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ABSTRACT: 

 
Population censuses serve as pivotal repositories for demographic and socioeconomic information. Conducted quinquennially in the 
Philippines, these censuses aggregate population data into administrative units, with the barangay as the smallest unit. However, this 

aggregation, when used in analyses, often presumes homogeneity within these units, potentially leading to overgeneralized results. 

With the advent of micro-level data, such as building-specific population counts, more nuanced spatial analyses become feasible. This 

study leveraged existing mathematical model to estimate residential building populations in Quezon City, utilizing 3D building 
information derived from elevation models, building footprints, local regulations, and land use types. The study yielded promising 

results, achieving a normalized absolute error (NAE) of 0.133 and an R2 value of approximately 0.976, indicating a high degree of 

model accuracy. However, the model also revealed systematic biases, notably underestimating populations in high-density areas and 

overestimating in low-density barangays. These findings underscore the complexity of factors influencing the model's performance, 
ranging from building digitization errors to assumptions about floor height and living area per person. The study thereby elucidates 

the valuable role that 3D building information can play in disaggregating population data for more granular analyses, while also 

highlighting areas for further model refinement to mitigate issues of overestimation and underestimation. 

 
 

1. INTRODUCTION 

1.1 Background of the Study 

 

Urban environments are intrinsically dynamic systems, shaped 

by the complex interactions between human activities, natural 

elements, and built structures. Serving as vital economic nodes, 
these cities accommodate large populations and act as catalysts 

for social and economic progress. These areas are not only 

distinguished by high population density but also by the 

proliferation of built infrastructure, signifying economic 
development. With advancements in technology, the availability 

of 3D data—acquired through various means such as Light 

Detection and Ranging (LiDAR)—has opened new avenues for 

the nuanced understanding of urban landscapes (Chen, et al., 
2021; Hanif, et al, 2021; Tomás, et al., 2015) 

 

Amidst rapid urbanization, particularly in developing countries, 
numerous challenges related to human and infrastructure 

development emerge. 3D data can provide invaluable geometric 

and semantic information that allow for intricate spatial analyses 

in the built environment. To extend these analyses beyond 
physical structures and into human-centric considerations, it is 

imperative to understand population distribution and behavior. 

The geometric characteristics provided by 3D data can enable 

the estimation of population counts within specific buildings or 
areas (Lwin, et al., 2009; Qiu, et al., 2010; Zhao, et al., 2017). 

 

Traditional approaches for assessing population have relied 

heavily on household surveys, which determine the number of 
individuals per household but lack spatial granularity. These data 

are typically aggregated to larger administrative units, limiting 

their utility for fine-grained analyses. To address this 

shortcoming, various methodologies have been employed, such 
as areal interpolation and statistical modeling. Areal 

interpolation reallocates aggregated census data to smaller 

administrative units and may incorporate additional data 

depending on the method employed. However, the efficacy of 

this approach is constrained by the quality and currency of the 

census data available (Wardrop et al., 2018). Statistical 
modeling, on the other hand, uses socioeconomic variables to 

estimate population numbers, employing existing census data for 

model training. Factors such as urban area, land use, dwelling 

units, and image pixel characteristics are correlated to produce 
population estimates (Wu, et al, 2005). 

 

Considering the limitations inherent in traditional population 

data, this research investigates an avenue for enhancing the 
granularity of demographic data: the utilization of 3D 

information to generate building-specific population estimates. 

By aligning 3D building data with current census data, the 
research aims to bridge the gap between broad administrative 

units and the intricacies of population distribution within 

individual structures. This strategy promises to furnish a more 

nuanced and detailed portrait of urban demographics, thereby 
contributing to the refinement of existing methods for 

demographic analysis. 

