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ABSTRACT: 

 

In recent years, the cost of photovoltaic (PV) technologies significantly declined, boosting the expansion of solar PV installations in 

the country. This rapid development in solar PV utilization necessitates an effective detection method capable of delineating both 

utility-scale and distributed PV installations to generate a complete inventory of solar PV installations for status monitoring and 

implementation of appropriate programs of stakeholders and decision-makers. This study aims to detect and delineate solar PV 

installations in Pampanga, Philippines using different band combinations of Sentinel-2, Sentinel-1, and indices (NDVI, NDWI, and 

PVSI) through machine learning with the aid of open-source geographic information system and remote sensing software. Moreover, 

an alternative approach to identifying solar PVs using the combination of pixel-based classification (PBC) and object-based 

classification (OBC) was introduced. Training and validation data were acquired from the satellite images. The accuracy of each 

approach in PV detection was then compared using three classifiers: Support Vector Machine (SVM), Random Forest, and Naive 

Bayes. Results showed that SVM has the best performance for PBC while Random Forest demonstrated the highest accuracy for OBC. 

A post-processing procedure was also implemented using a set of spectral rules to further refine the results of image classification. The 

delineation accuracies of the post-processed data over the ground-truth data showed that the methodology is effective in delineating 

utility-scale installations for both Sentinel-2 and Planetscope. However, the detection of distributed PV systems showed limitations 

particularly when dealing with small solar PV installations (less than 45 pixels) due to Sentinel-2’s coarse spatial resolution. 

 

 

1. INTRODUCTION 

Energy is a crucial component of economic development.  As 

economies grow, so does their dependence on energy 

consumption. At the same time, the production and utilization of 

energy somehow negatively impacts the environment. Proper 

policies and enhanced implementation of sustainable energy are 

necessary for sustainable economic development (Shengjuan & 

Jingping, 2011).  

 

The Philippines is vulnerable to the effects of climate change 

(National Integrated Climate Change Database Information, 

2022) due to its geography, high population growth, man-made 

activities, and exposure to natural hazards (Asian Development 

Bank, 2018). Since 2008, the country has seen a doubling of 

greenhouse gas emissions with the energy sector contributing the 

largest under the Business-As-Usual (BAU) scenario 

(Department of Energy, 2020). To mitigate this, the adoption of 

the Paris Agreement aims to reduce greenhouse gas emissions by 

75% until 2030 (Aguilar, 2021). To achieve this goal, the 

Philippine government has implemented various policy options 

such as carbon taxes, energy efficiency guidelines, adjustments 

in the energy supply mix, and the proliferation of renewable 

energy systems (Cabalu et al., 2015). 

 

Energy security is also a continuing problem in the country. 

Despite improvements in access to electricity, the Philippines 

still faces problems with energy security due to electric power 

instability and inaccessibility (World Bank, 2021). Another 

concern in relation to energy security is self-sufficiency, which 

refers to the ability to meet energy demand using domestic 

resources (Kanchana & Unesaki, 2015). In 2020, the country had 

a self-sufficiency rate of 53%. However, this rate is expected to 

decline to 44% in 2030 and 39% in 2040 due to the depletion of 

Malampaya gas reserves (Department of Energy, 2020). As 

nonrenewable resources like coal and natural gas continue to 

deplete, it becomes more challenging to meet the increasing 

energy demand. Consequently, the country relies heavily on 

imported fuels, with almost half of the total energy supply in 

2020 being imported coal and natural gas. This heavy reliance on 

fossil fuels leads to high electricity prices, making the Philippines 

have the highest electricity rate in Southeast Asia (Yokota & 

Kutani, 2018).  

 

With the increasing electricity consumption and demand and the 

negative impact of nonrenewables on climate change, the 

Philippine government is committed to transitioning to cleaner 

energy resources to support socio-economic development (Asian 

Development Bank, 2018). Renewable energy is beneficial to the 

environment as it lowers emissions of GHG and other pollutants 

(Shinn, 2018). Compared to natural gas and coal, renewable 

energy can reduce emissions a hundredfold. Transitioning to 

renewable energy sources can bring about a dual benefit of 

mitigating the environmental harm caused by energy production 

while simultaneously boosting energy output and enhancing 

energy security and stability for the country. Shifting to 

renewable energy not only reduces harm to the environment but 

also increases energy stability and security (Centeno, 2018). 

 

Solar energy, which can be harnessed from the sun’s radiation, is 

one of the clean energy sources that can be converted into 

electricity or other forms of energy. It is recognized as one of the 

cleanest and richest types of renewable energy. There are two 
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ways to harness solar energy: photovoltaic (PV) and concentrated 

solar power (CSP) (SEIA, 2018). The global installed capacity 

for solar continues to increase every year, growing by an average 

of 13% from 2020-2030 due to extensive accessibility of 

resources, lower costs, and good policy support (International 

Energy Agency, 2020).  

