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ABSTRACT: 

This study examines the spatial relationship of land surface temperature (LST) derived from MODIS, elevation, and air quality 

parameters (CO, NO2, and SO2) derived from Sentinel 5P in the Metro Manila airsheds from January 2019 to March 2023. Using 

Ordinary Least Squares (OLS) and Generalized Linear Regression (GLR), mean LST and heat index from the Philippine Atmospheric, 

Geophysical, and Astronomical Services Administration (PAGASA) ground stations exhibit a strong positive correlation, allowing the 

use of LST for further analysis. Across different combinations between LST, elevation, and air quality parameters, a weak to low 

negative correlation was seen between DEM to LST, CO, and NO2. In addition, weak to low positive correlation was seen between 

LST to CO and NO2. Almost no correlation was found between DEM and SO2, and LST and SO2. These results may be unreliable due 

to overfitting, non-stationarity, bias, or misspecification as implied by their statistical parameters. To enhance the reliability, it is 

recommended to investigate additional air quality parameters such as Normalized Difference Built-Up Index (NDBI) as high LST, CO, 

and NO2 have shown clustering in urban areas of Metro Manila. Moreover, it suggests exploring other regression modeling and 

methodologies, such as training and test sets, to identify the best-fit model. In conclusion, this study provides an exploratory foundation 

for future research and comparative assessment on using different methods for modeling these variables. This comprehensive approach 

enhances understanding of the complex interplay between temperature, elevation, and air quality, aiding the development of informed 

urban climate adaptation strategies. 

1. INTRODUCTION

1.1 Airsheds in the Philippines

Airsheds are defined as geographical areas within which the 

movement and quality of air are relatively uniform. Airsheds are 

crucial in understanding air quality, atmospheric conditions, and 

the dispersion of pollutants, which are essential for 

environmental management and planning (EMB, 2019).  

Airsheds in the Philippines were delineated by different laws 

such as the Department of Environment and Natural Resources 

(DENR) Administrative Order (DAO), Memorandum Circular 

(MC) and Special Orders (SO) based on the following factors: 
geographical boundaries, meteorological factors, topography and 
physical features, and pollution sources.

Once an airshed is defined, it serves as the basis for the 

implementation of air quality management strategies and 

measures. The DENR and its Environmental Management 

Bureau (EMB), in collaboration with local government units and 

other stakeholders, develop airshed management plans and 

regulations to monitor, control, and reduce air pollution within 

the designated airshed (EMB, 2019). 

In the Philippines, air quality management is primarily governed 

by the Clean Air Act of 1999 (Republic Act No. 8749), which 

aims to protect and preserve the country's air resources. The 

DENR and EMB are responsible for implementing the provisions 

of the law, including the establishment of airsheds.  

1.2 Land Surface Temperature and Air Quality

Fuladlu and Altan in 2021, with the use of remote sensing, 

investigated the relationship between LST, air pollutants, and air 

quality in Tehran over a year (January to December 2020).  

Findings revealed that air pollutant concentrations are highest in 

the Tehran metropolis and core urban area. A negative correlation 

between the PM2.5, SO2, NO2, and DEM was highlighted and 

increasing the DEM also negatively affects the concentration of 

LST, CO, and O3 values. 

Another study (Wang, Guo, & Han, 2021) examines the 

relationship between land surface temperature (LST) and air 

quality, focusing on the spatiotemporal patterns of Urban Heat 

Island Intensity (UHII) and six key air pollutants (CO, NO2, O3, 

PM2.5 PM10, SO2) spanning 2015 to 2019. Among the considered 

factors, LST has the most influence, followed by vegetation 

cover, geographical location, elevation, and economic 

development intensity. This research underscores the complex 

relationship between urban heat islands, air quality, and various 

contributing factors across different regions and time frames. The 

results show that Urban Heat Island Intensity (UHII) and air 

pollutant concentrations are influenced by both natural features 

and socio-economic development. Higher LSTs and elevation 

contribute to increased daytime UHII, while urban expansion, 

higher per capita Gross Domestic Product (GDP), and greater 

Normalized Difference Vegetation Index (NDVI) lead to 

heightened nighttime UHII. Urban areas with higher population 

density and per capita GDP exhibit greater NO2 pollution, while 

proximity to the ocean, enhanced vegetation, and elevated terrain 

correspond to lower air pollutant levels. (Wang et al, 2021). 
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1.3 Research Objectives and Significance  
 