 

1.2 Objectives 

 

The primary objective of this research is to assess the efficacy of 

utilizing 3D building data to derive building-specific population 

estimates, thereby enhancing the granularity in the context of 
urban demographics. Recognizing the limitations inherent in 

traditionally published census data, which often lack fine-grained 

spatial resolution and are aggregated to larger administrative 

units, this research seeks to explore how the integration of 
available 3D building data—acquired through technologies such 

as Light Detection and Ranging (LiDAR)—can compensate for 

these shortcomings. 
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1.3 Scope and Limitations 

 

The research is constrained by several limitations that warrant 

discussion. First, it relies on an existing mathematical model to 

generate population estimates based on building geometry, 
which itself is derived from building footprint areas and heights 

extracted from the surface models. The raw data employed in 

this study were sourced from various government databases, and 

no validation information was published for these datasets, thus 
the reliability of the research outcomes is contingent on the 

quality of the utilized data. 

Furthermore, the study assumes that all digitized building 

footprints corresponding to residential, socialized housing, and 
informal settlement land uses are occupied. This assumption 

could introduce a degree of error into the population estimates. 

Due to privacy concerns, no microdata on individual buildings 

were available; as a result, the model relies on aggregated data 
and prescribed standards, potentially affecting the granularity 

and accuracy of the findings. These limitations should be 

considered when interpreting the results and could serve as 

avenues for future research to refine the methodological 

approach. 

 

2. MATERIALS AND METHODS 

 

2.1 Study Area 

 

The study centers on Quezon City, Philippines, located in the 

northeastern part of Metro Manila and the largest city in the 
National Capital Region, covering 171.71 square meters. 

Politically, it's divided into six congressional districts and 142 

barangays, the country's smallest administrative units. 

According to the 2015 Population and Housing Census, Quezon 
City had the highest population in the region with 2,936,116 

people, nearly 25% of the National Capital Region's total and 

about 3% of the country's population. Five of its barangays rank 

among the ten most populous in the region. 
 

Households are estimated to be 683,126 which give Quezon City 

an average household size of 4.3, slightly lower than the average 

household size of 4.4 of the country (Philippine Statistics 
Authority, 2015). According to the reported 2009 actual land use 

of the city, these households account for 27.43% of its total land 

area, and continued residential densification is seen as evidenced 

by construction of subdivisions and condominiums. 

 
Figure 1. Population Density classification per barangay (left) 

Actual Land use Map (right) of Quezon City 

2.2 Data Used 

 

The data utilized in this study are summarized below. The extents 

of the administrative boundaries were provided by the Land 

Management Bureau and are coded in accordance with the 
Philippine Geographic Standard Code (PSGC). These codes also 

serve as the basis for the national census. 

 

 

Data Year Source 

1-m resolution DTM and DSM of 

Quezon City 
2011 NAMRIA 

Administrative boundaries 2016 OCHA/LMB 

Population and housing Census 2015 PSA 

Actual Land Use Map 2009 QC LGU 

Building footprints 2015 OSM 

Table 1. Data Used 

 

2.3 General Workflow 

 

The general workflow in the estimation and visualization of 

building population counts is shown in Figure 2.  

Figure 2. General Workflow 

2.4 Data Pre-processing 

 

During the data pre-processing for the study, a normalized 

Digital Surface Model (nDSM) was derived from NAMRIA's 

elevation models by subtracting the Digital Terrain Model 
(DTM) from the Digital Surface Model (DSM). These 1-m 

resolution elevation models were obtained from NAMRIA as 

processed by Fugro Spatial Solutions from the LiDAR survey 

conducted in Greater Metro Manila Area (GMMA).  
 

 
Figure 3. Normalized Digital Surface Model of Quezon City 

The building footprints employed in this study were sourced 

from OpenStreetMap, having been digitized by an array of local 
volunteer mappers and subsequently verified through both aerial 

imagery and field validations. 

Within the study area, a total of 392,836 buildings were initially 

identified. However, the research focus is on estimating 
residential building population counts, necessitating the 

exclusion of non-residential building footprints. This filtering 

process was conducted through two primary means: (1) using the 

attribute building-type tags available in the OpenStreetMap data, 
and (2) leveraging an actual land-use map provided by the 

Data Pre-
processing

Population 
Estimation

Assessment Visualization
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Quezon City Local Government Unit (LGU). The first method 
proved to be less effective, as only approximately 2% of the total 

building count carried such tags. Consequently, the filtering 

process was primarily guided by the digitized land-use map. 

Buildings that did not fall within the categories of Residential 1-
3, Socialized Housing, and Informal Settlements were removed. 

