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ABSTRACT: 

A variety of research endeavors and practical applications necessitate the use of land cover maps. These maps are valuable for tasks 
such as change detection, forest monitoring, urban expansion monitoring, natural resource mapping, catering to diverse user 
requirements. While satellite sensors offer essential data for comprehending spatial and temporal variations in land cover, relying on a 
single satellite system can be limiting, especially considering the potential hindrance of cloud cover in the case of optical sensors. To 
enhance temporal frequency, it becomes essential to utilize multiple satellite systems, albeit requiring harmonization to ensure 
consistent outcomes. This study presents a large-scale annual land cover mapping which utilizes harmonized Landsat-8 and Sentinel-
2 satellite imagery, in conjunction with supplementary data, and a machine learning algorithm. In addition, the use of powerful 
computational processing platforms such as Google Earth Engine and Google Colaboratory is now a requirement to manage big 
geospatial data as well as to run different algorithms for processing and analysis.  

 
1. INTRODUCTION 

 
The rapid and wide-ranging changes in land use/land cover 
patterns caused by the rapid increase in population, expansion 
of urban areas, continuous land use/land cover transformation, 
and widespread deforestation has led to the emergence of 
numerous environmental issues with adverse effects on the 
ecosystem and biodiversity. With the rapid alteration of land 
cover, accurate and frequent monitoring and mapping of land 
cover patterns becomes an essential part of policymaking with 
regards to sustainable development and natural resource 
management (Ma et. Al., 2015). For the monitoring and 
mapping of land cover, remote sensing techniques have been 
widely used, in part due to the increasing availability of different 
Earth Observation (EO) data.  
 
The wide availability of EO data acquired through satellite 
sensors has provided the necessary data for monitoring and 
understanding spectral, spatial, and temporal variation in land 
cover patterns (Wang, et. Al., 2017). Given the improved spatial 
and temporal capabilities of contemporary satellite sensors, 
substantial amounts of remotely sensed data need to be 
processed, analyzed, and visualized. The advancements in the 
capability of satellite sensors have shifted the focus of land 
cover mapping to the use of geospatial big data and powerful 
computing systems and platforms. Robust and powerful 
computational processing capacities are now a requirement to 
manage big geospatial data as well as to run different algorithms 
for processing and analysis (Pratico, et. Al., 2021).  
 
Gomez et al. (2016) emphasized the importance of accurate and 
frequent monitoring for effective policymaking. Satellite 
sensors provide the necessary data to understand spatial and 
temporal variations in land cover patterns (Wang et al., 2017). 
However, the volume of data generated requires advanced 
processing capabilities. Cloud-based computation platforms like 
Google Earth Engine (GEE) have emerged as a solution, 
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offering the ability to process and analyze large geospatial 
datasets. GEE employs Google’s cloud infrastructure and 
JavaScript-based language for geospatial data processing (Luo 
et al., 2021; Hird et al., 2020). Numerous studies have 
demonstrated GEE’s effectiveness in mapping various land 
cover types at different scales (Zhang et al., 2020). In a study 
conducted by Hird, et. al. (2017), a workflow for predicting the 
probability of wetlands on a regional scale was created using the 
GEE and R Statistical Software.  
 
Global land cover datasets have become available and released 
publicly. In 2021, ESRI partnered with Impact Observatory and 
Microsoft to release a 10-meter Land Use/Land Cover (LULC) 
map for 2020 generated through artificial intelligence (AI) 
techniques, utilizing European Space Agency (ESA) Sentinel-2 
imagery. Additionally, in the same year, the European Space 
Agency (ESA) released the World Cover map, a global land 
cover map for 2020, with a 10-meter resolution derived from 
both Sentinel-1 and Sentinel-2 satellites. Following favorable 
feedback from users, ESA decided to enhance the World Cover 
project by creating a new, higher quality version for the year 
2021 which was made available in 2022. Also in the same year, 
Google, in collaboration with the World Resources Institute, 
introduced Dynamic World, a 10-meter near-real-time (NRT) 
global land use land cover dataset created using deep learning 
techniques. These global land cover datasets are released under 
a Creative Commons license which means that the datasets are 
provided free of charge, without restriction of use. While these 
datasets are free for all to use, the training datasets used to create 
these products are also global in coverage, which means that 
there are instances where inaccuracies will be present in areas 
which were not captured by their training datasets. 
 
