
COMPARISON OF THE USE OF SENTINEL-1 SAR AND ALOS-2 PALSAR-2 IN 

MANGROVE ABOVEGROUND BIOMASS ESTIMATION IN SAN JUAN, BATANGAS, 

PHILIPPINES 

J. J. Bilolo 11*, J. V. Dida 1, and A. Araza 2 

1 Institute of Renewable Natural Resources, College of Forestry and Natural Resources, University of the Philippines Los Baños, 

College, Laguna 4031 Philippines – (jjbilolo, jvdida) @up.edu.ph 
2 Environmental Systems Analysis, Environmental Sciences Group, Wageningen University and Research, Droevendaalsesteeg 3, 

6708 PB Wageningen, The Netherlands - arnan.araza@wur.nl 

KEY WORDS: Mangroves, Aboveground Biomass Estimation, Remote Sensing, Sentinel-1, ALOS-2 PALSAR-2 

ABSTRACT: 

This study compares the potential of Sentinel-1 and ALOS-2 PALSAR-2 in estimating mangrove aboveground biomass (AGB) in San 

Juan, Batangas, Philippines. Mangrove forests are essential coastal ecosystems that are facing growing threats. One way of conserving 

them is by creating policies that can protect them. To do this effectively, information like AGB can be used as a guide. However, 

conventional AGB estimations are labor-intensive and ecologically disruptive. Conversely, remote sensing technologies, such as 

synthetic aperture radar (SAR), offer a more efficient alternative. Sentinel-1, operating in C-band, and ALOS-2 PALSAR-2, operating 

in L-band, are two prominent SAR platforms with global coverage, offering data for land cover classification, forest monitoring, and 

forest biomass estimation. This research used the backscatter values of Sentinel-1 and ALOS-2 PALSAR-2 as predictor variables in 

estimating mangrove AGB by correlating them to the observed AGB from a mangrove survey. The models developed using these 

platforms yielded limited accuracy, with low coefficient of determination (R2) (Sentinel-1 = 0.13; ALOS-2 PALSAR-2 = 0.12) and 

RMSE (Sentinel-1 = 8.72 Mg ha-1; ALOS-2 PALSAR-2 = 8.78 Mg ha-1). Potential sources of errors were identified, including small 

sample size and data noise. On the results, Sentinel-1 demonstrates a slightly better performance in terms of the R2 and RMSE in the 

modeling while ALOS-2 PALSAR-2 performed better in the validation, however, both still yielded suboptimal AGB estimates 

compared to other studies. Refining the models by incorporating additional parameters, exploring machine learning, and considering 

other data sources are recommended to enhance AGB estimation.  

1. BACKGROUND

Located in the easternmost part of the province of Batangas, 

Philippines, the Municipality of San Juan is home to one of the 

largest mangrove forests in its province. However, recent reports 

from the municipal government in 2022 indicate that the 

mangroves of San Juan are confronting several challenges 

stemming from illegal and unregulated utilization of mangrove 

resources, as well as ineffective local management practices. 

Mangrove forests are vital intertidal ecosystems that exist in 

coastal environments across tropical, subtropical, and temperate 

regions. They serve multiple crucial functions, including the 

preservation of coastal biodiversity, the mitigation of climate 

change impacts, and the support of local livelihoods (Donato et 

al., 2011). Moreover, mangroves have been found to sequester 

and deposit carbon in their biomass and soils at a significantly 

higher rate than terrestrial forests, with estimates ranging 

between two and five times more (Alongi, 2012). Despite their 

immense ecological value though, these essential ecosystems 

face escalating threats due to human activities (Friess et al., 

2019). 

Biomass pertains to a living thing’s mass, which includes flora, 

fauna, and microorganisms (Houghton, 2008). In a mangrove 

forest, biomass is generally found in several pools, mainly 

aboveground, belowground, necromass, and soil biomass. 

Aboveground biomass, especially, is considered important as it 

serves as an indicator of the aboveground structure of the forest 

and its productivity (Zhang et al., 2016 as cited in Nizamani et 

al., 2021). 