As a result, a total of 377,105 building footprints were 

determined to be residential units. 

Measurements of building dimensions were integral to the 
population estimation process. Specifically, the height, area, and 

volume of each residential unit were ascertained. The area was 

derived from the geometry contained in the vector files, with the 

assumption that these footprints represent the gross area of the 
respective residential units. Heights, conversely, were obtained 

from cell values encompassed by the building footprints. To 

mitigate the influence of outliers on the height values, a median 

zonal statistic was employed for aggregation. Utilizing these 
extracted area and median height values, the volumes of the 

buildings were subsequently calculated. 

 
Figure 4. Building volumes of residential units in Quezon City 

Population data, sourced from national household surveys 
conducted every five years by the Philippine Statistics Authority, 

are aggregated to administrative units and disclosed in summary 

reports. This population information, when integrated with the 

three-dimensional attributes of the buildings, is processed 
through the subsequent models to disaggregate population 

counts down to the individual building level. 

 

 
Figure 5. Population Count Per Barangay in Quezon City 

 

 

2.5 Population Estimation 

 

The mathematical relationship built by Wang, et al. (2016) was 

utilized to estimate the number of people residing on a dwelling 

unit spatially identified. The estimated population count per 

residential unit was computed using the equation below: 

  𝐵𝑃𝑂𝑃𝑀𝑂𝐷 =
𝐵𝐴𝑅𝐸𝐴

𝐵𝐿𝐴𝐵𝐺𝑌

𝑋
𝐵𝐻𝐺𝑇

𝐵𝐴𝐻𝐿𝑈

+ 𝐶  (1) 

 

Where 𝐵𝑃𝑂𝑃𝑀𝑂𝐷 is the estimated population inside the residential 

building, 𝐵𝐴𝑅𝐸𝐴 the floor area of the building, and 𝐵𝐻𝐺𝑇 the 

median height of the building from nDSM. Moreover, 𝐵𝐿𝐴𝐵𝐺𝑌
 is 

the living area of each person in the barangay, and 𝐵𝐴𝐻𝐿𝑈
 is the 

height of the floor based on the land use classification of the 

residential building. The constant C term is identified by 

comparing the statistical population sum with the published total 
population count to account for volume-preserving and 

pycnophylactic properties identified by Tobler when estimating 

population counts over irregular-bounded administrative units. 

 

To refine the population estimation, unique values of 𝐵𝐿𝐴𝐵𝐺𝑌
 for 

each barangay were computed.   

 𝐵𝐿𝐴𝐵𝐺𝑌
 =  

∑ 𝐵𝐴𝑅𝐸𝐴
𝑛
1

𝑛

𝐴𝑣𝑒.ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑠𝑖𝑧𝑒,𝐵𝐺𝑌 
  (2) 

 

where 𝐵𝐿𝐴𝐵𝐺𝑌
 living area per person of the barangay, the dividend 

being the average floor area of the buildings in the barangay and 

the divisor being the average household size of the barangay 
based on the published values from the 2015 national census.  

 

Originally, 𝐵𝐴𝐻𝐿𝑈
 shall be computed based on the floor-height 

relationship characteristics of residential units per barangay. 
However, since there is no published data on these, assumptions 

were made depending on the land use of the residential unit. The 

following 𝐵𝐴𝐻𝐿𝑈
values were used: 

 

 

Land Use 𝑩𝑨𝑯𝑳𝑼
(m) 

R1, R2, R3, SH 3.00 

IS 2.20 

Table 2. Floor height values based on land use classification 
 

Since the model may yield float values of the building population 

count, in the interest of identifying people as integer units, 

population counts were rounded down to the nearest integer.  
 

2.6 Assessment 

 

To evaluate the accuracy of the implemented models, several 
classical performance metrics were utilized: 

 

• RE (Relative Error): Measures the percentage error 

between the model's population count and the actual 

values. Barangays are categorized as either poorly 
overestimated or underestimated if the values exceed 

or are below 30%, respectively. 

• R2: Assesses the correlation between model estimates 

and census values, ranging from 0 to 1. A value of 0 
indicates no correlation between the model and actual 

counts. 

