning of 

fossil fuels such as coal, oil, and natural gas, which releases 

greenhouse gases into the atmosphere resulting in a rise in the 
earth’s temperature (Grossman, 2018). Climate change has 

drastically affected thousands of lives worldwide. Over time, 

warmer temperatures have altered weather patterns and disrupted 

the usual balance of nature (Ong et al., 2022). These changes 
have a possible significant impact on the transmission of vector-

borne diseases, such as dengue fever.  

 

Dengue is prevalent in many tropical regions. As the global 
climate continues to warm, there is an increased likelihood of 

increased dengue cases (Murray, Quam, Wilder-Smith, 2013). 

The constant alteration brought by climate change such as 

warming temperatures and unprecedented flooding have 
encouraged the spread of mosquitoes well beyond their 

traditional breeding grounds, bringing dengue fever to areas that 

were never before threatened by this debilitating illness 
(Houtman et al., 2022). Warmer temperatures also increase the 

lifespan of mosquitoes, shorten their incubation period, and 

increase their biting rate, all of which contribute to a higher 

incidence of dengue (Bellone and Failloux, 2020). Changing 
rainfall patterns may create more favorable breeding conditions 

for mosquitoes, leading to an increase in their population and the 

spread of the disease (Altoa and Bettinardi, 2013; Reinhold, 

Lazzari, and Lahondère, 2018). Globally, the incidence of dengue 
has grown dramatically in recent decades. It is estimated that 3.9 

billion people are at risk of dengue infection and around 390 

million are infected by the dengue virus per year. Despite a risk 

of infection existing in 129 countries, 70% of the actual burden 
is in Asia (World Health Organization, 2022). 

 

The Philippines is characterized by a tropical climate, featuring 

relatively high temperatures, abundant rainfall, and high 
humidity levels. This ideal climate for mosquito species has 

contributed to its classification as one of the countries with the 

highest number of dengue cases globally (Bravo et al., 2014). 

Cebu City, a highly urbanized city in the Philippines, had one of 
the highest numbers of dengue cases for more than a decade 

(Edillo and Madarieta, 2012). Urbanization often results in the 

creation of artificial breeding grounds for mosquitoes, such as 

stagnant water in containers or discarded tires, which further 
exacerbates the dengue problem (Novaes et al., 2022; Ooi and 

Gubler, 2009). Moreover, climate changes resulting in increased 

temperature and rainfall, together with urbanization, may be 

associated with increased dengue incidence and outbreak risk 
(Ebi et al., 2016). 

 

Numerous studies have analyzed the relationship between 
environmental variables and dengue (Sekarrini et al., 2022; Marti 

et al., 2020, Sarma et al., 2022). Remote sensing data from 

satellite imagery has a great capability in monitoring climate and 

environmental factors at both global and local scales. The data 
can be used to track changes in land use, vegetation cover, ocean 

currents, and atmospheric conditions (Guha and Govil, 2020). 

However, local research regarding the relationship between the 

number of dengue cases and environmental factors through the 
use of remote sensing data is quite limited. Satellite imagery, 

specifically from Landsat, can be used for the analysis of 
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environmental factors such as land surface temperature (LST), 

normalized difference vegetation index (NDVI), normalized 

difference built-up index (NDBI), and normalized difference 
water index (NDWI). Furthermore, Climate Engine (CE), an 

online cloud computing platform that pre-processes satellite 

imagery and climate data through machine learning algorithms, 

was utilized as the database source of the environmental factors 
analyzed in this study (Huntington et al., 2017; Rejuso et al., 

2019). 

 

This study focused on analyzing the spatiotemporal trends of 
environmental indices and changes in dengue incidence in Cebu 

City over the years, from 2015 to 2022. The objectives of the 

study were: 1) to analyze the spatial and temporal variations of 

dengue cases, LST, NDVI, NDWI, and NDBI in Cebu City; 2) to 
examine the relationships between the dengue cases with LST, 

NDVI, NDWI, and NDBI; 3) to identify and map the dengue 

hotspots within Cebu City; 4) to develop a linear regression 

model with dengue cases as the dependent variable and LST, 
NDVI, NDWI, and NDBI as predictors. This study could provide 

important insights into the underlying causes of the disease and 

inform strategies for prevention and control. 