* Corresponding author

Conventional methods used to study mangroves, especially 

mangrove biomass, such as field surveys and non-destructive 

sampling, as employed by Gevana et al. (2008) and Gevana and 

Pampolina (2009) in their research on the area, are labor-

intensive and have ecological impacts. In contrast, remote 

sensing technologies, specifically, synthetic aperture radar 

(SAR) imaging, offer a promising, non-invasive, and more 

efficient approach to estimating mangrove biomass, presenting 

an alternative to the labor-intensive and costly traditional 

methods.  

SAR imaging, like other remote sensing platforms allows for 

assessments over large spatial scales, enabling researchers to 

obtain valuable information without extensive on-the-ground 

work (Kumar et al., 2015). It relies on signal-processing 

techniques to create an extended effective antenna rather than 

employing a physically large antenna (Cutrona, 1990). 

By leveraging synthetic aperture radar data, researchers can 

analyze the backscattering properties of mangrove forests, which 

provide insights into their structure, density, and biomass. This 

non-invasive approach allows for the estimation of aboveground 

biomass without directly disturbing the mangroves themselves 

(Ghasemi et al., 2011). 

ALOS-2 PALSAR-2 and Sentinel-1 are two prominent SAR 

platforms used for remote sensing applications. ALOS-2 

PALSAR-2, or the Phased Array type L-band Synthetic Aperture 

Radar 2 aboard the Advanced Land Observing Satellite 2, 

launched by the Japan Aerospace Exploration Agency (JAXA) 

in 2014, operates in L-band frequency (1.2 GHz) and offers high-
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resolution SAR imagery with single (HH or VV) or double 

polarization (HH/HV or VV/VH). It provides valuable data for 

land cover classification, forest monitoring, disaster 

management, forest biomass, and deforestation (EORC & 

JAXA, 2007). 

 

On the other hand, Sentinel-1, developed by the European Space 

Agency (ESA) and launched in 2014, consists of a constellation 

of SAR satellites. It operates in C-band (5.405 GHz) and offers 

dual-polarization (HH+HV, VV+VH) capabilities, allowing for 

enhanced data analysis. Sentinel-1 data is widely used for 

applications such as maritime surveillance, agriculture 

monitoring, and ice mapping (Bourbigot et al., 2016). 

 

Both platforms provide frequent global coverage, making them 

valuable resources for monitoring and research. Their SAR 

imaging capabilities enable the acquisition of data in all weather 

conditions, day, or night, allowing for consistent and reliable 

observations. 

 

With that, this research aims to explore the potential of Sentinel-

1 and ALOS-2 PALSAR-2 in capturing the biomass variations 

within mangrove forests by comparing their performance. The 

difference in the wavelengths of these two allows for differing 

penetration depths and sensitivities to the structural and 

compositional variations of the mangrove canopies (Saatchi, 

2019). By evaluating the relationship between radar signals and 

actual biomass measurements on the ground, this study seeks to 

refine and validate the capabilities of remote sensing technology 

for mangrove monitoring. Furthermore, the information that will 

be derived from this study can be used in enhancing policies for 

managing and protecting threatened resources such as mangrove 

forests. 

 

 

2. MATERIALS AND METHODOLOGY 

 

2.1 Study Area 

 

San Juan is a coastal town on the eastern tip of Batangas, 

Philippines (Figure 1). It currently has 185.75 ha of mangrove 

forests, separated into two major locations in the northeastern 

and southeastern parts of the municipality. For this study, the 

mangroves in the southeastern part which are primarily coastal, 

were selected. 

 

 
Figure 1. Location of the study site. Basemap: © Esri World 

Terrain with Labels 

 

The 84.28-hectare southern mangrove stand was delineated 

using the 2015 National Land Cover Map from the National 

Mapping and Resource Information Agency (NAMRIA) (2015). 

The stand is primarily located on the coast of Coloconto Bay, 

which is part of the larger Tayabas Bay and is shared by five 

barangays, including Subukin, Nagsaulay, Bataan, Barualte, and 

Imelda. 