This study aims to determine the relationship between land 

surface temperature and air quality indicators, concentrations of 

CO, NO2, and SO2 pollutants. Specifically, it aims to determine 

the statistical significance of the correlation between Heat Index 

(HI) and land surface temperature (LST). This also seeks to 

determine whether there is a significant relationship between 

LST and selected air quality indicators. Additionally, it assesses 

and quantifies the impact of the Digital Elevation Model (DEM) 

on the outcomes and findings of this conducted research. Lastly, 

it comprehensively integrates and analyzes diverse statistical 

data, encompassing comparisons, regression, and correlations of 

LST, air quality, and elevation of Metro Manila airsheds (shown 

in Figure 1) from 2019-2023. 

 

Understanding the relationship of land surface temperature, 

digital elevation model, and air quality helps to provide findings 

that can contribute to climate change adaptation strategies, 

particularly in urban areas susceptible to extreme heat and poor 

air quality. Recognizing patterns and connections between these 

factors aids in devising measures to ease urban heat island impact 

and manage air quality. 

 

 

2. MATERIALS AND METHODS 
 

2.1 Datasets and Pre-Processing 
 

The heat index was provided by the Philippine Atmospheric, 

Geophysical and Astronomical Services Administration 

(PAGASA). This data encompassed the highest and average 

temperatures (in degree Celsius) recorded daily from the years 

2019 to 2023 in tabulated format. These temperature readings 

were gathered from various ground stations situated in strategic 

locations, including NCR (specifically Quezon City, Pasay, and 

Manila), as well as areas in Pampanga, Bataan, Cavite, and Rizal. 

 

Land Surface Temperature (LST) was derived from MODIS 

satellite images, retrieved daily with 1x1km spatial resolution 

(Wan, MODIS WE. The unit of measurement of this data is in 

°C.  Consequently, air pollutants such as Carbon Monoxide (CO), 

Nitrogen Dioxide (NO2), and Sulfur Dioxide (SO2) were derived 

from Sentinel-5 Precursor TROPOMI satellite images, retrieved 

daily with 7x7 km and 3.5x 7 km spatial resolution for CO, and 

NO2 and SO2, respectively. These air pollutants have a mol/m² 

unit of measurement. In addition, the Digital Elevation Model 

(DEM) was retrieved using an image derived from 

Interferometric Synthetic Aperture Radar (IFSAR), originally 

having a 10x10 m spatial resolution. 

 

The datasets were reprojected into the appropriate reference 

system for Metro Manila airsheds, WGS84 UTM Zone 51N, 

resample to a 1x1 km spatial resolution, and clipped to the extent 

of the airsheds. Daily datasets were aggregated to monthly mean 

values to reduce the gaps in the datasets due to clouds and data 

capture errors. These raster datasets were then converted into 

point vector files and spatially joined with each other. 

 

The study's specific time frame spans from January 2019 to 

March 2023, chosen to align with data availability. This period 

encompasses Land Surface Temperature (LST) data until March 

2023 and Heat Index (HI) data from January 2019. The 

timeframe also captures notable events like the onset of the 

COVID-19 pandemic (e.g., March 2020 to present), enabling 

examination of air quality variations during different pandemic 

phases. By comparing air quality data across years, the study 

seeks to identify potential shifts in pollution levels. Satellite 

imagery for 2018 is limited to December, hampering its utility 

for regression analysis. 