 

2. RESEARCH METHODOLOGY 

2.1 Study Area and Research Population 

Cebu City, located in the Philippines, is the capital of Cebu 

province and the regional center of the Central Visayas region. It 
is the central hub of Metro Cebu, an area encompassing various 

other fast-developing cities and municipalities (Cañete et al., 

2019; Etemadi, 2000). It is situated in the eastern coastal plains 

of Cebu province located at 10° 17′ 34.8″ N, 123° 54′ 7.2″ E with 
an average elevation of 31.42 meters above sea level and spans 

an area of 330 square kilometers. It comprises 80 barangays, as 

displayed in Figure 1 and Table 1 in the Appendix. The majority 

of the population resides in 49 urban barangays that are situated 
along the coast, covering a mere 17% of the city's land area. 

Meanwhile, the remaining 12% live in 31 rural barangays located 

in upland areas beyond the coast, which account for 83% of the 

city's land area (Cañete et al., 2019; Etemadi, 2000). 
 

 
Figure 1. Map of Cebu City showing barangay boundaries with 

identification numbers 

2.2 Study Design and Analysis Workflow   

The methodology used in this research was adapted from a 

previous study, with modifications (Rejuso et al., 2019). Briefly, 
the study was done as follows: 

 

1) Retrieving LST, NDVI, NDWI, SWIR, and NIR band 

layers from CE,  
2) Generating the NDBI layer from SWIR and NIR band 

layers,  

3) Computing the average values of LST and 

environmental indices per barangay,  
4) Analyzing the correlations between LST, 

environmental indices, and dengue cases in Cebu City 

5) Mapping of the dengue cases hotspots in Cebu City 

 
 

 
Figure 2. Workflow for investigating the relationship between 

environmental indices and dengue cases in Cebu City 

 

 

2.3 Data Retrieval and Generation 

Data on the dengue cases per barangay in Cebu City was 

provided by the Regional Epidemiology and Surveillance Unit 

(RSU 7) of the Department of Health - Central Visayas Center 

for Health Development (DOH-CVCHD). It was requested and 
accessed through the Electronic Freedom of Information website 

(e-FOI). 

 

2.4 Environmental Indices 

2.4.1 Land surface temperature (LST): LST refers to the 

temperature of the Earth's surface, including the rooftops, 

pavements, soil, and vegetation. It is calculated based on 

Equation 1 with the use of Satellite Brightness Temperature (BT), 
the wavelength of the emitted radiance (λ), ε is the land surface 

emissivity, and ρ is the product of Planck's constant (h), the speed 

of light (c), and the Boltzmann constant (σ) (Mustafah et al., 

2020; Avdan et al., 2016). This calculation is already pre-
processed in Climate Engine.           

 

𝐿𝑆𝑇 =
𝐵𝑇

1 + (λ(BT) ∗ ln(ε)/ρ
             (1) 
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2.4.2 Normalized difference vegetation index (NDVI): 
NDVI based on the Near-Infrared (NIR) and Red bands, as 

demonstrated in Equation 2, is used in determining the vegetation 
cover in an area. The NDVI values have a range of -1 to +1, with 

values close to zero corresponding to built-up areas, while values 

close to +1 signify the maximum possible density of green 

vegetation (Isa, Wan Mohd, and Salleh, 2013; Liu and Zhang, 
2011; Rejuso et al., 2019). This calculation is already pre-

processed in Climate Engine.    