 

2.2 SAR imagery 

 

Two types of SAR images were used in this study. 

 

2.2.1 Sentinel-1 data and processing: The first one is Sentinel-

1 which is primarily operated by the European Space Agency 

(ESA). A total of 16 images collected from August 2, 2022, to 

January 29, 2023, were freely downloaded from the Copernicus 

Sentinel Open Access Hub.  

 

These images were first preprocessed using the ESA-SNAP 

Desktop application, v. 3.2.1, and following the Sentinel-1 

Toolbox Tutorials by Braun & Veci (2015/2021) on SAR Basics 

and Time-series Analysis as well as the SAR Pre-processing 

Documentation of Weiß (2019). The preprocessing was 

composed of the extraction of the initial subset of the Sentinel-1 

images to reduce the load that the computer and the processing 

software will work on. It was followed by the application of an 

Orbit File, with Sentinel Precise (Auto-Download) orbit state 

vector and polynomial state of 3. The next step was the 

Radiometric Calibration where a Sigma0 output was derived. It 

was followed by the Range-Doppler Terrain Correction which 

used the SRTM 1Sec HGT (Auto Download) for the digital 

elevation model (DEM), bilinear interpolation for the DEM and 

image resampling method, and UTM Zn 51N for the map 

projection. Furthermore, the option to mask out areas without 

elevation was also unchecked. After those processes, another 

subset was extracted. This will be the final subset that will be 

used in the post-processing. This was done as the images still 

shifted during the preprocessing which caused the initial subset 

to misalign slightly. 

 

For the postprocessing, the 16 Sentinel-1 images were Stacked, 

and the Refined Lee multi-temporal filter was applied. The 

Refined Lee filter is the refined version of the Lee Filter which 

reduces the speckle of a radar image by preserving the image 

sharpness and detail (Quegan et al., 2000; Yommy et al., 2015). 

Compared to the latter, the former uses a damping factor and the 

number of looks in its algorithm. This was used as it limits the 

speckle in the image while still preserving the texture 

information (Esri, 2021). Subsequently, Data Stack Averaging 

was conducted. This computes the mean of pixels of 

multitemporal images. This results in a single image where each 

pixel’s value is the average of all the pixels of all other pixels in 

its stack. Lastly, the resulting values in linear scale were 

converted to decibels before extracting them.  

 

2.2.2 ALOS-2 PALSAR-2 data and processing: On the other 

hand, for the second type of data, the open-access Global 

PALSAR-2/PALSAR Yearly Mosaic, version 2 from the Japan 

Aerospace Exploration Agency (JAXA) (dated January 1, 2017, 

to January 1, 2018) in the Google Earth Engine Catalog was 

used. It was first preprocessed in ArcGIS Pro v. 3.2.0 by 

resampling the downloaded image with 25 m resolution to 10 m 

to ensure that it has the same size as the sampling plots used in 

the study. The Bilinear Method was used in the process as this 

method is best for continuous data with no distinct boundaries as 

it gradually smooths out data of this type but not as much as with 

cubic convolution (GISGeography, 2023). Furthermore, an 
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initial subset of the image was also extracted to lighten the 

processing burden of the computer used. Subsequently, the 

backscatter values of ALOS-2 PALSAR-2 in 16-bit digital 

numbers (DN) were converted to σ0 using the formula 

(Rosenqvist, 2007): 

 

                             σ0 = 10*log₁₀(DN²) - 83.0 dB                      (1) 

 

where σ0 = converted to sigma naught values in decibels 

(dB) 

DN = 16-bit digital numbers (DN) 

 

Forty-two pixels, with 10 m resolution, within the study area 

were randomly selected to be used as the sampling plots. Of 

those, 32 were used as modeling plots while the remaining 10 

were for validation. 