In the Philippines, a national land cover maps are released by 
the National Mapping and Resource Information Authority 
(NAMRIA) every 5 years. However, many different 
applications and studies require more frequent land cover 
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updates, such as agriculture monitoring, emerging settlements, 
urban sprawl monitoring, forest monitoring and detection of 
deforestation activities, and mangrove mapping, among others. 
Considering the potential benefits offered by geospatial big data, 
cloud-based computational platform, and multisource data 
might have for large-scale, reliable, and frequent land cover 
mapping and monitoring, the objective of this study is to use a 
machine learning algorithm for large-scale mapping of land 
cover though the use of cloud-based computation platform, 
Google Earth Engine, and Google Colaboratory. The study 
entails generating an accurate land cover classification map 
encompassing the Greater Luzon Island. Landsat 8 OLI and 
Sentinel 2 was used to derived phenological features and 
composites of spectral bands and band indices which was then 
used alongside topographic features (DEM, slope, topographic 
diversity) and night-time lights to classify the selected land 
cover categories in the Luzon Island.  
 

2. STUDY AREA 

 

Figure 1. Geographic location of Greater Luzon Island 
overlaid with 0.5 x 0.5 degrees tiles. 

The area for this study is the Greater Luzon Island (GLI) (shown 
in Figure 1). It is the largest island in the Philippines that covers 
seven regions, i.e., Region 1 (Ilocos Region), Region 2 (Cagayan 
Valley), Region 3 (Central Luzon), Region 4A 
(CALABARZON), Region 5 (Bicol), Cordillera Administrative 
Region (CAR), and the National Capital Region (NCR). The 
Greater Luzon Island measures around 104,688 square 
kilometers and is roughly oriented with its longest axis north to 
south from 18°32’ N to 12°31’ N. 

Since the whole island covers a very large area, the processing 
of the whole island in Google Earth Engine cannot be done 
without experiencing memory limitations. Thus, a grid of 0.5 x 
0.5 degrees tiles was created wherein the generation of land 
cover classification images will be done per tile and the results 
can be mosaicked afterwards. 

 

3. METHODOLOGY 

The proposed methodology for classifying land cover types of 
Greater Luzon Island is outlined through the following 
worklows: Landsat-Sentinel harmonization, feature and machine 
learning algorithm selection, model training and validation, and 
post-classification. The overall methodology is shown in Figure 
3 and Figure 4. 

3.1 Landsat-Sentinel Harmonization 

Landsat 8 (L8) was launched by NASA in 2013 and is presently 
operating alongside Landsat 7 (L7). The joint utilization of L7 
and L8 generates three to four observations per month. Since 
2015, Sentinel 2 (S2) constellation from the European Space 
Agency (ESA) has been delivering global scale imagery with a 
revising time of 5 to 10-day at resolutions ranging from 10 to 60 
m. The proven compatibility between the L7, L8 and S2 bands 
provides the opportunity for monitoring at near-daily medium 
resolution by merging their observations (Nguyen et al., 2020). 
By harmonizing the Landsat and Sentinel observations, the 
temporal frequency of observations can be increased, and more 
insights can be gathered in the areas of interest. Harmonization 
can also help in cloud-infested areas, creating more opportunities 
for observations. Nevertheless, synthesizing (or harmonizing) 
L7, L8 and S2 is still a challenging process that requires several 
steps. 

The harmonization process used in this study is based on the 
work of Nguyen et al. 2020 entitled “Harmonization of Landsat 
and Sentinel 2 for Crop Monitoring in Drought Prone Areas: 
Case Studies of Ninh Thuan (Vietnam) and Bekaa (Lebanon)”. 
The harmonization process is composed of the following 
procedures: image selection, atmospheric correction, cloud and 
cloud shadows masking, BRDF and topographic correction, 
band adjustment, resampling, and reprojection. Atmospheric 
correction is implemented in Jupyter notebook while the rest of 
the steps are done in Google Earth Engine. 

 
Figure 2. Modified Landsat-Sentinel harmonization workflow 
based on the work of Nguyen et al. (2020) The steps inside the 
blue region can be done in Jupyter Notebook while those inside 

the green region can be done in Google Earth Engine. 
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3.1.1 Image selection 

The image selection step filters the image collections and selects 
images based on location, date range, and cloud percentage cover 
specified by the user. 

3.1.2 Atmospheric Correction 

Atmospheric correction corrects the images and converts the 
sensor radiance to a quantity more closely related to the 
properties of the target, such as ground reflectance or emissivity. 
This step may be skipped if the images selected by the user are 
already atmospherically corrected. 