• TAE (Total Absolute Error): Calculates the sum of all 

absolute differences between the model's estimates and 

census data. 
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• NAE (Normalized Absolute Error): Transforms the 

TAE into a relative metric by expressing it as a 
percentage of the total population. 

 

It's important to note that while public use files containing 

microdata on household populations are available upon request, 
these files lack building-level spatial information to safeguard 

privacy concerns. The absence of ground truth data at the 

building level necessitates a different approach for validation. 

Specifically, the absence is largely due to privacy constraints that 
preclude the collection and publication of such granular spatial 

data and the considerable manpower and financial resources 

required to gather such granular information across an entire 

city. 
 

As a result, the evaluation relies on a comparison between the 

aggregated estimated counts per barangay and the corresponding 

published population counts.  The rationale for this lies in the 
presumption that if the model accurately predicts population at 

the aggregate barangay level, its estimations at the more granular 

building level are likely to exhibit similar accuracy.  

 
 

3. RESULTS AND DISCUSSION 

 

3.1 Model Performance 

 

Equations 1 and 2 were applied to all delineated residential 

structures to compute their respective population counts. These 

computational estimates were subsequently aggregated at the 
barangay level and juxtaposed with officially published 

population figures. Summarized in Table 3 are key performance 

metrics including the R2 value, Total Absolute Error (TAE), and 

Normalized Absolute Error (NAE), which collectively offer a 
comprehensive assessment of the model's accuracy and 

reliability. 

 

Metric Value 

R2 0.976 

TAE 389,587 

NAE 0.133 

Table 3. Frequency distribution of relative errors (RE) 

 

 
Figure 6. Actual vs. model population 

The R2 value of approximately 0.976 suggests a strong linear 

relationship between the model-estimated and actual population 

counts, accounting for nearly 97.6% of the variance in the data. 

This high degree of fit is reinforced by the generally linear trend 
observed in the scatter plot, where most points closely align with 

the red line of best fit. However, the scatter plot also reveals 

some spread around the fitting line, particularly at higher 

population counts, indicating variability in the model's 
performance. Additionally, a few outliers are visible, deviating 

notably from the fitting line.  

 

The Total Absolute Error (TAE) of 389,587 and the Normalized 
Absolute Error (NAE) of 13.3% introduce a level of caution in 

the interpretation of the R2 value. The TAE, being a summative 

metric, indicates that the model can have significant 

discrepancies in specific instances, while the NAE reveals that 
the model's estimates deviate from the actual values by an 

average of 13.3%. 

 

The metrics collectively suggest areas for further refinement. The 
TAE and NAE, although moderate, are significant enough to 

merit attention, especially if the model is to be deployed in 

policy-making scenarios that require high precision. 

Furthermore, the model's performance appears to be variable 
across different barangays, as evidenced by the spread in 

residuals and the presence of outliers. This suggests that the 

model might need to be adapted or fine-tuned to cater to different 

types of residential areas or varying population densities. 
 

Additionally, a systematic bias toward underestimation was 

observed in the model. This bias may not merely be a statistical 

anomaly but could reflect inherent limitations in the model's 
ability to capture complex socioeconomic contexts. Specifically, 

the model may tend to underestimate population counts in areas 

with smaller footprints and/or lower building heights suggests 

that it may not fully account for scenarios where such areas are 
densely populated. Similarly, areas with larger footprints and/or 

higher buildings may not necessarily house more individuals, yet 

the model's systematic overestimation could lead to inaccurate 

predictions for these areas as well. 
 

This limitation highlights a fundamental challenge in using 

primarily geometric and policy-based variables for estimating 

population. Such variables may not capture the full spectrum of 
factors influencing population density, such as historical patterns 

of settlement, cultural factors, or economic conditions that can 

lead to overcrowding or underutilization of space in different 

types of buildings and areas. In essence, the model may lack the 
nuance to understand that smaller structures might be 

accommodating more people due to economic necessities or 

cultural preferences, just as larger, taller buildings may not be as 

populated as their size would suggest, possibly due to economic 
affluence or different land use policies. 