 

There were two types of PV systems depending on the project 

size: utility-scale solar installations and distributed PV solar 

systems. Utility-scale solar installations, also known as solar 

farms or solar parks, are ground-mounted PV systems found 

mostly in open areas (Daniels & Wagner, 2022), operated by 

large energy producers to feed the grid supply, and developed to 

cater large-scale economies (Donnelly-Shores, 2013). These 

systems have a capacity of at least 1 MW (Asian Development 

Bank, 2014) and typically cover 2 to 4 hectares of land depending 

on the solar technology used (Daniels & Wagner, 2022). 

Distributed generation systems are small-scale electricity 

production facilities installed close to the end user of power for 

onsite consumption (SEIA, 2023). They can be installed on 

rooftops or as ground-mounted and are usually connected to the 

local grid. They are intended for small, moderate, or localized use 

of electricity, such as for residential rooftop and commercial 

buildings. Some distributed systems may also operate 

independently from the grid, such as off-grid ground-mounted 

solar projects that power rural areas or isolated small 

communities (Hernandez et al., 2014). 

 

The Philippines has a rich solar energy potential with an annual 

average of 5.1 kWh per square meter per day, based on the 

assessment of DOE and the US National Renewable Energy 

Laboratory (IRENA, 2017, p. 20). Given its favorable location, 

solar energy is a viable source of energy for the Philippines (GIZ, 

2013). Solar energy has been rapidly increasing in popularity in 

the Philippines since 2014, specifically in the small-scale, 

commercial, and industrial sectors, due to the decreasing cost of 

solar technologies (Department of Energy, 2020). The use of 

solar PV systems has resulted in a 10.2% increase in power 

generation output from solar resources from 2019 to 2020. In 

2020, the majority of the increase in renewable energy capacity 

was due to solar energy, wherein two solar projects, one in 

Concepcion, Tarlac and the other in Cadiz, started operations, 

producing 100.6 MW and 132.5 MW of solar power, 

respectively. 

 

By 2040, the target share of renewable energy is 35% of the total 

installed capacity (Department of Energy, 2020). To properly 

plan for future energy efficiency and conservation programs, it's 

important to have an updated inventory of solar power systems, 

including distributed rooftop PVs (Kausika et al., 2021). 

Detecting solar PV using satellite or aerial imagery can help 

determine location, installed capacity, and area, aiding in the 

planning of distribution lines (Bradbury et al., 2016) and 

forecasting energy demand. This information can prevent power 

interruptions and ensure reliable and efficient power systems (de 

Hoog et al., 2020).  Estimating solar PV panel installations is 

often inefficient due to lengthy field inspections and manual 

rooftop examinations. Remote sensing imagery and machine 

learning can enhance accuracy by detecting solar installations 

across extensive areas while reducing human error. 

 

The boost in solar panel deployment raised the demand for 

finding methods for the detection of solar panels. Although there 

are studies that deal with the solar PV monitoring using machine 

learning algorithms, there are still limited studies on the detection 

of these installations for large-scale areas. Solar panel detection 

has been mainly dominated by efforts that are focusing on rooftop 

installations in smaller areas using high spatial resolution satellite 

images. Souffer et al., (2021) used object-based image analysis 

(OBIA) and machine learning (Random Forest) on UAV RGB 

and thermal infrared (TIR) images for the extraction of PV panels 

which yielded 99.7% classification accuracy. Meanwhile, Malof 

et al., (2015) performed an automated solar panel detection on a 

portion of Fresno City in California using several methods 

including SVM classification, MSER-based colour segmentation 

and shape analysis, boosted cascade classifier and aggregate 

channel features technique. Both studies obtained good results, 

but the detection is concentrated on smaller regions.  

 

There were also studies that explored delineation of solar 

installation for large scale areas. Vasku (2019) compared the 

classification accuracy of solar farms on Sentinel-2 and Sentinel-

1 data using machine learning operations for the entire Denmark. 

On the other hand, Plakman et al. (2022) identified solar parks 

using Sentinel-2 and Sentinel-1 data using Random Forest 

(99.97% accuracy) and experimented on subsampled, 

oversampled binary data and multiple land cover categories. 

Although both have successfully detected solar PV installations, 

the classification is only for utility-scale installations and not 

distributed PVs (rooftop solar) due to the limitation of using a 

moderate-resolution image.  

 

Accomplishing a comprehensive solar PV installation database 

requires not only the detection of large-scale solar farms but also 

the isolated solar rooftops. Investigating the performance of 

different multi-resolution data can help identify the best spatial 

resolution that can consider the detection of both solar PV system 

types. A study by Jiang et al. (2021) utilized three different 

spatial resolutions (0.1m, 0.3m, and 0.8m) for solar panel 

detection. However, these images could still be considered as 

high-resolution images. Moreover, the study only focused on 

small areas (the maximum area is 1 km2). This study will address 

the above-mentioned gaps and will explore the performance of 

solar panel detection using satellite images with different spatial 

resolutions (moderate and high resolution) through machine 

learning techniques. 

