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ABSTRACT: 

 

Regression models are commonly used to estimate unknown variables, such as environmental parameters. Multiple Linear Regression 

(MLR) is one of the techniques used to model air quality and measure air pollutant concentrations. Specifically, a technique called 

Land-Use Regression (LUR) enables the user to generate air pollutant models using geographical layers as input parameters. The study 

aims to generate models for fine and coarse particulate matter (PM2.5 and PM10, respectively) using LUR for the National Capital 

Region in 2019. Independent variables considered in this study are road network, traffic count, Normalized Difference Vegetation 

Index (NDVI), population density, and elevation. The final model results showed significant estimates based on the model parameters. 

For PM2.5, the model resulted in high values of R2 and adjusted R2 and an RMSE of 0.77 µg/m3. For PM10, model parameters showed 

that the generated final model for PM10 was significant with a 55% R2 value. Maps were then generated using the final LUR models 

of PM2.5 and PM10. The models can be improved by adding more types of input variables and longer observation periods. 

 

 

1. INTRODUCTION 

Statistical methods are used to model unknown variables and 

determine their values by identifying their relationship to another 

variable. The most common technique is regression modeling, 

where the relationship between a dependent and independent 

variable is explained by fitting the values to a line or curve, which 

can then be used to estimate the values of the dependent variable. 

Regression models are also useful for predicting outcomes and 

understanding the effect of one or more independent variables by 

controlling each of the input variables based on the researcher’s 

needs. The most basic type of regression analysis is linear 

regression analysis.  

 

Linear regression analysis examines the relationship between a 

dependent variable and one independent variable by fitting the 

values along a straight line. It is affected by the sample size, 

missing data, and nature of the sample used. Specifically, a small 

sample size might not be enough to determine the relationship 

between variables with a weak relationship (Ali and Younas, 

2021). Multiple linear regression (MLR) is just a variation of 

linear regression analysis using multiple independent variables 

instead of only one. Assumptions of multicollinearity, 

homoscedasticity, and normality of residuals must be taken into 

account to accurately assess the models. Multicollinearity is the 

close correlation of the independent variables in a regression 

model, while homoscedasticity is the case where the variance of 

the error or residual is constant (Aarthi et al., 2020).   

 

Land-Use Regression (LUR) is a type of MLR used to analyze 

pollution patterns and estimate pollutant concentrations in a 

heavily urbanized area. Moreover, LUR is an algorithm that 

utilizes geographic and urban setting predictors in estimating and 

analyzing ambient air pollution for applications such as human 

pollution exposure assessment and public health studies (Hoek et 

al., 2008; Ryan and LeMasters, 2007). LUR relies on Geographic 

Information Systems (GIS) for the input geographical and 

environmental variables. LUR models involve various input 

variables such as road networks, traffic volumes, population data, 

land-use, physical geography, and meteorology to generate air 

quality parameter estimates accurately based on the 

characteristics of the target area (Masiol et al., 2018).  

 

Various studies have shown the results of regression techniques 

for measuring air pollutant concentrations.  In 2019, a study used 

Moderate Resolution Imaging Spectroradiometer (MODIS)-

derived aerosol optical depth (AOD) data at 3 km and 10 km, 

together with meteorological parameters such as planetary 

boundary layer, surface temperature, and surface wind speed, to 

estimate PM2.5 concentrations over Turkey (Zeydan and Wang, 

2019). The best model resulted in an R2 of 0.61 with p < 0.001 

and an RMSE of 0.337 μg/m3. In 2020, a study tested simple 

linear regression, multiple linear regression, log-linear 

regression, and conditional-based MLR to estimate PM2.5 

concentrations from satellite-derived AOD in Agra and 

Rourkela, India, from 2015 to 2019 (Gogikar et al., 2021). 

Results showed that the models generated were all significant 

using Model II or MLR. Specifically, calculated R resulted in 

being statistically significant for both sites during training and 

validation.  