 

The spatial scope of the study primarily revolves around the 

central part of Luzon, which is among the three major islands 

composing the Philippines. According to DENR Administrative 

Order 2011-11, the “Metro Manila Airshed” has been divided 

into three distinct airsheds: the National Capital Region (NCR) 

airshed, the Cavite-Laguna Rizal airshed, and the Bulacan-

Pampanga-Bataan airshed. Metro Manila and several 

industrialized regions in the Philippines are renowned for having 

substantial pollution levels. The convergence of emissions from 

vehicles, industrial operations, and insufficient air quality control 

can result in heightened air pollution levels in these urban zones. 

 

2.2 Processing of LST and Air Quality Parameters 
 

The accuracy of Land Surface Temperature (LST) was first 

established by correlating it with ground-based measurements of 

Heat Index, as supplied by the PAGASA through their ground 

stations in NCR. The validation process involved utilizing two 

statistical techniques: Ordinary Least Squares (OLS) and General 

Linear Regression (GLR). These methods were employed to 

acquire the correlation coefficient (r-squared) to assess the 

consistency and reliability of LST measurements by comparing 

them with the observed Heat Index data collected from the 

ground. 

 

Air quality could be determined by the concentration of air 

pollutant parameters within the ambient study area. The 

following air pollutants assessed in this study are CO, NO2, and 

SO2 (mol/m²). Predominant sources of these pollutants are 

combustion of carbonaceous fuels often found in vehicles for CO, 

and intense temperature combustion of fuels in domestic and 

industrial processes for NO2 and SO2. The density of air 

pollutants determines the Air Quality Index (AQI). The World 

Health Organization (WHO) has provided guidelines on tolerable 

values of these pollutants to lessen the risk they pose to the 

community. 

 

2.3 GIS Regression Analysis 
 

Generalized Linear Regression (GLR) and Ordinary Least 

Squares (OLS) were further used to assess the correlation 

between LST and air pollutants. LST was the dependent variable 

whereas CO, NO2, and SO2 are the explanatory variables. 

Subsequently, the correlation of the DEM on these variables was 

assessed, with DEM as the dependent variable and LST, CO, 

NO2, and SO2 as explanatory variables. The regression analysis 

was performed on different time frames: (1) from January 2019 

to March 2023, (2) yearly, and (3) entire wet and dry seasons 

from January 2019 to March 2023. 

 

The R-squared value, also known as the coefficient of 

determination, represents the percentage of variance in the 

dependent variable that can be explained by the independent 

variable (Moore, et.al., 2013). To interpret the strength of a 

relationship based on its R-squared value, these are the general 

guidelines in interpreting R-squared: the correlation below 0.3 is 

none to very weak; between 0.3 and 0.5 is weak; 0.5 to 0.7 is 

moderate; above 0.7 is deemed strong.  

 

Aside from R-Squared, GLR and OLS shows other statistics that 

could determine the significance and relationship between the 

variables such as Pearson Correlation, and probability from Joint-

F statistic, Joint-Wald Statistic, Koenker Statistic, and Jarque-
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Bera statistic, and the intercept and coefficient of the linear 

equation formed from the regression (ArcGIS Pro, 2023). Joint-

F and Joint-Wald Statistic indicate the overall model significance 

and may only be used when the Koenker statistic is not 

statistically significant. Koenker static determines the 

consistency relative to the spatial characteristics of the 

exploratory variables such that if deemed statistically significant, 

there may be non-stationarity or heteroscedasticity in the data. In 

addition, if Koenker is statistically significant, the Robust 

Probability should be used to determine the significance of the 

coefficient. Jarque-Bera statistics assessed the bias in the 

regression models, on which the residuals are not normally 

distributed. The probability of these statistics was named as p(F), 

p(K), p(W), p(RC), and p(J) for Joint F-statistic, Koenker statistic, 

Joint-Wald statistic, Coefficient Robust Probability, and Jarque-

Bera statistic, respectively. If these statistics were determined to 

be statistically significant (p<.01), the regression may not be 

reliable. 