 

3.2 Relative Errors 

 

To comprehend the nuances of the distribution of relative errors 

across barangays, both the spatial distribution and the 

relationship of these errors to each barangay's population density 

were investigated. Relative errors (RE) between the model-
generated estimates and the authoritative population counts for 

each barangay were calculated to serve this purpose. The 

frequency distribution of these relative errors is presented in the 
subsequent analysis: 
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Figure 7. Frequency distribution of relative errors (RE) 

Positive relative errors signify overestimations of the actual 

population, while negative values indicate underestimations. 

The computed relative errors span a wide range, from -67.67% 

to 87.30%, with a standard deviation of about 26.18%, 

suggesting substantial variability in the model's accuracy across 

different barangays. Notably, a median error of -2.05% and a 

25th percentile of -11.97% point to a systematic tendency of the 

model to underestimate population counts in a majority (82 out 
of 142) of barangays. 

To facilitate a more nuanced understanding, the barangays were 

segmented into four categories based on their relative errors: (1) 

poor underestimation, with errors less than -30%; (2) 
underestimation, with errors ranging from -30% to 0%; (3) 

overestimation, with errors from 0% to 30%; and (4) poor 

overestimation, with errors greater than 30%. This classification 

was adopted from Wang, et al (2016).  
 

Based on the analysis of relative errors (RE), it was found that 

16 out of 142 barangays fell into the category of being poorly 

underestimated. These barangays are geographically dispersed 
across the city and do not exhibit any discernible spatial 

clustering. Intriguingly, most of these poorly underestimated 

barangays are among those with the smallest land areas when 

ranked accordingly. Conversely, 12% of the barangays, 
amounting to 17 out of 142, were identified as poorly 

overestimated. These are predominantly located in the southern 

part of the city, an area characterized by a high concentration of 

commercial and low-density residential land use types. 
 

To further explain the discrepancies in population estimation, the 

relationship between population density and these relative errors 

was explored. Figure 8 presents a detailed view of each 
barangay's RE distribution in conjunction with their population 

density classification.  

 

 

Figure 8. Spatial Distribution of RE 

 

Figure 9, on the other hand, provides a scatter plot illustrating the 
correlation between barangay population density and their 

corresponding RE values. These visual representations aim to 

offer additional insights into the factors contributing to the levels 

of underestimation or overestimation observed across different 
barangays. 

 

 
Figure 9. RE vs. population density 

 
Upon examination, poor underestimation predominantly occurs 

in barangays with high population density, such as Capri, Escopa 

I, Escopa III, Escopa II, Botocan, and San Isidro. An exception 

to this trend is Escopa IV, which exhibited a modest 

underestimation of only 7%.  

Several factors could contribute to this observed underestimation 

in densely populated areas. First, errors in building digitization 

are more likely in these areas due to the challenges associated 
with distinguishing individual households in proximity. Second, 

the use of OpenStreetMap (OSM) building footprints, which are 

often digitized based on satellite imagery, may result in multiple 

households being generalized into a single footprint. This would 

artificially inflate the estimated living area per person, leading to 

a lower estimated population count. Third, these areas 

predominantly consist of socialized housing, where the assumed 

ceiling height of 3.0 meters may be an overestimation. As per BP 
220 regulations, the minimum prescribed ceiling height is only 2 

meters, making the model's assumption potentially inaccurate for 

these specific housing types. This overestimation of ceiling 

height would also contribute to a higher estimated living volume 

per person, thereby underestimating the building population. 

Conversely, poor overestimation is more prevalent in barangays 

with low population density, ranging from 1 to 100 people per 

hectare, such as Ugong Norte, Kalusugan, Phil-Am, Blue Ridge 
A, Lourdes, Mariana, Horseshoe, Saint Ignatius, Damar, and 

White Plains. In these areas, households are typically spaced 

more evenly, reducing the likelihood of errors in building 

digitization. However, these households are often part of 
subdivisions composed of larger units, both in terms of floor area 

and ceiling height, compared to the average household size. 

Despite the prevalence of subdivisions in these barangays, a lack 

of homogeneity in the area and volume of residential buildings 
was observed, as indicated by high standard deviations in these 

measurements. This variability is likely to contribute to the 

overestimation of population counts in buildings with smaller 

volumes. 