 

For LUR, a study used road length, vehicle density, land use, and 

population density as input features of regression modeling to 

determine the NO, NO2, PM2.5, and light absorption estimates in 

Vancouver, Canada (Henderson et al., 2007). Specifically, the 

researchers used two road types (highways and major roads), two 

vehicle types (automobiles and trucks), and five land use types 

(residential, commercial, governmental, industrial, and open). 

The resulting adjusted R2 of the models showed values of 0.39 to 

0.62, with NO maps showing a more heterogeneous distribution 

than NO2. Another study gathered predictor variables that were 

divided into data categories: (1) weather parameters; (2) 

atmospheric sounding indices; (3) land use; (4) road traffic 

density; (5) emission sources of marine and power stations; (6) 

natural geography; (7) and urban surface form (Shi Y. et al., 

2018). For the study, MODIS AOD products from 2003 to 2015 
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were used, together with an extensive LUR variable database 

containing 294 variables. The resulting improved annual and 

seasonal AOD-LUR models showed significant improvement in 

the model-adjusted coefficient of determination by 

approximately 20-30%. Calibrated AOD-PM2.5 models showed 

an adjusted R2 value of 0.72 using the geographically and 

temporally weighted regression (GTWR). 

 

LUR includes several pre-processing and modeling processes 

that can be tedious and time-consuming. One of the tools that is 

reliable and efficient for performing LUR modeling is the XLUR 

Tool, implemented through Python scripts. A research in 2021 

demonstrated the use of XLUR tool in generating PM10 models 

in Greater Manchester (Motler and Lindley, 2021). The study 

showed how the model was built through standard publishing 

protocols and how accurate the models were. Moreover, the 

researchers used input variables such as Corine land-use, 

Openstreetmap land-use, population density, road length (major 

and minor), vehicle traffic, and altitude. The final model included 

the number of buses on the nearest major road, the number of 

heavy vehicles on the nearest major road * inverse distance to the 

nearest major road, the Corine natural land use area in a 1000 m 

buffer, the Y coordinate, and the Corine High density residential 

land use in a 100 m buffer. 

 

The study aims to perform LUR analysis to generate PM2.5 and 

PM10 models and maps for the National Capital Region in 2019 

using road network, traffic count, NDVI, population density, and 

elevation as the independent variables. 

 

 

2. METHODOLOGY 

2.1 Study Area 

Figure 1 shows the National Capital Region located in the 

Philippines using © Microsoft Bing VirtualEarth (2023) and the 

air quality monitoring stations within the region. The National 

Capital Region (NCR) includes the capital city of the Philippines 

and is home to the residential, commercial, and industrial centers 

in the country. Specifically, major parts of the region involve 

urban development activities and industrial activities, while other 

areas are suitable for crop cultivation, such as the Marikina 

Valley areas. The region near Manila Bay called the Coastal 

Margin includes activities for offshore fisheries, fishponds, and 

reclamation projects, while the Marikina River provides water for 

industrial uses and discharge.   

 

According to the Coronas classification, NCR is identified as 

Climate Type 1, which means the area has two distinct seasons: 

dry and wet. The dry season lasts from November to April, while 

the wet season lasts from May to October, with the months of 

June to September as the maximum rain period (PAGASA, 2014; 

Tolentino et al., 2016). 

 

A study done by Greenpeace, a global organization that aims to 

address and solve environmental problems through peaceful 

protest and creative confrontation,  showed that the average 

pollution level in the region reached 17.6 µg/m3 in 2019, which 

even peaked at 117 µg/m3 on the New Year’s Eve. Moreover, the 

study showed that the region’s air pollution contributed to at most 

27,000 deaths in 2018 (Greenpeace, 2020).  

 
Figure 1. The National Capital Region and PM monitoring 

stations of the region (Base map source: Microsoft Bing 

VirtualEarth, 2023). 

 

2.2 Model Variables 

XLUR allows the use of both raster and vector data for the input 

variables. Five datasets were used as the independent variables 

for the LUR modeling. The road network data line shapefile and 

population density raster were gathered from an online database. 