 

2.3 Observed Mangrove AGB 

 

For the observed mangrove AGB, a total of 42 10 m × 10 m 

sampling plots with the same geographic coordinates as with the 

pixels in the SAR images were used. Similarly, thirty-two of the 

sampling plots will be used as modeling plots while the 

remaining 10 will be for validation. The genus name and 

diameter at the breast height (dbh) of all the mangroves inside 

the chosen plots were collected. Furthermore, the wood density 

of the identified mangrove genus was determined by averaging 

wood density values from various species within the same genus 

obtained from published studies and manuals. 

 

The gathered data were used in the computation of the observed 

AGB of the sampling plots. The general formula for mangrove 

AGB developed by Komiyama et al. (2005) was used (Formula 

2). 

 

                                  B = 0.251ρ(DBH)2.46                              (2) 

 

where ρ = wood density (g cm-3) 
 DBH = diameter at breast height (cm) 

 

The equation was used since the site has a similarly diverse set 

of mangrove species as the one used by Komiyama et al. (2005). 

Furthermore, the equation also fits the range of mangrove DBH 

measured from the study site (5 cm to 49 cm). Lastly, with an R2 

of 0.98, this formula may be reliable in estimating the AGB at 

the study site. 

 

2.4 Model fitting and validation of predictions 

 

Regression models that correlated backscatter values and AGB 

of the 32 field plots (observed AGB) were conducted. For the 

Sentinel-1 image, the ratio (VV/VH)/(VH/VV) of the backscatter 

values from the available polarizations was used and correlated 

with the observed AGB values. This backscatter ratio was 

selected from several ratios of VV to VH values that were tested. 

On the other hand, the converted backscatter values from the HH 

polarization of ALOS-2 PALSAR-2 were used and correlated 

with observed AGB values from the study site. The coefficient 

of determination (R2) and the root mean square error (RMSE) 

were used in the comparison of the accuracy of the mangrove 

AGB predictions produced from the two. R2 and RMSE were 

computed using the following formulae, respectively: 

 

                                  R2 = 1 - (RSS/TSS)                               (3) 

 

where R2 = coefficient of determination 

 RSS = sum of squares of residuals 

 TSS = total sum of squares 

 

                            RMSE = SQRT[Σi(yi-yi’)2/n]                       (4) 

 

where yi = observed AGB 

yi’ = predicted AGB from Sentinel-1 and PALSAR-2 

        backscatter values 

n = number of plots 

 

Subsequently, the validation of the AGB predictions from the 

regression model was done. The formula of the best-fitting 

trendline, polynomial, was used to predict the AGB using the 

SAR backscatter values. Another regression analysis was done 

comparing the predicted AGB from SAR backscatter values and 

the observed AGB from the 10 remaining validation plots. The 

R2 and RMSE of each model were used again to compare the 

accuracy of the two platforms. 

 

 
Figure 2. Flowchart of the major steps in the AGB estimation, 

map generation, and model validation done in this study. 

 

 

3. RESULTS AND DISCUSSION 

 

3.1 Observed Mangrove AGB 

 

A total of 1,308 mangroves were recorded from the forty-two 10 

m × 10 m sampling plots that were randomly selected at the study 

site. This was divided into two groups: 32 plots were used for the 

modeling with 737 mangroves while the remaining 10 plots with 

301 mangroves were used for the validation of the model. The 

range of mangroves measured in each plot is from 4 to 62 trees. 

 

Furthermore, seven genera of mangrove species were identified 

in the survey while 15 mangroves that were not identified were 
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included in a “Miscellaneous” classification. Table 1 shows the 

summary of the average wood density of each mangrove genus 

that was identified in the study. In the case of the 

"Miscellaneous” classification, the wood density of the other 8 

genera was averaged instead. 

 

Mangrove Genera Average Wood Density (g cm-3) 

Aegiceras 0.6784 

Avicennia 0.5868 

Bruguierra 0.7802 

Ceriops 0.7355 

Rhizophora 0.7703 

Sonneratia 0.4100 

Xylocarpus 0.5295 

Miscellaneous 0.6415 

Table 1. Summary of the mangrove wood density used in the 

computation of observed AGB (Komiyama et al., 1988; 

Komiyama et al., 2000, as mentioned in Komiyama et al., 

2005; Simpson, 1996; Tamai et al., 1986; and World 

Agroforestry Centre as mentioned in Kauffman and Donato, 

2012).  