 

The study’s objective is to detect and delineate solar PV 

installations in Pampanga, a province in the Philippines, with the 

application of machine learning (ML) in different band 

combinations of Sentinel-2 and Sentinel-1, and indices such as 

Normalized Difference Vegetation Index (NDVI), Normalized 

Difference Water Index (NDWI), and Photovoltaic Spectral 

Index (PVSI) by Shimada & Takeuchi (2022). Solar arrays will 

also be detected using the Planetscope images. In this study, the 

performance of various ML classification techniques will be 

evaluated to identify the best model for the detection of both 

utility-scale and distributed/rooftop solar PV systems. Also, a 

classification system comparable to the methods of Guan et al., 

(2017) is also proposed in this study using the combined pixel-

based and object-based classification (POBC) approach. POBC 

was compared to the traditional pixel-based classification (PBC) 

and object-based classification (OBC) methods of solar PV panel 

detection. 

 

2. METHODS 

2.1 Study Area 

Pampanga is located in Central Luzon (Region 3) on the island 

of Luzon, Philippines. The region is the second largest 

contributor to the power supply coming from solar energy 

systems, according to DOE (2020). In 2019, the power generated 
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from solar energy in the region is estimated to be about 293,000 

GWh. 

 

Furthermore, the region is also a hotspot for solar energy 

potential, with provinces such as Tarlac, Nueva Ecija, and 

Pampanga receiving the highest shortwave radiation. (Bauzon et 

al., 2022). The wide presence of solar PVs in the area and its good 

geographical location for solar energy are the basis for the 

selection of the study area. 

 

2.2 Data and Software 

The study utilized medium to high-resolution satellite images, 

consisting of the following: 

 

● Medium-resolution (10-m): Sentinel-2 (Sentinel-1, 

NDVI, NDWI, and PVSI bands will be incorporated as 

composite bands), and 

● High-resolution (3-m): Planetscope. 

 

Sentinel-2 Level 2A images were acquired in Copernicus Open 

Access Hub covering Pampanga. The images consist of thirteen 

bands with a dynamic range of 12 bits per pixel. In addition, 

Sentinel-1 SAR scenes of Interferometric Wide (IW) swath mode 

and Ground Range Detected (GRD) type were gathered which 

are all into descending orbit type to ensure that the data regarding 

the object's positioning and orientation on the ground is retained. 

All Sentinel data were captured in February 2019. Meanwhile, 

Planetscope surface reflectance images were acquired freely 

through Planet’s Education and Research Program for dates 

February 19, 22, and 23, 2019, covering areas in Pampanga and 

Tarlac with minimal cloud presence.  

 

The Humanitarian OpenStreetMap Team's 2020 building 

footprint from OCHA Philippines was utilized to assist in the 

post-processing phase of image classification. Also, the list of 

solar PV installations (utility-scale PVs only) (Department of 

Energy, 2022) was used to facilitate the manual delineation of 

solar systems. 

 

Various software applications such as SNAP, GRASS GIS, and 

QGIS including plugin tools like the Semi-Automatic 

Classification Plugin, Orfeo Toolbox, SNAP, and GRASS GIS 

were utilized to process and classify satellite images. The 

supervised machine learning classification operations used were 

SVM, Random Forest, Decision Tree, and Naïve Bayes. 

 

2.3 Methodology 

The general workflow of the study is illustrated in Fig. 1. 

 

Figure 1. Methodology. 

 

For the preprocessing, the Sentinel-2 and Planetscope images 

were scaled to get the actual reflectance values. Final input 

images for classification were obtained by mosaicking, clipping, 

and applying cloud and shadow masking.  

 

This study compared the effectiveness of integrating different 

bands for identifying solar PVs. Sentinel-2 was combined with 

NDVI, NDWI, and PVSI, generating a raster layer for input to 

the classification process: 

 

                               𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 (𝐵8) − 𝑅𝑒𝑑 (𝐵4)

𝑁𝐼𝑅 (𝐵8) + 𝑅𝑒𝑑 (𝐵4)
                        (1) 

 

                             𝑁𝐷𝑊𝐼 =
𝐺𝑟𝑒𝑒𝑛 (𝐵3) − 𝑁𝐼𝑅 (𝐵8)

𝐺𝑟𝑒𝑒𝑛 (𝐵3) + 𝑁𝐼𝑅 (𝐵8)
                      (2) 

 

          𝑃𝑉𝑆𝐼 =
2.3∗𝐵11 − 1.1∗𝐵12 − 𝐵8

2.3∗𝐵11 + 1.1∗𝐵12 + 𝐵8
+ 0.5 ∗ (𝐵2 − 𝐵4 − 𝐵8)       (3) 

                                     +𝑠𝑖𝑔𝑛𝑢𝑚(1.3 −
𝐵6

𝐵8
) − 1 

 

Sentinel-1 images were also combined with Sentinel-2 bands 

after being pre-processed and calibrated for radiometric 

calibration and terrain correction. 