 

 
𝑁𝐷𝑉𝐼 =

𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 

(2) 

Where,  NIR = near-infrared reflectance 

 RED = red reflectance 

 
2.4.3 Normalized Difference Built-up Index (NDBI): NDBI 

is a frequently used indicator for identifying built-up areas in 

urban regions. The calculation of NDBI layers involves utilizing 

the Short-Wave Infrared 1 (SWIR 1) and Near-Infrared band 
layers, as presented in Equation 3. The NDBI values range 

between -1 to +1, where higher values of NDBI indicate a more 

highly built-up area (Za, Gao, and Ni, 2003; Rejuso et al., 2019). 

This calculation is processed in QGIS.   
   

 

𝑁𝐷𝐵𝐼 =
𝑆𝑊𝐼𝑅1 − 𝑁𝐼𝑅

𝑆𝑊𝐼𝑅1 + 𝑁𝐼𝑅
                 (3) 

Where,  SWIR1 = shortwave infrared 1 reflectance 

       
2.4.4 Normalized Difference Water Index (NDWI): NDWI 

is used to detect the presence of water in the environment. It is 

calculated using the reflectance values in the Near-Infrared and 

Short-Wave Infrared 1 band layers as displayed in Equation 4. 
NDWI values range from -1 to +1. Higher NDWI values indicate 

a higher likelihood of water presence, while lower NDWI values 

indicate a lower likelihood of water presence (Gao, 1996; Rejuso 

et al., 2019). 
 

𝑁𝐷𝑊𝐼 =
𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅1

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅1
 

 (4) 

 

2.5 Data Analysis  

2.5.1 Scatterplot Matrix and Correlation: A scatterplot 

matrix was utilized to assess and visualize the interrelationships 

between dengue cases, LST, NDBI, NDVI, and NDWI. Pearson's 
correlation was employed to determine the correlation among 

these variables. In this study, the strength of the correlation was 

dependent on the r-value, with a value above 0.7 or near 1 

indicating a strong relationship, a value below 0.7 but above 0.5 
indicating a moderate relationship, and a value below 0.5 

indicating a weak relationship. 

 

2.5.2      Linear Regression Model: A linear regression analysis 
was conducted to establish and develop a predictive model for 

dengue cases. The predictor variables used in the model are LST, 

NDVI, NDWI, and NDBI. Through this approach, the generated 

model can be used to forecast or predict the number of dengue 
cases based on the values of the predictor variables. The general 

equation of a linear regression model with multiple predictors can 

be written as displayed in Equation 5. The intercept term (β0) 

represents the estimated value of the dependent variable when all 
predictor variables are equal to zero. The regression coefficients 

(β1, β2, β3, ..., βn) associated with each predictor variable 

indicate the expected change in the number of dengue cases for a 

unit change in the corresponding predictor variable, assuming 

that all other variables remain constant. The predictor variables 
(X1, X2, X3...Xn) represent the measurements of LST, NDVI, 

NDWI, and NDBI, which are included in the model to predict the 

number of dengue cases. The error term (ε) accounts for the 

unexplained variability or random factors that may influence the 
relationship between the predictors and the dependent variable. 

     

          Y = β0 + β1X1 + β2X2 + β3X3 + βnXn + ε           (5) 

 

3. RESULTS AND DISCUSSION 

3.1 Dengue Cases 

3.1.1 Annual variation: The annual dengue cases in Cebu 

City exhibit a temporal trend as depicted in Figure 3. The data 
highlights a peak in dengue cases, reaching its highest point in 

2016 with a recorded count of 4637 cases. Conversely, the lowest 

number of dengue cases, totaling 399, was observed in 2021. 

There is a notable sudden drop in the reported cases during 2020 
and 2021. Although the available data for the period of 2020 and 

2021 globally are not comprehensive, there is a reduction in the 

total number of dengue cases reported to the World Health 

Organization compared to previous years (Khan et al., 2022; 
Sasmono and Santoso; 2022). During the start of 2020 and until 

2021, the COVID-19 pandemic began to spread across the world 

that caused significant disruptions. The focus of public health 

authorities, medical professionals, and media coverage during 
that time primarily centered on the novel coronavirus and its 

impact on global health, especially on epidemiological data and 

surveillance systems (Olive et al., 2020). Thus, while there may 

not have been widespread reports of dengue cases during the 
COVID-19 pandemic and lockdown, it does not imply a complete 

absence of such cases. 