 

The average DBH for each plot ranged from 6.6 cm to 25.8 cm 

while the wood densities used had a minimum of 0.41 g cm-3 and 

a maximum of 0.7802 g cm-3 with an average of 0.6415 g cm-3. 

Lastly, the total observed AGB in Mg ha-1 ranged from 1.705 Mg 

ha-1 to 45.327 Mg ha-1 with an average of 17.241 Mg ha-1 (Figure 

3). 

 

 
Figure 3. Observed mangrove aboveground biomass for each 

plot that was computed using the general formula of Komiyama 

et al. (2005). 

 

3.2 Backscatter Values 

 

3.2.1 Sentinel-1 backscatter values: The Sentinel-1’s 

backscatter values for each plot used in modeling are shown in 

Figure 4. For VV backscatter values, the average is -8.64 dB, 

with a minimum of -10.66 dB and a maximum of -6.54 dB, while 

for the VH backscatter values, the average is -13.995 dB, with a 

maximum of -16.35 dB and a maximum of -12.09 dB. 

 

 
Figure 4. Sentinel-1 backscatter values of the modeling plots. 

 

3.2.2 ALOS-2 PALSAR-2 backscatter values: For ALOS-2 

PALSAR-2, the backscatter values from HH polarization were 

used in this study (Figure 5). The average backscatter value for 

this dataset is -9.19 dB with a minimum value of -13.57 dB and 

a maximum value of -4.89 dB. 

 

 
Figure 5. ALOS-2 PALSAR-2 HH polarization backscatter 

values of the modeling plots. 

 

3.3 Regression Results 

  

The regression analyses between the predictor variables and the 

observed AGB from the surveyed mangroves are shown in 

Figures 6 and 7. For Sentinel-1, the backscatter ratio 

(VV/VH)/(VH/VV) was used as the predictor variable and was 

regressed with the observed AGB.  

 

 
Figure 6. Regression Result between observed mangrove AGB 

and the combined ratio of Sentinel-1 VV and VH polarization 

backscatter values. 
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On the other hand, the HH backscatter values were used as the 

predictor variable for the ALOS-2 PALSAR-2 and were 

regressed, also with the observed mangrove AGB. 

 

 
Figure 7. Regression Result between observed mangrove AGB 

and the ALOS-2 PALSAR-2 HH polarization backscatter 

values. 

 

Figure 6 and 7 shows the results between Sentinel-1 and ALOS-

2 PALSAR-2 regression with the observed mangrove AGB. On 

the other hand, Table 2 summarizes the results of the regression 

between the observed AGB and the predictor variables. Looking 

at the results, Sentinel-1 yields a slightly higher R2 than that of 

ALOS-2 PALSAR-2. The former, using the backscatter ratio, 

resulted in an R2 of 0.13 while the latter using only HH 

backscatter values resulted in 0.12, both were achieved using 

polynomial regression. Furthermore, Sentinel-1 resulted also in 

a slightly better RMSE of 8.72 Mg ha-1 while for ALOS-2 

PALSAR-2, the RMSE was 8.78 Mg ha-1. 

 

Predictor 

Variables 

Equation R2 RMSE 

(Mg ha-1) 

(VV/VH)/

(VH/VV) 

y = 1189.4x2 - 889.65x + 

179.4 

0.13 8.72 

HH y = -0.2551x2 - 6.1589x - 

17.441 

0.12 8.78 

Table 2. Summary of the result of the polynomial regression 

between the observed mangrove AGB and predictor variables. 

 

3.4 Aboveground Biomass Map 

 

Using the models derived from the regression analysis conducted 

between the predicted variables and the backscatter values from 

Sentinel-1 and ALOS-2 PALSAR-2, aboveground biomass maps 

of the study were generated (Figures 8 and 9). 