 

Image datasets were split into two categories: training and 

validation data. The training data is used as a guide for the model 

to analyze patterns and relationships between the classes in the 

image, while the validation data helps to fine-tune the model 

parameters and prevent overfitting/underfitting. Once the model 

is finalized. Google Earth was used to identify solar PV 

installations particularly the distributed PVs for creating the 

training and validation data. The training and validation data 

classes are composed of solar PV, vegetation, buildings/built-up, 

bare soil, water, aquafarm, roads, and agricultural lands. 459 

polygons were generated for pixel-based classification wherein 

20% of the data was used for validation. Object-based 

classification used the same training data locations as pixel-based 

classification. 

 
The study implemented two classification types, pixel-based and 

object-based, as well as an alternative approach of combining 

both for solar PV detection.  

 

2.3.1 Pixel-based classification 
 

The Orfeo Toolbox plugin in QGIS was used for pixel-based 

classification. Three classification techniques were used on each 

image type using training data, Support Vector Machine (SVM), 

Random Forest (RF), and Naive Bayes (NB). For SVM, the 

kernel type used was radial basis function while the parameter 

optimization was activated for the cost and gamma parameter 

determination. Meanwhile, the selected parameters for the 

random forest were a maximum tree depth of 17 and a maximum 

no. of trees of 1000. Lastly for Naïve Bayes, all parameters were 

set into the default values. 

 

2.3.2 Object-based classification 
 

To classify an object in an image, the first step is to create 

segments. The optimal parameters for image segmentation were 

determined using Unsupervised Segmentation Parameter 

Optimization (USPO) in GRASS GIS. USPO considers the trade-

off between uniformity of objects or intra-segment variance 

(WV) and spatial autocorrelation (SA) between adjacent objects 

(Grippa, et al., 2017; Johnson et al., 2015) which is represented 

as:  
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                        𝐹 = (1 + 𝛼2)  ∗  
𝑆𝐴𝑛𝑜𝑟𝑚∗ 𝑊𝑉𝑛𝑜𝑟𝑚

𝛼2 ∗ 𝑆𝐴𝑛𝑜𝑟𝑚∗ 𝑊𝑉𝑛𝑜𝑟𝑚
                 (4) 

 

F-function is used to assess the quality of the segmentation, with 

values that range from 0 (worst quality) to 1 (best quality), while 

α indicates weight prioritization to either SA or WV. To lessen 

the computational complexity of the segmentation process, at 

least 10% of the total area that generally represents the 

heterogeneity of the entire image was used as an input for the 

USPO similar to (Grippa et al., 2017).  

 

Two GRASS GIS modules were used for image segmentation. 

First, the i.segment.uspo module was used to determine the range 

of threshold to test, threshold interval, and the alpha value for the 

F-function. The weight prioritization value was selected to 

produce more over-segmented results, enabling the segmentation 

of small PV areas.  

 

Second, the i.segment module was used for the actual 

segmentation of the three satellite images using the region-

growing segmentation algorithm which requires inputs such as 

the threshold and min. size parameters. The threshold parameter 

was used to establish the tolerance level for the adjoining 

segments to be merged based on their closeness in feature space 

while the min. size parameter sets the minimum number of cells 

in a segment and is selected based on the minimum mapping unit 

(MMU). The smallest PV array can typically have an area of 9.6 

m2 thus, the min. size parameter used for Sentinel-2 is 1 pixel. In 

the case of Planetscope, the min. size parameter used is 2 pixels 

considering the large computational power for a lower parameter 

value. Other USPO input values used were a threshold range of 

0.004 to 0.03 with 0.001 step as used by Grippa et al., (2017) and 

a weight prioritization of 1.25 to place significance on the inter-

segment heterogeneity of the image. The final derived optimum 

segmentation threshold was 0.012 and 0.019 for Sentinel-2 and 

Planetscope, respectively.  

 

For training the vector classifier model, the parameters selected 

were similar to PBC. 

 

2.3.3 Accuracy Assessment 
 

To assess the accuracy of each model, several accuracy metrics 

were performed and compared for the different spatial resolutions 

of images. Fundamental accuracy metrics such as confusion 

matrices, overall accuracy and kappa coefficient were obtained 

for all the classified images.  

 

Other accuracy metrics such as the Jaccard Index or IoU 

(Intersection over Union), Recall, Precision and F1 Score will 

also be used to evaluate each machine learning classifier. F1 

score (Dice loss) is defined as the harmonic mean of precision 

and recall. Precision, which is the ratio of the correct positive 

predictions to the total positive predictions, is also called the 

user’s accuracy for the true positives. Meanwhile, recall, or the 

fraction of the correct positive predictions from the total true 

positives is the producer's accuracy of the positives. On the other 

hand, IoU (Jaccard Index), is the intersection of the ground and 

classified pixels or objects over the union of the two data groups. 