Roads were categorized based on their classification as primary, 

secondary, or tertiary roads. The traffic count was derived from 

the annual average daily traffic (AADT) file obtained from the 

Metropolitan Manila Development Authority (MMDA). Traffic 

count was categorized based on the vehicle type, namely: cars, 

public utility jeepneys (PUJ), utility vehicles (UV), taxis, public 

utility buses (PUB), trucks, trailers, motorcycles (MC), and 

tricycles. The normalized difference vegetation index (NDVI) 

was derived from Sentinel-3 images, which indicate how healthy 

and dense vegetation is in urban areas. Elevation data was 

gathered from the elevation models of the National Mapping and 

Resource Information Authority (NAMRIA).  

 

2.3 Buffered-based Analysis 

Figure 2 shows the general methodology for the estimation of 

PM2.5 and PM10 using LUR for NCR, 2019. For raster-type input 

variables, the value of the raster cells is directly extracted and 

used for the generation of the model; however, vector data  
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predictor variable values are extracted through buffers or nearest-

distance set by the user. The vector file should contain a category 

field based on the feature and may contain numeric fields. The 

aggregation methods can be total length, length-weighted value, 

the product of length and value, sum of values, or mean or median 

of values. If the chosen aggregation method is anything besides 

total length, a numeric field is required. In this study, buffer-

based predictors were derived from the road network and traffic 

count line shapefiles. Buffers of 100, 200, 300, 400, 500, 600, 

700, 800, 900, and 1000 meters were generated. For the road 

network, the total length for each buffer and each category was 

calculated and used as input parameters. For the traffic count, the 

length-weighted value was calculated by multiplying the count 

value of the line by the ratio of the length of the line inside the 

buffer over the total length of the line.  

 

2.4 Building LUR models 

The LUR modeling workflow was accomplished using XLUR 

Wizard. XLUR Wizard is a tool within the ArcGIS software that 

provides step-by-step functions for building and applying LUR 

models. It is a Python-based LUR modeling toolkit that consists 

of two main scripts, the BuildLUR and the ApplyLUR scripts.  

 

In general, the BuildLUR tool specifies the input data that was 

provided by the user, containing monitored data points, study 

area polygons, and potential predictors. The script also creates a 

new file geodatabase to avoid overwriting the original data. 

Afterwards, BuildLUR will perform spatial analyses set by the 

user, such as buffer, intersect, spatial join, and nearest distance, 

which are exported to a SQLite database. Then, outputs are 

summarized and structured into formats suitable for statistical 

analysis. MLR with supervised variable selection based on the 

ESCAPE methodology is then performed using the statmodels 

package (Eeftens et al., 2012). Finally, final models are stored in 

the SQLite database together with a processing log, descriptive 

statistics, and model diagnostics saved in the user-defined output 

folder.  

Specifically, the first dialog box of the BuildLUR Wizard is 

concerned with the directories of input and output geodatabases, 

coordinate system assignment, setting of the study area, and 

project name. The user must assign a coordinate system by 

inputting the respective WKID number. The study area must be 

a polygon shapefile. The second box of the wizard is dedicated 

to the outcomes. In this box, the dependent variable shapefile is 

selected, and the concentration field is specified. Each 

observation point must be a unique location, or no spatial 

duplicates should be present within the extent of the study area. 

Predictor variables for the X coordinate and Y coordinate of each 

site are also automatically added as variables. Missing, zero, or 

negative values will result in a warning message that can be 

accepted by the user. At least eight values or observation points 

are required to proceed to the next step. The dependent variable 

or monitoring station data were obtained from the Department of 

Natural Resources and Environment – Environmental 

Management Bureau (DENR-EMB). Eight and thirteen 

observation points for the ground fine PM2.5 and coarse PM10 

data, respectively, were gathered from the Continuous Air 

Monitoring Stations (CAMS) of the department. Yearly 

aggregates for each station were computed from the hourly 

ground monitoring station data for 2019.  