 

For the Sentinel-1 generated map (Figure 8), the AGB values in 

the study area range between 184.74 Mg ha-1 and 314.53 Mg ha-

1 while the average AGB is 249.64 Mg ha-1. Notably, some areas 

yielded predictions with extreme values, especially those at the 

edges of the forest. According to Simard (2019), this can be 

attributed to double-bounce scattering—which occurs when 

radio waves bounce off surfaces and direct them back to the 

sensor, such as vertical stems and aerial roots—which is 

exacerbated by the inundation of the area. Furthermore, this 

phenomenon can also be observed in areas with open canopies 

as these areas expose the stems and aerial roots of mangroves as 

well which can allow for double-bounce scattering. 

 

On the other hand, for the ALOS-2 PALSAR-2 AGB map 

(Figure 9), the predictions range from values between 0 and 

19.73 Mg ha-1 with an average AGB of 9.87 Mg ha-1. Unlike the 

results from the Sentinel-1 AGB map, no case of extremely high 

values due to double-bounce scattering and inundation was 

observed. Additionally, the generated map also corresponds to 

the site conditions of the area as it also mirrors the density of 

vegetation observed during the mangrove survey, something that 

can’t be said with the generated map from Sentinel-1 map.  

 

 
Figure 8. Mangrove AGB map of the study site using Sentinel-

1. Basemap: © Esri World Terrain with Labels 

 

 
Figure 9. Mangrove AGB map of the study site using ALOS-2 

PALSAR-2. Basemap: © Esri World Terrain with Labels 

 

 

3.5 Model Validation 

 

To assess the accuracy of the AGB maps, ten separate 10 m × 10 

m validation plots, distinct from the 32 modeling plots, were 

used. These validation plots allowed for the correlation of the 
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estimated AGB from the developed models with samples 

collected outside the modeling plots.  

 

Figure 10 shows the clustered column charts of all the validation 

plots and the predicted AGB from Sentinel-1 and ALOS-2 

PALSAR-2 in comparison to the observed AGB. As seen, 

Sentinel-1 predictions are a lot greater than that of ALOS-2 

PALSAR-2, and in general, the latter has closer values to the 

observed AGB than the former.  

 

 
Figure 10. Comparison between observed AGB and predicted 

AGB from the generated map 

 

On the other hand, Figures 11 and 12 depict scatter plots used in 

the validation of the models, comparing observed AGB with 

predicted AGB generated using Sentinel-1 and ALOS-2 

PALSAR-2 data. 

 

 
Figure 11. Scatter plot between the observed AGB and 

predicted AGB in the map generated from Sentinel-1 data. 

 

 
Figure 12. Scatter plot between the observed AGB and 

predicted AGB in the map generated from ALOS-2 PALSAR-2 

data. 

 

Sentinel-1 achieved an R2 of 0.13 with an RMSE of 267.36 Mg 

ha-1, whereas ALOS-2 PALSAR-2 exhibited an R2 of 0.72 with 

an RMSE of 14.37 Mg ha-1. This suggests that despite the 

Sentinel-1 model having slightly better R2 and RMSE, the model 

developed for ALOS-2 PALSAR-2 still outperforms it, as it also 

yielded significantly better results in validation. 

 

However, even with that, the models generated using both 

platforms still exhibited suboptimal performance. The low 

coefficient of determination implies that the models are not 

doing a good job of predicting the expected values in the study, 

leading to considerable degrees of error present in the model’s 

predictions, and thus, the predicted values are far from the actual 

values, resulting to inaccurate predictions of the model. On the 

other hand, it can also be that other factors such as data outliers, 

data noise, and overlooked errors in the methods used could be 

the reason why the models do not perform as expected. 

 

With that, in general, ALOS-2 PALSAR-2 still offers a greater 

potential for improved and effective mangrove AGB estimation 

compared to Sentinel-1 as supported by previous studies (Huang 

et al., 2018; Luong et al., 2019; Saatchi, 2019). This advantage 

stems from its utilization of L-band frequency, which boasts a 

longer wavelength capable of penetrating deeper into the vertical 

forest profile. However, studies such as that of Hamdan et al. 