It is commonly used as a threshold for identifying true positives 

and false negatives, with 0.5 as the most commonly preferred 

threshold (Maxwell et al., 2021) 

 

After obtaining the different accuracy metrics for each type of 

spatial image, the results together with the visual analysis of each 

classification will be compared to determine the best-performing 

model for each spatial resolution for the final post-processing of 

the solar PV classification in the study area. 

 

2.3.4 Pixel-to-Object-Based Classification 
 

The generated PBC outputs showed many false positives from 

the misclassification of some pixels in the solar PV class. To 

mitigate this, the Pixel-to-Object based classification (POBC) 

process was developed by integrating PBC and OBC to detect 

solar panels in large-scale regions. The process involves filtering 

the output from PBC to identify solar PV pixels, converting them 

to polygons, and treating them as objects for further classification 

through OBC. This approach eliminates noise from the initial 

classification and refines the detection process. The results were 

further refined using the post-processing tasks detailed in the next 

section. 

 

2.3.5 Post-processing/Refinement 
 

The classified solar pixels were post-processed to remove 

misclassifications, involving a series of procedures such as 

reclassification into a binary image and sieving to remove 

isolated pixels.  

 

A set of spectral rules was then applied similar to the study by 

Czirjak (2017). Initially, the spectral reflectance range of solar 

PVs were obtained to remove highly reflective pixels. Only the 

NIR region was filtered for Sentinel-2 as the solar PV’s spectral 

profile exhibits noticeable separation compared to other classes 

within this spectral range. The second filter used a threshold 

determined by 15% of the lowest PVSI value of the sample data. 

The third filter removes pixels with wide variability in 

reflectance, considering the consistent reflectance pattern of the 

solar PV within the visible region. All pixels with standard 

deviation in the visible region should be lower than the product 

of the threshold and mean of the visible bands. The threshold 

described is the adjusted average value of the normalized 

standard deviations.  

 

Lastly, the building footprint was used to filter out smaller solar 

pixels found in built-up areas. To avoid elimination of utility-

scale solar PVs since it is commonly located around agricultural 

lands, only areas less than 20,000 m2 were considered for the 

filtering. 

 

3. RESULTS 

3.1 Classification Results via Visualization 

3.1.1 Sentinel-2 
 

Fig. 2 shows the sample detected solar PV installations using the 

three classifiers via pixel-based classification. For the sample 

detected utility-scale solar PV, it can be observed that almost 

similar results were obtained, and the classifiers generally 

obtained the outline of the solar farm. SVM and Random Forest 

showed excellent results in the classification. Meanwhile, Naive 

Bayes failed to identify portions of the solar farm, especially the 

narrower regions.  

 

For the performance of Sentinel-2 combinations, the stacked 

Sentinel-2 with indices appears to have the best classification 

output as compared to the Sentinel-2 and Sentinel 1 which 

misclassified some pixels in the proximity of the solar farm. 
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Figure 2. Detected solar PV installations from the PBC of 

different Sentinel-2 image combinations. 

 

In the case of distributed solar PVs (DPVs), the classification of 

the panels depends on the size of the installed PV array on the 

rooftop. Solar installations with larger areas were able to be 

delineated by the classifiers specifically, SVM and Random 

Forest. However, those rooftop solar with smaller areas and a 

larger gap with nearby rooftop solar were not detected by the 

algorithm. Visibly, it is Sentinel-2 with the indices, namely 

NDVI, NDWI and PVSI, that were able to best capture the actual 

solar PV footprint in the area. 

 

The sample detected utility-scale and distributed solar PV 

installations through OBC is shown in Fig. 3. As compared to 

PBC, there was more noise generated on the solar classification 

outputs for OBC, especially for the combination of Sentinel-2 

and Sentinel-1. Moreover, Random Forest produced the best 

detection results among all the classifiers since it was able to 

avoid the misrecognition of the gaps between each group of solar 

arrays. Similar to PBC, UPV can be accurately detected using the 

Sentinel-2 with the indices composite. 

 

 

Figure 3. Detected solar PV installations from the OBC of 

different Sentinel-2 image combinations. 

 

For the OBC of the DPVs, it is apparent that the solar rooftop 

areas in the lower left portion were merged for the SVM 

algorithm. There are also misclassified objects around the area in 

contrast with PBC. Same with the UPVs, Random Forest yielded 

the best visual output from all the detections.  

 

3.1.2 Planetscope 

 

For the Planetscope image, Fig. 4 show the detected solar PVs 

for both PBC and OBC, respectively. Similar to Sentinel-2, SVM 

demonstrated the closest visual resemblance to the actual solar 

PV footprint for PBC and Random Forest for OBC. It is observed 

that there is a greater prevalence of false positives around the 

distributed PVs in Planetscope data compared to the Sentinel-2 

PV detections, with the worst occurrence exhibited in the Naive 

Bayes classification.  This problem is common with high spatial 

resolution data due to its high spectral variation, making it 

susceptible to spectral confusion among relatively similar pixels 

(Moran, 2010). 
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Figure 4.  Detected solar PVs of Planetscope image. 