 

The next step specifies the input variables to be used in the LUR 

modeling. In this step, the buffer-based, distance-based, or raster-

based predictors are selected. Moreover, for each predictor 

variable, the direction of effect is set to either a positive or 

negative direction of effect based on the user’s priori assumption 

for each predictor variable. The direction of effect is important in 

the model selection criteria in the statistical analysis. Afterwards, 

the model can be generated based on the type of model the user 

selected.  

 

A summary of the input variables used in building the LUR 

models can be seen in Table 1. The road network is assumed to 

have a positive direction of effect, as more roads around a point 

imply more mobile transport, causing an increase in air pollutant 

concentrations. Similarly, traffic count is assumed to  

Figure 2. General methodology for the generation of LUR models for PM2.5 and PM10. 
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have a positive direction of effect. Population density is given a 

positive direction of effect as highly populated areas commonly 

result in air pollution hotspots. On the other hand, NDVI is 

assumed to have a negative direction of effect, as a more 

vegetative area indicates lower air pollutant concentration. 

Lastly, it is assumed that the air pollutants are more concentrated 

near the roads where vehicle exhausts are present.  

 

2.5 Applying LUR models 

The ApplyLUR tool starts with the user specifying locations 

where predicted values will be extracted, called receptor sites. 

Receptor sites can come from specified points defined by the 

user, generated randomly or at regular intervals. The final models 

stored in the database are then inspected to carry out the 

necessary spatial analyses based on the predictor variables of the 

final models. Outputs are exported to a new SQLite database, 

where they are summarized and structured once again into the 

necessary predictor variables. The final models are then applied 

to predict a value for each receptor site. Finally, predicted values 

can be mapped and accessed in the file geodatabase.  

 

Specifically, the first dialog box of the ApplyLUR Wizard is for 

the specification of  the generated model by loading the file 

geodatabase as well as the SQLite database and selecting the 

LUR model inside it. After setting the output name, the receptor 

points must be identified. The points can be loaded using a 

feature class created by specifying the horizontal and vertical 

distances between the points or randomly scattered within the 

study area. In this study, a 1000-meter distance between the 

receptor points was selected. Afterwards, the model can be 

applied, and estimates for the receptor points will be generated. 

 

 

3. RESULTS AND DISCUSSION 

LUR models were generated for PM2.5 and PM10 for 2019 using 

road network, traffic count, NDVI, population density, and 

elevation as the independent variables. A total of 121 

independent variables were used to determine the best model to 

estimate PM concentrations. Table 1 shows the model parameters 

for the starting model and final model for PM2.5 estimation using 

LUR. The coefficient of determination (R2) is a statistical 

parameter that shows the goodness of fit of the data to the 

regression model through the proportion of variance in the 

dependent variable that is explained by the independent variable. 

On the other hand, adjusted R2 only considers the effect of 

significant independent variables on the regression model and 

shows if the model is still accurate even when adding multiple 

independent variables. The closer the value of R2 is to 1, the 

better the fit. F-statistic is a measure used to check if the 

regression coefficients in the models are significant. The p-value 

indicates if the regression model fits the data better than a model 

with no independent variables; hence, a p-value less than the 

determined significance level means that the independent 

variables in the model improved the fit. The Akaike Information 

Criterion (AIC) and Bayesian Information Criterion (BIC) are 

criteria to determine which model fits the data the best by testing 

which model stayed accurate even with the addition of 

independent variables to the model. The lower the AIC or BIC, 

the better the model.  

 

For PM2.5, the starting model resulted in an R2 value of 0.768 and 

an adjusted R2 of 0.729 with the best starting predictor of tertiary-

type roads with a 300-meter buffer. Sixteen (16) intermediate 

models were then tested and evaluated until there were no 

significant changes and all p-values were less than 1. In general, 

the resulting parameters for the final model showed better fit than 

the starting model. The final model results showed significant 

estimates based on the model parameters, as shown in Table 2. 