The absence of a clear, overarching geographic pattern in the 

distribution of relative errors highlights the considerable impact 

of local factors on the model's performance. This observation 

strengthens the argument for adopting a more localized approach 
to model refinement. Such an approach would not only consider 

the specific physical characteristics of each barangay, such as 
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population density and building types, but also extend to include 
socioeconomic factors that have hitherto been absent from the 

model. These could encompass variables like income levels, 

employment rates, and educational attainment, which may have 

an indirect but significant influence on population density and 

distribution. 

Incorporating these socioeconomic factors could offer a more 

nuanced understanding of the local variations in population 

density, thereby potentially enhancing the model's accuracy. For 
instance, lower-income areas might have higher occupancy rates 

per household, or areas with higher educational attainment might 

have different residential preferences that affect population 

density. By considering such factors, the model would be better 
equipped to capture the complex interplay of variables that 

contribute to the observed relative errors in population estimates 

across different barangays. 

3.3 Visualization 

 

For enhanced visualization and analysis, a 3D city model 

incorporating residential buildings and additional data layers 

was constructed using ArcScene software. This model 
effectively illustrates the spatial distribution of residential 

building population counts throughout the city. Aligning with 

the established relationship between building volume and 

population count, it is evident that residential buildings with 
larger footprints and multiple floors tend to house larger 

populations. The use of advanced analytical tools and query 

capabilities within the software enables the generation of 

insights into issues that necessitate micro-level data. Presented 
below are select visualizations from this 3D city model, with a 

focus on depicting the phenomenon of building population 

counts across different areas. 

  
 

  
Figure 10. Building population distribution in Quezon City 

 

 

4. CONLUSION AND RECOMMENDATIONS 

The primary objective of this research was to evaluate the 

effectiveness of leveraging 3D building data for generating 

building-specific population estimates, aiming to enhance the 
level of granularity in urban demographic analyses. The research 

addressed the limitations of traditional census data, which often 

lack fine-grained spatial resolution and are confined to larger 

administrative units. By integrating 3D building data, acquired 
through technologies such as Light Detection and Ranging 

(LiDAR), the study sought to provide more precise, localized 

population estimates. 

The results indicate a high degree of overall accuracy in the 
model, as evidenced by an R2 value of approximately 0.976. 

However, the model also manifested systematic biases, notably 

a tendency to underestimate population counts in high-density 
areas and overestimate in low-density areas. The relative errors, 

varying in magnitude across different barangays, highlight the 

complexity of factors influencing the model's performance. 

These include building digitization errors, assumptions related to 

floor height, and living area per person, among others. 

The absence of a clear geographic pattern in the distribution of 

relative errors underscores the importance of incorporating local 

factors into the model, extending beyond mere physical attributes 
to include socioeconomic variables. This more localized and 

nuanced approach would likely improve the model's 

performance, particularly in addressing issues of overestimation 

and underestimation. 

To this end, future refinements to the model should aim to 

incorporate these local factors, including socioeconomic 

variables that could provide a more comprehensive 

understanding of population distribution and density. The 
model's performance can be further enhanced by directly 

acquiring microdata samples from all administrative units. These 

samples could inform more accurate estimates of the living area 

per person and floor heights, which are critical parameters in the 
current model. Moreover, incorporating microdata on 

socioeconomic and other demographic factors could offer 

additional layers of nuance, thereby improving the model's 

predictive accuracy. Additionally, even though the analysis was 
conducted at the level of the smallest administrative unit, 

barangays could be further disaggregated into smaller blocks. 

This would allow for a more nuanced understanding of the 

heterogeneity in building characteristics within each barangay, 
thereby enabling multiple spatial analyses on a micro-level that 

could provide more insightful solutions to the problems being 

addressed. 

Overall, while the model presents a promising avenue for 
enhancing the granularity of urban demographic data, it also 

reveals areas requiring further investigation and refinement. 

Through targeted improvements, including the integration of 

microdata and further disaggregation of administrative units, the 
model has the potential to significantly transform the utility and 

accuracy of 3D data in generating precise, building-specific 

population estimates, thereby fulfilling the research's primary 

objective. 
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