 

 

3. RESULTS AND DISCUSSION 
 

3.1 Correlation of LST with Heat Index 
 

In Table 1, the OLS results show a strong correlation between 

mean LST and mean Heat Index, with a statistically significant 

R² of 0.803. Subsequently, this is consistent with GLR results (R² 

= 0.81). Both the regression models for the mean and maximum 

values display statistically insignificant Koenker and Jarque-

Bera statistics (p>.01). Hence, these models are consistent with 

their spatial relationship and are free of bias. Consequently, the 

Joint-F statistic, Joint-Wald statistic, and Coefficient Robust 

Probability were all statistically significant, thus the independent 

variables improved the fit of the data in the regression model.  

 

This reinforces the idea that changes in LST are closely 

associated with variations in Heat Index, suggesting a strong 

connection between the two (shown in Figure 2). Thus, LST from 

satellite data may be utilized in exploring relationships with air 

quality parameters. 

 

 
Figure 1. Map of Metro Manila Airsheds 
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Linear Regression Model Summary      Parameter Estimates 

 R R2 p(F) p(K) p(W) p(R) p(J)  Intercept Coefficient 

LST – HI Mean 0.896 0.803 .000 0.246 .000 .000 0.424  4.487 0.930 

LST – HI Maximum 0.656 0.431 <0.001 0.629 .000 .000 0.200  11.726 0.757 

Table 1. Linear Regression among mean and maximum of LST and Heat Index. 

 

 
Figure 2. Correlation between Mean Land Surface Temperature and Mean Heat Index

 

3.2 Regression Model Analysis 

 

Results from the models have shown a none to very weak 

correlation as shown in Table 2. There have been few cases of 

weak to low correlation mostly found between DEM and LST, 

LST and NO2, and LST and CO. 

 

The regression models between DEM to LST, CO, and NO2 were 

found to have a negative correlation. Hence, the higher the 

elevation, the lower temperature, and the concentration of CO 

and NO2 (shown in Figure 3). On these models, the highest 

correlation and coefficient of determination was observed 

between DEM and LST in 2022 data (R = -0.663, R2 = 0.439). 

The lowest correlation and coefficient of determination was 

found between DEM and CO in 2021 data (R = -0.162, R2 = 

0.026). 

 

In addition, DEM had almost no correlation with SO2 

concentrations (R = 0.000) with also having zero coefficient of 

determination. Compared to other explanatory variables, SO2 is 

scattered across the study area (shown in Figure 3). Therefore, 

the elevation of an area does not provide meaningful information 

on the presence of SO2 pollutants in that area.  

 

LST was known to be positively correlated with CO and NO2 

(i.e., the higher the land surface temperature, the higher the CO 

and NO2 concentrations in area). Among these models, the 

highest correlation and coefficient of determination was seen 

between LST and NO2 during the aggregated wet periods from 

January 2019 to March 2023 (R = 0.619, R2 = 0.383). 

Subsequently, the lowest correlation and coefficient of 

determination on these models was between LST and CO during 

2021 (R = 0.234, R2 = 0.055). This positive weak correlation 

between LST and NO2 was found consistent with the findings of 

the effect of LST on NO2 concentration in Delhi, India using 

Google Earth Engine during summer and winter seasons from 

2019 to 2021 (Rahaman et al., 2023). Furthermore, all highest 

LST and concentration of CO and NO2 were seen clustering in 

the urban areas of Metro Manila (shown in Figure 3). These may 

indicate that the urban landscape of Metro Manila may have 

contributed to these high values. 

 

For LST and SO2, there was almost no correlation found with 

highest coefficient of determination in the 2019 and 2020 

datasets (R2 = 0.009) and lowest in 2021 datasets (R2 = 0.001). 