Specifically, the model resulted in high values of R2 and adjusted 

R2 and an RMSE of 0.77 µg/m3. Overfitting might be present as 

the R2 values were very high; however, when residuals were 

inspected for each monitoring station, low residual values with 

magnitudes of 0.001 to 0.29 µg/m3 were observed. P-values less 

Variable Category Unit Buffers (m) Assumed direction of effect 

Road Network Primary 

Secondary 

Tertiary 

Meters 100, 200, 300, 400, 500, 600, 700, 

800, 900, 1000 

Positive 

Traffic Count Cars 

PUJ 

UV 

Taxi 

PUB 

Truck 

Trailer 

MC 

Tricycle 

No. of vehicles 100, 200, 300, 400, 500, 600, 700, 

800, 900, 1000 

Positive 

NDVI - - - Negative 

Population Density - People per sq. 

km 

- Positive 

Elevation  - Meters - Negative 

PM2.5 and PM10 Dependent 

Variable 

µg/m3 - - 

Table 1. Input variables for the LUR modeling of PM2.5 and PM10. 
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than 0.01 mean that the independent variables are significant with 

a significance level of 1%. The AIC and BIC of the final models 

are much lower than the starting model, indicating that the final 

model is the best model for estimating PM2.5. The final predictor 

variables for PM2.5 are tertiary-type road networks with 300m 

buffer, population density, secondary-type road networks with 

100m buffer, and elevation. All predictor variables showed a 

positive correlation with PM2.5 and acceptable VIF of less than 

10, which indicates that multicollinearity is not present in the 

model and each individual parameter is not closely related to each 

other.  

 

Parameter Starting Model Final Model 

R2 0.768 1 

Adj. R2 0.729 0.999 

F-statistic 19.85 1585 

p-value (F-

statistic) 

0.00431 

 

0.000631 

AIC 49.79 3.193 

BIC 49.95 3.67 

Table 2. Starting and final model parameters for PM2.5 using 

LUR. 

 

Table 3 specifically shows the final predictor variables along 

with their coefficient, standard error, t-value, and p-value. The T-

value and p-value are statistical measures to determine if the 

remaining independent variables have a significant effect on the 

model. The table shows that all independent variables in the final 

model are significant at 5% significance level.  

 

 Coefficient 

Std. 

Error t P>|t| 

Intercept 626.1976 34.447 18.179 0.003 

Road 

Network - 

Tertiary: 

300 m 

0.0119 0 38.758 0.001 

Population 

Density 

0.0001 2.06E-05 6.035 0.026 

Road 

Network - 

Secondary

: 1000 m 

0.0019 0 17.766 0.003 

Y 

coordinate 

-0.0004 2.11E-05 -

17.908 

0.003 

Elevation -0.1685 0.018 -9.118 0.012 

Table 3. Final model coefficient parameters for PM2.5 using 

LUR. 

 

Figure 3 shows the predicted vs. observed plot of PM2.5 using 

Leave One Out Cross-Validation (LOOCV). LOOCV is a cross-

validation technique where each individual observation is used as 

a validation set while the rest of the observations are used as a 

training set. The LOOCV shows high R2 and very low RMSE 

results, indicating an accurate model.  

 
Figure 3. Predicted vs. Observed PM2.5 concentrations using 

LUR and LOOCV. 

 

Table 4 shows the final model parameters for PM10 using LUR. 

The starting PM10 model resulted in an R2 of 0.552 and an 

adjusted R2 of 0.51 with the starting predictor variable of 

population density. One hundred eighty-one (181) intermediate 

models were tested, with the resulting intermediate model 

including population density, secondary-type roads with a 300-

meter buffer, and elevation as predictor variables. However, only 

population density was significant to the model with a p-value 

less than 0.1; therefore, the starting model is the final model. 