 

A notable correlation between the societal disruption caused by 
the COVID-19 pandemic and a decrease in the risk of dengue 

after considering the climatic, host immunity, and other factors 

affecting dengue cycles was observed (Chen et al., 2022). Among 

the various factors, the strongest evidence of association with 
reduced dengue risk was observed in relation to school closures 

and decreased time spent in non-residential areas. These findings 

further support the notion that dengue transmission is facilitated 

through human movement, particularly in shared areas outside of 
homes (Chen et al., 2022; Stoddard et al., 2013). 

 

 
Figure 3. Total number of dengue cases in Cebu City annually 

from 2015 to 2022 

 

3.1.2    Monthly variation: The monthly dengue cases in Cebu 
City are illustrated in Figure 4. Fluctuations and varying dengue 

incidences were observed. The majority of dengue cases in Cebu 

City recorded a remarkable increase between June and December 

which corresponds to the literature. The occurrence of dengue 
outbreaks in the Philippines exhibits a strong seasonal pattern, 

primarily concentrated within the wet season from June to 

February (Undurraga et al., 2017). The highest number of 
recorded dengue cases occurred in November 2016 (819 cases), 

followed by October 2016 (774 cases), and finally June 2022 

(680 cases). These could be attributed to the change in 
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environmental conditions during the wet and dry seasons in the 

Philippines. These alternating seasons can significantly impact 

the breeding and transmission of dengue-carrying mosquitoes. 
The wet season, characterized by increased rainfall and higher 

humidity, provides favorable conditions for mosquito breeding 

and dengue transmission (Edillo et al., 2022; Iguchi, Seposo, and 

Honda, 2018,).  
 

In contrast, Cebu City experienced a significant decline in the 

number of dengue cases, marking a period of low incidence, from 

March to April. The occurrence of low dengue cases during the 
dry season can be attributed to several factors. The dry season is 

characterized by a decrease in rainfall, leading to a reduction in 

the availability of breeding sites for mosquitoes. The absence of 

stagnant water reduces the chances of mosquito reproduction and 
limits their population growth. The instances of lowest number 

of recorded dengue cases were observed in July 2020 (8 cases), 

followed by October 2020 (11 cases), and finally May 2020 (12 

cases). It is important to note that these remarkably low figures 
may be attributed to the disruptive effects of the COVID-19 

pandemic on epidemiological data collection and surveillance 

systems. The implementation of measures such as lockdowns, 

travel restrictions, and physical distancing measures significantly 
influenced the healthcare system's capacity to detect, diagnose, 

and report dengue cases accurately (Khan et al., 2022; Olive et 

al., 2020; Plasencia-Dueñas, Failoc-Rojas, and Rodriguez-

Morales, 2022). 
 

 
Figure 4. Monthly dengue cases in Cebu City during 2015 – 

2022 

 
3.1.3    Spatial Distribution and Hotspot Determination: A 

barangay-level map with the total dengue cases in Cebu City 

from 2015 to 2022 is shown in Figure 5. Barangay Guadalupe 

(ID no. 26) with 1781 cases, Barangay Lahug (ID no. 36) with 
1219 cases, and Barangay Labangon (ID no. 35) with 1128 cases 

have recorded the highest total number of dengue cases from 

2015 to 2022. A discernible pattern is observed which indicates 

that high dengue cases are observed within the residential and 
commercial barangays rather than on the mountain barangays in 

Cebu City. Studies have indicated that environmental factors play 

a crucial role in the transmission of vector-borne diseases. Areas 

designated for residential purposes are more susceptible to 

dengue transmission (Garcia, and De las Llagas, 2011; Gurevitz, 
Antman, Laneri, and Morales, 2021; Seidahmed, Lu, Chong, and 

Eltahir, 2018).  