This shows that SO2 and LST do not provide any association, 

such that removing SO2 from the model of LST would not result 

in any change. This is consistent with the relationship between 

DEM and SO2, and DEM and LST. 

 

Despite the relationship and the respective correlation coefficient 

of these regression models, issues on other statistics were seen 

that would lead to their weak reliability. For their Koenker 

statistics, only three regression models were found to be 

statistically insignificant — DEM and SO2 in 2020 (p=.014), and 

DEM and SO2 in aggregated dry seasons (p=.345), and LST and 

CO in covered 2023 (p=.012). This indicates that aside from 

these models, there is inconsistency with the spatial relationship 

of the variables such that there may be a presence of non-

stationarity and heteroscedasticity. On these statistically 

significant Koenker statistics values, their respective Joint-Wald 

and Joint-F statistics values were used to determine the overall 

significance of the model. Joint-F and Joint-Wald statistics 

values mostly had a p=.000. This is less than the confidence level 

threshold of p<.01.  

 

These findings were consistent with the results found in 

examining the relationship between the same concerned variables 

in Tehran, Iran (Fuladlu & Altan, 2021). Although the study had 

the same Joint-F statistical significance of zero on almost all their 

regression models, they were still reported reliable to infer the 

relationship between the variables. 

 

In addition to these models’ statistical significance of p=.000, the 

Coefficient of Robust Probability and the Jarque-Bera statistic 

also had the same significance. Although there were minimal 

cases of regression models having not exactly zero probability 

(i.e., p<.001), these were still considered statistically significant 

with the set confidence level threshold of p<.001. This posits that 

there is bias in these regression models, and they are deemed 

unreliable for any future references or policy making. This could 

be due to a misspecification, missing variables, or few samples 

in the regression models (How OLS Regression works—ArcGIS 

Pro | Documentation, n.d.). Furthermore, this exact zero 

probability may have introduced overfitting or underfitting in the 

regression models.  
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Figure 3. Mean data from January 2019 to March 2023 
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Period 
Linear 