 

3.2 Accuracy Assessment using Different Accuracy    

Metrics 

The training accuracies for Sentinel-2, Sentinel-2 composites 

with Sentinel-1 and the indices, and Planetscope using the two 

classification approaches are shown in Table 1. Accuracy metrics 

such as precision, recall, and F1-score for the solar PV class were 

introduced for all the classifiers used. The accuracy of the whole 

classification was also measured through the Kappa metric and 

overall accuracy. Evidently, all Sentinel-2 image combinations 

showed a good performance for classifying solar PV panels. 

 

Comparing the accuracy values for the classification of three 

Sentinel-2 variants, Sentinel-2 with Sentinel-1 bands 

demonstrated the highest Kappa and overall accuracy values. 

However, Sentinel-2 with the indices provided the best F1 score 

for solar PV classification. SVM yielded the highest values for 

all the accuracy metrics used. 

 

PBC 

Accuracy 

Metrics 

Sentinel-2 Sentinel-2 

+ Indices 

Sentinel-2 + 

Sentinel-1 

Planet- 

scope 

Precision  

(solar PV) 

SVM: 99% 

RF: 99% 

NB: 99% 

SVM: 99% 

RF: 98% 

NB: 99% 

SVM: 99% 

RF: 99% 

NB: 99% 

SVM: 97% 

RF: 94% 

NB: 85% 

Recall 

(solar PV) 

SVM: 99% 

RF: 97% 

NB: 95% 

SVM: 99% 

RF: 98% 

NB: 97% 

SVM: 98% 

RF: 98% 

NB: 96% 

SVM: 96% 

RF: 94% 

NB: 90% 

F1 Score 

(solar PV) 

SVM: 99% 

RF: 98% 

NB: 97% 

SVM: 99% 

RF: 98% 

NB: 99% 

SVM: 99% 

RF: 99% 

NB: 98% 

SVM: 96% 

RF: 94% 

NB: 88% 

Kappa SVM: 0.96 

RF: 0.94 

NB: 0.85 

SVM: 0.97 

RF: 0.94 

NB: 0.87 

SVM: 0.99 

RF: 0.97 

NB: 0.91 

SVM: 0.86 

RF: 0.84 

NB: 0.71 

Overall 

Accuracy 

 

SVM: 96% 

RF: 95% 

NB: 87% 

SVM: 97% 

RF: 95% 

NB: 89% 

SVM: 99% 

RF: 97% 

NB: 91% 

SVM: 87% 

RF: 86% 

NB: 75% 

OBC 

Accuracy 

Metrics 

Sentinel-2 Sentinel-2 

+ Indices 

Sentinel-2 + 

Sentinel-1 

Planet- 

scope 

Precision 

(solar PV) 

SVM: 99% 

RF: 99% 

NB: 92% 

SVM: 99% 

RF: 99% 

NB: 95% 

SVM: 97% 

RF: 99% 

NB: 93% 

SVM: 91% 

RF: 99% 

NB: 30% 

Recall 

(solar PV) 

SVM: 97% 

RF: 97% 

NB: 99% 

SVM: 99% 

RF: 99% 

NB: 99% 

SVM: 92% 

RF: 99% 

NB: 99% 

SVM: 84% 

RF: 86% 

NB: 95% 

F1 Score 

(solar PV) 

SVM: 99% 

RF: 99% 

NB: 96% 

SVM: 99% 

RF: 99% 

NB: 98% 

SVM: 95% 

RF: 99% 

NB: 96% 

SVM: 87% 

RF: 86% 

NB: 45% 

Kappa SVM: 0.94 

RF: 0.99 

NB: 0.84 

SVM: 0.95 

RF: 0.99 

NB: 0.84 

SVM: 0.93 

RF: 0.99 

NB: 0.89 

SVM: 0.84 

RF: 0.94 

NB: 45% 

Overall 

Accuracy 

 

SVM: 95% 

RF: 99% 

NB: 86% 

SVM: 96% 

RF: 99% 

NB: 86% 

SVM: 94% 

RF: 99% 

NB: 91% 

SVM: 88% 

RF: 96% 

NB: 68% 

Table 1. Accuracy values of the different Sentinel-2 image 

combinations and Planetscope. 

 

For the OBC, Sentinel-2 with Sentinel-1 produced the lowest 

accuracy values among the three Sentinel-2 band combinations 

in contrast to the PBC results. Meanwhile, Sentinel-2 with the 

indices consistently showed the best performance among the 

three image inputs. In terms of accuracy concerning the ML 

classifier used, Random Forest generated the best classification 

output in relation to its accuracy values. 
 

The classification of the solar PV class in the entire Pampanga is 

observed to have worse presence of misclassified pixels in 

Sentinel-2 with Sentinel-1 bands as compared to Sentinel-2 and 

indices. Despite the higher accuracy values obtained for PBC, the 

classification results for the latter are still considered as the better 

output as it produced fewer misclassifications than the former. 