3.1.3 Clouds and Cloud Shadows Masking 

Clouds and cloud shadows are masked from the images to 
remove these unwanted pixels. Available techniques for cloud 
masking are using the cloud mask QA band, using a cloud score, 
and using random forest classifier to train cloud and cloud 
shadow pixels detection and masking. 

3.1.4 BRDF and Topographic Correction 

Landsat and Sentinel-2 satellites acquire images at view angles 
±7.5° and ±10.3° respectively from nadir that cause small 
directional effects in the surface reflectance. The solar zenith 
angle can also vary over the year which can cause changes in the 
reflectance values even if the surface remains the same. These 
effects are described by the bidirectional reflectance distribution 
function (BRDF) and should be minimized to harmonize both 
Landsat and Sentinel-2 datasets for reliable and consistent data. 

Topography can also contribute to differences in surface 
reflectance of similar land cover. Topographic correction should 
be considered especially for terrains with varying elevations and 
slope such as mountains or rugged terrains. 

3.1.5 Band Adjustment 

Both Landsat and Sentinel-2 missions have radiometric and 
geometric calibration algorithms of their own to maintain quality 
and interoperability of their datasets. However, small spectral 
differences exist in the bands of the Landsat and Sentinel-2 
missions. Hence, there is a need to adjust the values of the 
Landsat bands to match the values of the Sentinel-2 bands (or 
vice versa). The adjustment is in the form of transformation 
coefficients. 

3.1.6 Resampling and Reprojection 

A harmonized dataset should have uniform spatial resolution and 
projection across all bands. Landsat datasets have 30m resolution 
and WGS84 geographic projection. Sentinel-2 datasets have 
10m resolution and Universal Transverse Mercator (UTM) 
projection. In this study, Landsat datasets are resampled to 10m 
resolution and Sentinel-2 datasets are reprojected to WGS84 
geographic projection to have a uniform spatial resolution and 
projection across all datasets and bands.  

3.2 Feature Dataset Preparation  

The land cover classification of GLI was generated using the 
harmonized data of L8 OLI and S2 Level-2A Imageries acquired 
from January 2022 to December 2022 using freely available 
datasets in GEE. Satellite images with less than 30.0% cloud 
cover were queried from the image collection, compiled into one 
year composite, and harmonized. In addition, the compiled 
image collection was used to extract phenological features using 
Harmonic Regression and different band indices of the 12 land 
cover types. The pre-processing and extraction of features were 
done in the Google Colaboratory Environment using different 
Python packages including the Earth Engine API and Geemap 
(Luo et. al, 2021). The table below shows the list of features that 
were extracted from the image collection of harmonized Landsat 
8 and Sentinel-2 data. 

After the features were extracted from the harmonized image 
collection of L8 and S2, they were aggregated and reduced into 
one composite. Additional features such as nighttime lights 
(from Visible Infrared Imaging Radiometer Suite), digital 
elevation model, and slope were then added in the dataset to form 
the image classification features. 
 

Features  Type of Features 

NDVI, NDBI, NDWI, SAVI, 
MVI Spectral Indices Features 

Phase, Amplitude, Mean 
EVI, Median EVI, Max EVI, 

Min EVI, Std Dev EVI 
Phenological Features 

Blue, Green, Red, NIR, 
SWIR 1, SWIR 2 Spectral Band Features 

Table 1. Features extracted from the harmonized data of 
Sentinel-2 and Landsat 8 satellite imageries

 

Figure 3. First part of the proposed methodology for land cover mapping covering feature dataset preparation
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Land cover  Description 
Annual 
Crop 

Includes bare soil of cultivated land, harvested arable 
crops (maize, corn, sugarcane) except rice 

Aquaculture Farming of aquatic organisms in both coastal and 
inland areas 

Barren 
Land Land with little or no layers of vegetation cover 

Dense 
Urban 

Urban structures and transport networks are 
dominating the surface area (>70%). Includes urban 
center types and dense suburbs where buildings form 

a continuous and homogenous fabric 

Forest 

Land with an area of more than 0.5 hectares and tree 
crown cover of more than 10%. The trees should be 

able to reach a minimum height of 5 meters at 
maturity. 