 

 
Figure 5. Barangay-level total dengue cases in Cebu City 

during 2015- 2022 

 

The annual barangay-level map with the total dengue cases per 

year in Cebu City is shown in Figure 6, where values at the 

bottom-right corner indicate the highest number of dengue cases 

in the entire city. Barangay Guadalupe, Barangay Lahug, and 

Barangay Labangon recorded the highest total number of dengue 
cases from 2015 to 2022 as displayed in Figure 6. These three 

residential barangays are near each other, indicating a potential 

localized clustering of dengue cases in neighboring areas. This 

might be due to the possible similarity in environmental 
conditions, which could facilitate faster breeding and 

proliferation of dengue-carrying mosquitoes.  

 

 
Figure 6. Barangay-level dengue maps in Cebu City from 2015 

to 2022 

 

3.2   Relationship between dengue cases between LST, 

NDVI, NDWI, and NDBI 

 

3.2.1    Cebu City: Scatterplots showing the relationship of 

dengue cases with LST, NDVI, NDWI, and NDBI are presented 

in Figure 7. The slopes of the linear fit lines are also included in 
Figure 7, with significance levels indicated by two asterisks (**) 

denoting a p-value less than 0.01, while significance levels 

without asterisks denote a p-value greater than 0.05. The results 

indicate a weak positive correlation between dengue cases and 
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two predictor variables, LST and NDBI. The slope of 0.240 for 

LST and 0.144 for NDBI (p < 0.01) indicates that there is a small 

increase in dengue cases with increased values of LST and NDBI. 
For every unit increase in LST, there is an estimated increase of 

0.240 in dengue cases. Similarly, for every unit increase in NDBI, 

there is an estimated increase of 0.144 in dengue cases. These 

results indicate that land surface temperature and built-up areas 
may have a modest impact on dengue cases. Conversely, a weak 

negative relationship was identified between dengue cases and 

NDVI, with a slope of -0.141 (p < 0.01). This finding suggests 

that as NDVI values increase, there is a decrease in dengue cases. 
The negative association indicates that areas with higher 

vegetation density, as indicated by higher NDVI values, may be 

associated with lower dengue transmission. Moreover, a weak 

negative relationship was identified between dengue cases and 
NDWI, with a slope of -0.175 (p < 0.01). This implies that areas 

characterized by a higher amount of moisture, as indicated by 

higher NDWI values, are associated with lower dengue cases. 

The negative correlation suggests that the presence of water 
bodies or moist environments may hinder mosquito breeding and 

subsequently reduce dengue transmission. 

 

 
Figure 7. Relationship between dengue cases, LST, and other 
indices with its corresponding slope of linear fit in Cebu City 

 

3.2.2       Barangay Guadalupe, Cebu City: Figure 8 illustrates 

the scatterplots depicting the relationship between the variables 
in Barangay Guadalupe, Cebu City. The results indicate a direct 

relationship between the dengue cases and LST. The slope of 

0.474 (p > 0.05) for LST and dengue cases suggests a moderate 

positive correlation between these variables. This means that as 
LST increases, there tends to be an increase in dengue cases. 

Furthermore, there is a weak positive relationship between 

dengue cases and NDVI with a slope of 0.238 (p> 0.05). This 

means that as NDVI increases, there is a slight increase in dengue 
cases. On the other hand, dengue cases have a negative 

association with NDWI. A moderate negative correlation 

between dengue cases and NDWI with a slope of -0.486 (p> 0.05) 

implies that as NDWI values increase, there is a tendency for 
dengue cases to decrease. Moreover, a very weak negative 

relationship was identified between dengue cases and NDBI, 

with a slope of - 0.058 (p >0.05). This suggests that as NDBI 

values increase, there is a slight tendency for dengue cases to 
decrease. 