 

For the finer spatial image, SVM consistently produced the best 

accuracy among the classifiers for PBC while Random Forest for 

the case of OBC. All the calculated accuracy metric values of 

Planetscope also displayed lower values than Sentinel-2, which 

was primarily due to the numerous misclassifications caused by 

the spectral complexity of the image. In spite of the lower 

accuracy values, the detection of the distributed PVs in the 

Planetscope image was found to be remarkably better than 

Sentinel-2. 

 

3.3 Application of POBC and Post-Processing Techniques 

Considering the preceding outcomes of the different solar PV 

classifications, SVM and Random Forest were identified as the 

best models for PBC and OBC respectively, with Sentinel-2 and 

the indices as the image input.  

 

Fig. 5 shows the detected solar PVs using the final model for both 

PBC and OBC for Sentinel-2 with the indices as well as the post-

processed classifications. Red areas are the actual solar PV 

delineations while the white pixels/objects show the 

misclassified solar PV regions. For the raw classification, both 

approaches exhibited substantial noises which are typically 

clustered in built-up areas and roads. 

 

After the application of the post-processing procedures, Fig. 5c 

and Fig. 5d shows the generated output for both PBC and OBC. 
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A significant number of false positives were eliminated after 

implementing the post-processing steps, but some incorrect 

detections remain in built-up areas. 

 

 

Figure 5. Raw classification of solar PVs using (from left to 

right) (a) PBC (b) OBC; After post-processing (c) PBC (d) 

OBC and (e) POBC. 

 

The implementation of OBC after PBC, along with the 

subsequent post-processing has effectively eradicated almost all 

the false positives as shown in Fig. 5e.  

 

3.4 Delineation Accuracy (Jaccard Index) 

To compare the delineation accuracy of the post-processed 

images, the Jaccard Index (IoU) was computed from the results 

of both the best-performing model for Planetscope and Sentinel-

2. From Table 2, POBC derived the highest IoU value for the 

combination of Sentinel-2 with the Indices. Generally, the 

Sentinel-2 with the indices exhibited excellent results for the 

utility-scale PVs. Meanwhile, the obtained low Iou values for the 

DPVs indicate difficulty in accurately delineating small PVs in 

the images due to low spatial resolution. 

 

UPV % Overlap IoU DPV % Overlap IoU 

PBC 
S2: 96% 

P: 90% 

S2: 0.90 

P:0.88 
PBC 

S2: 40% 

P: 58% 

S2: 0.26 

P: 0.33 

OBC 
S2: 91% 

P: 94% 

S2: 0.83 

P: 0.90 
OBC 

S2: 44% 

P: 44% 

S2: 0.17 

P: 0.27 

POBC 
S2: 96% 

P: 88% 

S2: 0.90 

P: 0.87 
POBC 

S2: 51% 

P: 52% 

S2: 0.31 

P: 0.39 

Table 2. IoU values of the Sentinel-2 with Indices and 

Planetscope. 

 

Different results were observed for the Planetscope images. 

While there are minimal differences among the IoU values for 

UPV, OBC demonstrates the highest similarity value compared 

to the other approach. For DPV, POBC still has the highest 

degree of similarity as compared with the ground truth data. The 

results also imply that Planetscope demonstrated better 

delineation of the distributed PVs compared to Sentinel-2. 

 

3.5 Detected Solar PVs 

Table 3 tabulates all the solar PVs detected in Pampanga obtained 

using the POBC approach. Fourteen (14) solar PVs were 

identified wherein 2 are utility-scale PVs while the rest are 

distributed PVs. Only 17% of the distributed PVs showed good 

delineation but the acquired detection rate is 93%.  

 

id Type 
Area 

(m2) 

Detected 

Area in  

m2 (S2) 

Detected 

Area in  

m2 (P) 

IoU 

(S2) 

IoU 

(P) 

1 

distributed 

PV 

210.71 194.08 40.55 0.27 0.18 

2 212.78 51.43 22.27 0.20 0.07 

3 249.46 131.75 37.36 0.32 0.13 

4 307.59 128.72 260.99 0.34 0.34 

5 355.58 283.39 165.52 0.37 0.33 

6 526.92 283.49 70.89 0.34 0.12 

7 549.20 126.27 246.84 0.10 0.31 

8 707.92 395.63 618.68 0.22 0.70 

9 954.86 n/a 359.68 n/a 0.38 

10 2,464.06 829.59 1,516.48 0.25 0.50 

11 3,085.86 900.10 1,551.25 0.26 0.40 

12 4,470.78 2,852.06 2,910.25 0.50 0.53 

13 18,821.77 12,699.90 8,543.87 0.59 0.44 

14 utility scale 

PV 

180,732.52 175,507.79 160,996.47 0.92 0.89 

15 193,139.95 185,096.62 169,498.10 0.88 0.86 

Table 3. Detected solar PVs for Sentinel-2 and the indices and 

Planetscope. 