Grassland Are predominantly vegetated with grasses such as 
Imperata, Themada, Saccharum spp., among others 

Mangrove 
Forested wetland growing along tidal mudflats and 
along shallow water coastal areas extending inland 

along rivers, streams, and their tributaries 

Paddy Rice Flooded field of arable land used to cultivate rice 
(separated from annual crop) 

Permanent 
Crop 

Crops that are considered permanent such as fruit 
trees (mango, kalamansi, etc.), some herbaceous 

plants (bananas), stemless plants (pineapples) 

Shrubland 
Land dominated by woody vegetation which are 
generally more than 0.5 meter and less than 5.0 
meters in height and without a definite crown 

Mixed 
Urban 

Associated vegetated areas and bare surface areas are 
present and occupy significant portion in urban 

structures and transport networks. 

Water Open ocean and seas, streams, rivers, lakes, and other 
inland body of water 

Table 2. The 12 land cover types used in this study. 

3.2 Reference Data Annotation  

A rigorous manual annotation procedure was employed to create 
reference datasets, which were subsequently divided into three 
independent datasets namely: one for training, one for test, and 
one for validation procedure. Given the significance of 
representative samples in supervised classification, a thorough 
examination of the study area was conducted. Different 
secondary data sources, such as Google Earth Images, NAMRIA 
Land Cover Maps, Drone Data, and OpenStreetMap data were 

used for interpretation and manual annotation of different land 
cover types. Taking into consideration the NAMRIA Land 
Cover classification and the complex landscape of the study area, 
a total of 12 land cover classes were manually identified and 
annotated: (1) Annual Crop, (2) Aquaculture, (3) Barren Land, 
(4) Dense Urban, (5) Forest, (6) Grassland, (7) 
Mangrove/Wetland, (8) Paddy Rice, (9) Permanent Crop, (10) 
Shrubland, (11) Mixed Urban, and (12) Water. 

3.3 Predicting Land cover using Random Forest Algorithm 

A supervised classification was then performed on the feature 
dataset to produce the classified image of GLI. Random forest 
was used as the machine learning algorithm for the classification 
procedure. Random Forest is a supervised machine learning 
algorithm that builds an ensemble of decision trees and merges 
them together usually by bootstrapping method to get a more 
accurate and stable prediction. Random forest was chosen 
because of its high efficiency in handling big data and its ability 
to reduce overfitting compared to other machine learning 
algorithms available in Google Earth Engine Platform such as 
Support Vector Machine, Naïve Bayes, or CART (Belgiu & 
Dragut, 2014). Prior to the classification procedure, the 
hyperparameters of the Random Forest were fine-tuned using the 
“fit” and “score” method. This involved fitting the model with a 
set of hyperparameters to the training dataset and evaluating the 
score of the model using the test dataset. This fitting and 
evaluation process is iteratively repeated until the optimal 
hyperparamaters are identified. After determining the best set of 
hyperparameters, the Random Forest was then implemented on 
the feature dataset for the classification (Pedregosa, et. al., 2011). 

3.4 Accuracy Assessment 

Among the crucial final steps of every classification procedure 
is accuracy assessment. The aim of accuracy assessment is to 
quantitatively evaluate how efficiently the pixels were sampled 
into the correct land cover classes. Field data from ODK and 
Drone Images, SkySat Scene Product, and Google Earth Images 
were used to generate a total of 301 random points (shown on 
figure 5). Determination of the random points is carried out to 
identify the area that represents each desired land cover class. 

 
Figure 4. Second part of the methodology for land cover mapping covering supervised classification 
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The most widely prompted classification accuracy is in the form 
of confusion matrix. Descriptive and analytical statistics could 
be derived from this confusion matrix. In this study, various 
evaluation metrics related with classification accuracy were 
computed based on the formulation as indicated below:  

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴 (𝑂𝑂𝐴𝐴) =  𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇 
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝑇𝑇

  (1) 

𝐾𝐾𝑂𝑂𝐾𝐾𝐾𝐾𝑂𝑂 =  2 ∗(𝑇𝑇𝑇𝑇 ∗𝑇𝑇𝑇𝑇−𝐹𝐹𝑇𝑇 ∗𝐹𝐹𝑇𝑇)
(𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇)∗(𝐹𝐹𝑇𝑇+𝑇𝑇𝑇𝑇)+(𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇)∗(𝐹𝐹𝑇𝑇+𝑇𝑇𝑇𝑇)

  (2) 

𝑃𝑃𝑂𝑂𝑂𝑂𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

    (3) 

𝑅𝑅𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝑂𝑂 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

                   (4) 

𝐹𝐹1 − 𝑃𝑃𝐴𝐴𝑃𝑃𝑂𝑂𝑂𝑂 =  2 𝑥𝑥 𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑥𝑥 𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅
𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅

    (5) 

Where TP is True Positives which are number of samples 
correctly predicted as “positive”, FP is False Positives which are 
number of samples wrongly predicted as “positive”, TN is True 
Negatives which are number of samples correctly predicted as 
“negative”, and lastly FN is False Negatives which are samples 
wrongly predicted as “negative”.  