Regression 

Model Summary   Parameter Estimates 

R R2 p(F) p(K) p(W) p(RC) p(J) Intercept Coefficient 

2019 DEM - LST -0.610 0.372* .000 .000 .000 .000 .000 1084.162 -29.496 

DEM - CO -0.309 0.095 .000 .000 .000 .000 .000 498.656 -10, 868.265 

DEM - NO2 -0.377 0.142 .000 .000 .000 .000 .000 302.947 -4, 663, 037.420 

DEM - SO2 0.046 0.002 .000 .000 .000 .000 .000 172.677 113, 645.714 

LST - CO 0.352 0.075 .000 .000 .000 .000 .000 21.183 601.092 

LST - NO2 0.584 0.341* .000 .000 .000 .000 .000 26.371 151, 619.259 

LST - SO2 -0.097 0.009 .000 <.001 .000 .000 .000 30.701 -5, 289.455 

2020 DEM - LST -0.602 0.362* .000 .000 .000 .000 .000 1050.729 -28.512 

DEM - CO -0.170 0.029 .000 .000 .000 .000 .000 422.296 -8, 226.206 

DEM - NO2 -0.402 0.161 .000 .000 .000 .000 .000 321.944 -597, 496.314 

DEM - SO2 0.010 0.000 <.001 .014** <.001 <.001 .000 171.935 24, 220.170 

LST - CO 0.300 0.090 .000 .000 .000 .000 .000 21.114 323.304 

LST - NO2 0.517 0.267 .000 .000 .000 .000 .000 26.885 164, 604.054 

LST - SO2 -0.094 0.009 .000 .000 .000 .000 .000 31.040 -4, 764.134 

2021 DEM - LST -0.599 0.359* .000 .000 .000 .000 .000 1000.211 -27.115 

DEM - CO -0.162 0.026 .000 .000 .000 .000 .000 391.851 -7, 224.416 

DEM - NO2 -0.416 0.173 .000 .000 .000 .000 .000 335.367 -6, 039, 472.130 

DEM - SO2 -0.017 0.000 .000 .000 <.001 <.001 .000 169.191 -27, 575.146 

LST - CO 0.234 0.055 .000 .000 .000 .000 .000 23.900 218.986 

LST - NO2 0.602 0.362* .000 .000 .000 .000 .000 25.326 190, 962.855 

LST - SO2 -0.034 0.001 .000 .000 .000 .000 .000 30.602 -1, 220.198 

2022 DEM - LST -0.663 0.439* .000 .000 .000 .000 .000 1, 149.129 -31.332 

DEM - CO -0.250 0.063 .000 .000 .000 .000 .000 623.881 -16, 044.447 

DEM - NO2 -0.416 0.173 .000 .000 .000 .000 .000 321.071 -5, 228, 901.766 

DEM - SO2 0.014 0.000 <.001 .000 <.001 <.001 .000 170.515 21, 567.153 

LST - CO 0.304 0.093 .000 .000 .000 .000 .000 19.160 404.545 

LST - NO2 0.540 0.291 .000 .000 .000 .000 .000 26.516 146, 603.463 

LST - SO2 -0.055 0.003 .000 .000 .000 .000 .000 30.679 -1, 846.230 

2023 

(Jan - 
Mar) 

DEM - LST -0.655 0.430* .000 .000 .000 .000 .000 1, 095.157 -32.195 

DEM - CO -0.346 0.120 .000 .000 .000 .000 .000 906.408 -22, 776.411 

DEM - NO2 -0.327  0.107 .000 .000 .000 .000 .000 301.525 -4, 661, 288.973 

DEM - SO2 0.062 0.004 .000 .000 .000 .000 .000 165.308 133, 467.147 

LST - CO 0.602 0.362* .000 <.001 .000 .000 .000 2.486 806.526 

LST - NO2 0.572 0.327 .000 .000 .000 .000 .000 23.743 168, 362.045 

LST - SO2 0.045 0.002 .000 .010 .000 .000 .000 28.330 1, 990.061 

Jan 2019 - 

Mar 2023 
DEM - LST -0.613 0.375* .000 .000 .000 .000 .000 1, 051.319 -28.512 

DEM - CO -0.204 0.042 .000 .000 .000 .000 .000 919.227 -24, 406.095 

DEM - NO2 -0.395 0.156 .000 .000 .000 .000 .000 316.849 -53, 195, 953.907 

DEM - SO2 0.012 0.000 .000 <.001 .000 .000 .000 170.578 21, 350.070 

LST - CO 0.274 0.075 .000 .012** .000 .000 .000 21.154 311.787 

LST - NO2 0.549 0.302* .000 .000 .000 .000 .000 26.218 159, 921.095 

LST - SO2 -0.065 0.004 .000 .000 .000 .000 .000 30.631 -2, 651.818 

Wet 

Season 
(Jan 2019 

- Mar 

2023) 

DEM - LST -0.632 0.399* .000 .000 .000 .000 .000 1, 140.488 -30.587 

DEM - CO -0.198 0.039 .000 .000 .000 .000 .000 510.386 -12, 269.264 

DEM - NO2 -0.376 0.141 .000 .000 .000 .000 .000 308.910 -5, 291, 407.162 

DEM - SO2 0.012 0.000 .000 <.001 <.001 <.001 .000 170.833 20, 171.581 

LST - CO 0.358 0.128 .000 .000 .000 .000 .000 18.823 454.259 

LST - NO2 0.619 0.383* .000 .000 .000 .000 .000 26.596 165, 476.593 

LST - SO2 -0.074 0.006 .000 .000 .000 .000 .000 31.478 -2, 641.939 

Dry 

Season 
(Jan 2019 

- Mar 

2023) 