 
Figure 8. Relationship between dengue cases, LST, and other 
indices with its corresponding slope of linear fit in Barangay 

Guadalupe, Cebu City 

3.3 Linear regression analysis 

3.3.1 Cebu City: A linear regression model equation:  

 
Dengue cases = -28.436 + 2.137(LST) -13.943 

(NDVI) + 8.565 (NDWI) -10.217 (NDBI) 

 

 (6) 

was generated for predicting dengue cases using all the predictor 
variables LST, NDVI, NDWI, and NDBI for Cebu City. Using 

this equation, an increase of 1 unit in LST is associated with an 

estimated increase of 2.137 dengue cases, while an increase of 1 

unit in NDVI is associated with an estimated decrease of 13.943 
dengue cases. Similarly, an increase of 1 unit in NDWI is 

associated with an estimated increase of 8.565 dengue cases, and 

an increase of 1 unit in NDBI is associated with an estimated 

decrease of 10.217 dengue cases. The correlation coefficient, r, 
for this linear regression model equation, is only 0.243, 

suggesting a weak positive linear relationship between the 

predictor variables and dengue cases. However, the coefficient of 

determination (r-squared) is 0.059, indicating that only 5.9% of 
the variation in dengue cases can be explained by the linear 

regression model using LST, NDVI, NDWI, and NDBI as 

predictors. The adjusted R-squared value, which considers the 

number of predictor variables and the sample size, is 0.052. This 
indicates that when accounting for model complexity and sample 

size, only 5.2% of the variation in dengue cases is genuinely 

explained by the selected predictors. The low correlation 

coefficient, r-squared, and adjusted r-squared suggest that the 
model may not capture the full complexity of the factors 

influencing dengue cases. 

 

3.3.2 Barangay Guadalupe, Cebu City: The linear 
regression model equation, 

 

Dengue cases = -233.370 + 45.038(LST) - 

1524.228(NDVI) - 5260.832(NDWI) + 
325.038(NDBI) 

 (7) 

 

was generated for predicting dengue cases using the all predictor 

variables LST, NDVI, NDWI, and NDBI specifically for 
Barangay Guadalupe, Cebu. Similar to the first equation, the 

coefficients in the equation indicate the estimated impact of each 

predictor variable on dengue cases. The correlation coefficient (r) 

is 0.986, indicating a strong positive linear relationship between 
the predictor variables and dengue cases. The coefficient of 

determination (r-squared) is 0.973, suggesting that 

approximately 97.3% of the variation in dengue cases can be 

explained by the linear regression model using LST, NDVI, 
NDWI, and NDBI as predictors. The adjusted R-squared value is 

0.937. This suggests that when considering model complexity 

and sample size, approximately 93.7% of the variation in dengue 

cases is explained by the selected predictors. These results 
indicate a strong relationship between the predictor variables and 

dengue cases, with the model accounting for a significant portion 

of the variation in dengue cases. The high adjusted R-squared 

value suggests that the selected predictors have substantial 
predictive power for dengue cases in Barangay Guadalupe. 

 

4. CONCLUSION 

Through spatial and temporal analysis of dengue cases, the study 

showed that Barangays Guadalupe, Labangon, and Lahug are the 

prominent dengue hotspots within Cebu City. The comparative 

analysis of dengue cases and other indices indicated a weak 
positive linear relationship between dengue cases, LST, and 

NDBI, while weak inverse relationships were observed between 

dengue cases and the NDVI as well as NDWI. Through a focused 
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comparative analysis of dengue cases in Barangay Guadalupe, 

Cebu City, the relationship between dengue cases and the 

aforementioned indices was identified. Dengue cases exhibited a 
moderate positive relationship with LST, a weak positive 

relationship with NDVI, and a weak negative relationship with 

NDWI. The results of this study yield valuable insights into the 

relationship between dengue cases and key environmental factors 
such as LST, NDVI, NDWI, and NDBI. While there is a weak 

correlation between dengue and these indices when the entirety 

of Cebu City is considered, at the level of Barangay Guadalupe, 

the generated linear regression equation may be valuable for 
policy-makers in addressing the number of dengue cases per year 

in their area. 
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APPENDIX 

Table 1. Identification numbers and barangay names in Cebu 

City 
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