 

Fifteen (15) solar PVs were detected for the Planetscope image 

(POBC), with an additional distributed PV identified during the 

classification process. 20% of the distributed PVs have obtained 

an acceptable delineation accuracy while the detection rate 

achieved is 85%.  

 

4. DISCUSSION AND CONCLUSION 

Results have shown that the model trained using SVM achieved 

superior performance for the detecting solar installations using 

PBC, while Random Forest performed better for the case of OBC.  

 

Among the Sentinel-2 composites, Sentinel-2 with the indices 

has provided the best classification output. In comparison with 

the pixel-based classification conducted by Vasku (2019), similar 

pattern was observed, with both SVM and Random Forest 

generating good accuracy results in delineating utility-scale solar 

PVs and the incorporation of Sentinel-1 with Sentinel-2 

performing better than using Sentinel-2 alone.  

 

Plakman et al., (2022) which employed Random Forest via OBC 

(utilized Simple Non-Iterative clustering segmentation) acquired 

different outcomes from this study, with Sentinel-2 and Sentinel-

1 composite displaying higher accuracy than the combinations 

with indices (Sentinel-2 + NDVI and Sentinel-2 + NDWI). In this 

study, the use of Sentinel-2 with indices provided the highest 

accuracy values for OBC using the same classifier. In contrast 

with the methods by Plakman et al., (2022), this study proposed 

a distinctive approach of combining an additional solar PV 

spectral index with Sentinel-2 and the other indices. This factor, 

along with the differences in the segmentation process and the 

type of classes, likely contributed to the observed differences in 

results. 
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Interestingly, an existing study by Guan et al., (2017) explored 

the use of successive classification stages through the 

combination of pixel-based classification using SVM, multi-

feature classification, and object-based classification in rooftop 

solar detection using high resolution imagery. Multi-feature 

classification categorized non-solar features based on the 

identified correlation between the blue band and red band of a 

rooftop solar and regular building. Results revealed that the 

object-based classification process eliminated some small PV 

arrays from the final detection map. Similar observation was 

inferred in this study, however, the said drawbacks in using 

POBC had predominantly affected utility-solar PV installations, 

reflecting in the minor difference in the delineation accuracies 

between PBC and POBC. The decrease in delineation accuracy 

can be attributed to the elimination of pixels in the object-based 

classification process of POBC around the boundary of the solar 

PVs, as these pixels appears to be “mixed pixels”, or pixels that 

represents a mixture of land cover classes. Notably, the proposed 

POBC demonstrated the best delineation accuracy for the 

detection of distributed solar PVs. 

 

To identify the number of PVs with good delineation accuracy, a 

threshold of 0.5 was used to categorize the IoU values. Evidently, 

all UPVs yielded high delineation accuracies. Meanwhile, the 

DPVs exhibited varying performance in the delineation 

depending on the actual area of the solar PV. Only two DPVs 

displayed good IoU values for Sentinel-2 while, three DPVs in 

Planetscope resulted in satisfactory delineations. In terms of area, 

Sentinel-2 can accurately delineate areas larger than 4,500 m2 and 

710 m2 for the case of Planetscope. 

 

As previously stated, the percentage of the total detected area of 

Sentinel-2 with indices over the total actual area (detection rate) 

covered by solar PVs exceeds that of Planetscope. This difference 

could be attributed to Sentinel-2's higher spectral resolution, 

allowing for better discernment among confusing pixels. 

Additionally, it could be hypothesized that the generalization of 

the pixels in Sentinel-2 played a huge factor in the larger area 

detected. This suggests that despite the higher detection rate 

obtained, Sentinel-2 might have included pixels beyond the 

actual PV boundary which explains the lower similarity index 

values generated as compared to Planetscope.  

 

At present, the available solar PV data in the country remains 

incomplete specifically in the case of distributed PV installations. 

Having a comprehensive PV installation is imperative for 

effective future planning in solar development. Existing methods 

for solar PV detection either focused on identification of rooftop 

solar using high-spatial resolution in limited area or delineating 

utility-scale PVs in large-scale area using moderate image 

resolution. This study introduced a semi-automated method of 

detecting both PV types, using three different approaches applied 

with subsequent post-processing techniques. 

 

Overall, the application of machine learning in the detection of 

solar PVs using Sentinel-2 and Planetscope is proven to be highly 

effective, particularly for solar farms and distributed PVs 

covering large areas. Planetscope exhibited a better performance 

in locating and delineating distributed PVs as compared to 

Sentinel-2 but demonstrated a slightly weaker performance in 

delineating utility-scale PVs. The use of classifiers such as SVM 

and Random Forest has also been proven to worked well and may 

be employed on further classification of solar PVs on a larger 

scale. For future studies, a more advanced post-processing 

method may be developed to further removal of misclassified 

pixels. Additionally, exploring the use of other indices (e.g. 

urban) as an additional band may also be considered. 
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