 
Figure 5. Validation points generated from variety of datasets 
(ODK, Drone data, SkySat Scene, and Google Earth Images) 

4. RESULTS AND DISCUSSION 

Figure 6 shows the land cover classification result of Random 
Forest classifier for the harmonized L8 and S2 data and the 
derived spectral indices, phenological features, and ancillary 
dataset implemented on GEE and Google Colaboratory 
Environment. The classified image of Greater Luzon Island 
underwent an accuracy assessment, involving the generation of 
confusion matrix with standard measures of accuracy (overall 
accuracy, kappa coefficient, recall, precision, and F1-score). 
Table 3 shows the result of the per-class accuracy assessment 
(recall, precision, and F1-score) for 2022 land cover map.   

 
Figure 6. 2022 Land cover classification of Greater Luzon 

Island produced using Google Earth Engine and Google 
Colaboratory Platform 

Results of the accuracy assessment reveal an overall accuracy of 
81.6% and a kappa coefficient of 0.80. Class-specific precision 
and recall exhibit a range from 57.7% (in the case of the 
grassland class) to 100.0% (for the mangrove and mixed urban 
classes). Notably, the mangrove class attains the highest F1-
score, reaching 96.6%, while the shrubland class registers the 
lowest F1-score at 66.7%. This broad spectrum of accuracy 
values underscores significant confusion between land cover 
classes specifically the grassland, and shrubland.  
 

Land cover 
class F1-score Recall Precision 

Annual crop 88.0 76.9 83.3 
Aquaculture 88.2 88.2 88.2 
Barren land 71.4 80.0 64.5 

Dense Urban 96.2 100.0 92.6 
Forest 86.4 82.6 90.5 

Grassland 69.8 88.2 57.7 
Mangrove 96.6 93.3 100.0 
Paddy Rice 87.5 97.2 79.5 
Permanent 

Crop 71.8 66.7 77.8 

Shrubland 66.7 59.5 75.9 
Mixed Urban 85.1 74.1 100.0 

Water 90.9 88.2 93.8 

Table 3. Per-class accuracy metrics of the land cover generated 
using Random Forest Algorithm classifier. The F1-score, recall, 
and precision were computed for the 2022 land cover produced. 
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Furthermore, the low precision, as evidenced by the grassland 
class's 57.7%, signifies an excessive rate of false positives 
produced by the classifier. This suggests an overestimation of the 
true grassland land cover class, as many areas have been 
erroneously classified as grassland. Examining the confusion 
matrix (Figure 7), it is evident that numerous areas designated as 
annual crop and a smaller number of areas categorized as barren 
land, permanent crop, and mixed urban were inaccurately 
classified as grassland. This confusion between grassland and 
annual crop may be attributed to their similar spectral and spatial 
characteristics. 

Conversely, the shrubland class exhibits a low recall, implying 
that the classifier generates a substantial number of false 
negatives for this land cover category. Many regions designated 
as shrubland are not classified as such but are instead categorized 
as other land cover types, particularly barren land, paddy rice, 
and permanent crop. Several factors may contribute to the 
classifier's inability to correctly classify shrubland, including 
potential changes in land cover over time. Shrublands are 
susceptible to alterations due to utilization or conversion into 
alternative land cover or land use practices. 

Figure 7. Generated confusion matrix of the trained random 
forest classifier  

5. CONCLUSION 

In this study, we introduce a methodology for large-scale land 
cover mapping using the combination of Google Earth Engine 
Platform and Google Colaboratory Environment, which 
leverages multisource and multitemporal satellite images. The 
primary objective of this methodology is to generate a 
comprehensive land cover map for Greater Luzon Island, 
derived from a time-series of harmonized Landsat 8 and Sentinel 
2 satellite imagery, while employing the Google Earth Engine 
Platform and Google Colaboratory Environment. 

To achieve this, the proponents utilized the Random Forest 
classifier, selected for its robustness in handling big geospatial 
data. The generated land cover map demonstrated an overall 
accuracy of 81.6% and a kappa coefficient of 0.80. These results 

indicate favorable criteria, rendering them suitable for further 
analysis. Additionally, we computed F1-scores, precision, and 
recall for various land cover classes, as individual accuracy 
assessment parameters, which provide valuable insights into the 
model's performance concerning specific categories or classes. 
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