DEM - LST -0.612 0.375* .000 .000 .000 .000 .000 1, 024.789 -28.304 

DEM - CO -0.288 0.083 .000 .000 .000 .000 .000 776.781 -18, 812.180 

DEM - NO2 -0.420 0.176 .000 .000 .000 .000 .000 328.331 -5, 433, 363.623 

DEM - SO2 0.011 0.000 <.001 .345** <.001 <.001 .000 170.324 23, 094.965 

LST - CO 0.495 0.245 .000 .000 .000 .000 .000 7.916 681.400 

LST - NO2 0.477 0.227 .000 .000 .000 .000 .000 26.082 147, 383.860 

LST - SO2 -0.054 0.003 .000 .000 .000 .000 .000 29.910 -2, 437.799 

Table 2. Ordinary Least Squares (OLS) Regression results (* = weak correlation, ** p >.01) 
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4. CONCLUSION 
 

This study examines the correlation between land surface 

temperature, elevation, and air quality parameters (CO, NO2, and 

SO2) in the Metro Manila Airshed under different periods from 

January 2019 to March 2023. Using Ordinary Least Squares and 

Generalized Linear Regression, LST and heat index had a strong 

correlation, allowing the use of LST for further analysis. 

 

Across different combinations between LST, elevation, and air 

quality parameters, a weak to low negative correlation was seen 

between DEM to LST, CO, and NO2. In addition, weak to low 

positive correlation was seen between LST to CO and NO2. 

Almost no correlation was found between DEM and SO2, and 

LST and SO2. However, these models might have the presence 

of overfitting or underfitting, non-stationarity or 

heteroscedasticity, bias, or misspecification as implied by their 

statistical significance across different statistical parameters. 

 

The values of LST, CO, NO2 were found to be clustered in the 

urbanized area of Metro Manila. Since this is a common 

observation among the variables, the urban landscape of an area 

may have contributed to the concentration of these pollutants. 

Therefore, it is strongly recommended that future research 

investigate factors influencing the significance of the correlation 

between LST and air quality parameters. Utilizing appropriate 

indices for both LST and various air pollutants will establish an 

extended systematic analytical framework. Notably, the 

Normalized Difference Built-Up Index (NDBI) and the 

Normalized Difference Vegetation Index (NDVI) are vital 

indices that play a pivotal role in comprehending the relationship 

and patterns between LST and air pollutants.  NDBI helps 

identify areas where high urbanization can influence air pollutant 

concentrations, while NDVI emphasizes the cooling and air 

quality advantages of vegetation. Both indices contribute to an 

inclusive understanding of how land use, urbanization, and 

vegetation collectively influence the interrelationship between 

land surface temperature and air pollutants. Furthermore, 

investigating other pollutants such as particulate matter as an air 

quality parameter is recommended to shed more understanding 

on the relationship of land surface temperature and air quality. 

 

Moreover, the use of other GIS-based regression analysis is 

suggested to determine the best-fit model for these variables. As 

seen by their statistics, additional pre-processing and training on 

the models would improve accuracy. Application of 70-30 

regression partition for training and test sets through machine 

learning for modeling linear regression is recommended. Aside 

from other regression models, it is also recommended for these 

datasets to be assessed in other aspects such as autocorrelation on 

the residuals of the regression model, and spatiotemporal hotspot 

analysis to identify any potential effect they had on the fit of the 

model. Due to the large dataset, processing faced issues on 

hardware, hence a stronger machine is required to perform all 

processes and recommendations. 

 

Nonetheless, it is advised for authorities to implement policies 

and actions to improve the status of air quality in Metro Manila 

airsheds. It must be ensured that despite the goals and actions 

towards urbanization, there should be utmost priority and balance 

for sustainability and environmental management, not only for 

the localized area but for the larger contribution it has on global 

climate change. 
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