Model parameters showed that the generated final model for 

PM10 was significant with a 55% R2 value. Residual values were 

checked for each monitoring station. Residual values resulted in 

magnitudes relatively low for PM10 with a range of 0 to 100 

µg/m3. As low as 0.08 µg/m3 residual was observed in the Pateros 

station; however, high residual values can be observed in the 

Pasay and Pasig stations.  

 

Parameter Value 

R2 0.552 

Adj. R2 0.551 

F-statistic 13.56 

p-value (F-statistic) 0.00361 

AIC 94.42 

BIC 95.55 

Table 4. Final model parameters for PM10 using LUR. 

 

Table 5 shows the coefficients of the generated best model for 

PM10. The table showed a significant independent variable at 

significance level of 1%. Figure 4 shows the LOOCV predicted 

vs. observed PM10. It shows an adjusted R2 of 37% and an RMSE 

of 9.01.  

 

 

Coefficient 

Std. 

Error t P>|t| 

Intercept 26.2568 6.367 4.124 0.002 

Population 

Density 0.0007 0 3.682 0.004 

Table 5. Final model coefficient parameters for PM10 using 

LUR. 
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Figure 4. Predicted vs. Observed PM10 concentrations using 

LUR and LOOCV. 

 

Maps were then generated using the final LUR models of PM2.5 

and PM10 as shown in Figures 5 and 6. High concentrations of 

PM are shown in bright red to white, while low concentration 

values are shown in dark red-violet to black. Even though the 

generated PM10 map was only estimated using population 

density, the map still showed a similar pattern to the PM2.5, 

displaying the same areas with the highest concentration. Maps 

showed high concentrations in the Manila area (in Figure 7), 

Quezon City Circle area (in Figure 8), Navotas fish port (in 

Figure 9), and the roads near National Road 1 and Skyway (in 

Figure 10). These are areas where there are highly dense 

population, commercial and industrial activity, and mobile 

transport. Specifically, in 2019, the satellite navigation company, 

TomTom NV, determined Manila as the second world’s most 

traffic-congested city (Esguerra, 2020).  

  

  
Figure 5. Generated PM2.5 using LUR modeling. 

 

  
Figure 6. Generated PM10 map using LUR modeling. 

 

 
 Figure 7. Generated PM2.5 map (left) and OpenStreetMap View 

(right) of Manila City area. 

 

 
Figure 8. Generated PM2.5 map (left) and OpenStreetMap View 

(right) of Quezon City area. 

 

 
Figure 9. Generated PM2.5 map (left) and OpenStreetMap View 

(right) of Navotas Fishport area. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W8-2023 
Philippine Geomatics Symposium (PhilGEOS) 2023, 6–7 December 2023, Diliman, Quezon City, Philippines

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W8-2023-437-2024 | © Author(s) 2024. CC BY 4.0 License.

 
442



 

 
Figure 10. Generated PM2.5 map (left) and OpenStreetMap 

View (right) of Alabang area. 

 

 

4. CONCLUSIONS 

PM2.5 and PM10 models and maps were generated using LUR 

modeling with input population density, elevation, NDVI, annual 

average daily traffic, and road network as predictor variables. 

PM2.5 final model resulted in a high R2 value, a low RMSE, and 

very low residuals when compared to the observed PM2.5 values 

of the monitoring stations. Final model independent variables 

include road network – tertiary: 300m, road network – secondary: 

1000m, population density, and elevation.  PM10 resulted in a 

lower R2 value but still showed relatively small RMSE values. 

Moreover, the resulting final model independent variable only 

includes population density. This might imply that the PM10 

model has difficulty taking into account the larger range of PM10 

which is greater than 100 µg/m3. The maps generated can be used 

to initially determine areas with high concentrations and 

hotspots. Generated PM maps showed that the area of Manila 

City had the highest concentration in the region, which might be 

due to its nature of being highly urbanized and densely populated. 

Additional input parameters, such as meteorological data and 

land-use, as well as additional observation periods, can be used 

for future studies to improve the models.  
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