(2014) and Nesha et al. (2020) claimed that it alone, and without 

other parameters to support the modeling, cannot ensure a 

successful estimation due to limited information that ALOS-2 

PALSAR-2 backscatter coefficients can provide despite its 

superior frequency. 

 

In contrast, Sentinel-1, with its C-band SAR, can only penetrate 

the upper part of the canopy, and rarely the understory. This 

distinction results in more representative and accurate data for 

mangrove AGB estimation using ALOS-2 PALSAR-2. 

 

However, ALOS-2 PALSAR-2, being a commercial platform, 

can pose budget constraints due to the cost of accessing updated 

data. On that note, some archived data, like the mosaic used in 

this study from Google Earth Engine, is available for free, along 

with other global mosaics on JAXA's ALOS Research and 

Application Project webpage. In contrast, Sentinel-1, as an open-

access platform, offers advantages such as higher temporal and 

spatial resolution and comes with free processing software. This 

makes it a more cost-effective choice for agencies and 

institutions with limited research budgets. 

 

 

4. CONCLUSIONS AND RECOMMENDATIONS 

 

This study compared the potential of Sentinel-1 and ALOS-2 

PALSAR-2 in the estimation of mangrove AGB in San Juan, 

Batangas, Philippines. For Sentinel-1, a ratio of the backscatter 

values of VV and VH polarization was utilized while for the 

ALOS-2 PALSAR-2, a resampled raster with HH polarization 

was used. These backscatter values were correlated with 

observed mangrove AGB that were collected from 32 sampling 

plots with 10 m × 10 m area to develop the models, while R2 and 

RMSE were used to assess the accuracy of the models 

developed. 

 

With that, the Sentinel-1 model exhibited an R2 of 0.13 and an 

RMSE of 8.72 Mg ha-1 while the ALOS-2 PALSAR-2 model 

yielded an R2 of 0.12 and an RMSE of 8.78 Mg ha-1. In terms of 

the validation wherein the remaining ten 10 m × 10 m plots were 

used, Sentinel-1 resulted in an R2 of 0.13 and an RMSE of 267.36 
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Mg ha-1, while ALOS-2 PALSAR-2 yielded an R2 of 0.73 and an 

RMSE of 14.37 Mg ha-1. 

 

Generally, these results are significantly poorer than those from 

previous studies on the same research area which implies that the 

models’ predictions may have high degrees of uncertainty or 

variability, reducing their practical usefulness for decision-

making or AGB prediction. Furthermore, the models also have a 

high average prediction error, indicating poor accuracy in 

estimating the dependent variable. However, the small quantity 

of data and the potential noise may have also contributed to this 

suboptimal performance. Overall, this can impact the reliability 

of the model's predictions and limit its practical applicability. 

 

In consideration of that, these results highlight the need for 

model refinement. To enhance observed AGB estimation, more 

sampling plots could be added for a greater number of observed 

AGB values to be used in training the models. Additionally, 

parameters like tree height and canopy diameter could be 

incorporated, along with species- or genus-specific mangrove 

allometric equations. 

 

For SAR data, exploring alternative methods and algorithms in 

modeling, like incorporating machine learning in the process 

could also be done. In addition, consideration of additional data 

sources, such as those that use high spatial resolution optical 

remote sensing technologies holds promise. Experimentation 

with different ratios and combinations of Sentinel-1 backscatter 

values and exploring various polarizations and polarization 

ratios for ALOS-2 PALSAR-2 could also be tried to enhance 

model performance. Also, including cross-polarized data could 

be explored as it is known for its suitability in forest biomass 

estimation. 

 

Lastly, checking the degree of alignment of the sampling plots 

on the ground with the pixels of the SAR images is also 

recommended to ensure that the ground values correspond to the 

backscatter values in the pixel of the image used in the 

regression. 
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