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ABSTRACT:

The diversity of sensors in remote sensing allows for faster and easier detection of changes and issues across different scales, in contrast
to conventional ground-based systems. One of the most important distinguishing features among these sensors is their varying
resolutions, contributing to the versatility of remote sensing technologies across diverse environmental applications. In this study, the
effectiveness of PlanetScope and Sentinel-2 satellite images with different image resolutions in detecting damage caused by a harmful
insect (beet webworm moth - Loxostege sticticalis) in sunflower fields in Liileburgaz district of Kirklareli in the Trace region was
evaluated. Damage rates in sunflower fields were analyzed using various spectral indices (Enhanced Vegetation Index and Chlorophyll
Index Green) and spectral transformation (Tasseled Cap Greenness) in conjunction with in situ data. Based on the spectral analysis,
the satellite image dated 26 July, which showed the most severe damage, was used in the damage assessment analysis. The damaged
areas were compared by classifying both satellite images with the Random Forest algorithm. According to the results of the
classification accuracy assessment, PlanetScope satellite imagery showed the highest accuracy, with 90% overall accuracy and 84%
Kappa statistics, making it a more suitable sensor choice for agricultural applications.

1. INTRODUCTION

In today's globalizing and expanding globe, the agriculture
industry is of critical strategic importance. Meeting the food
demands of increasing populations, providing food security, and
protecting natural resources all raise the importance of the
agricultural industry. According to the "OECD-FAO
Agricultural Outlook: 2019-2028" report published by the
Organization for Economic Cooperation and Development
(OECD), the demand for agricultural products is expected to
increase by approximately 15% between 2019-2028 due to
population growth (OECD, 2023). As a result, it is critical to
regularly monitor agricultural productivity and apply risk-
mitigation strategies. Failure to do so may have a detrimental
influence on food security and natural resource management,
particularly in densely populated areas.

Plant stress, climatic conditions, and insect damage can all
significantly affect the health of crops in agriculture, and it's
crucial to determine the extent of the damage in these cases.
Effective pest management, which includes identifying pests and
detecting their damage, is essential to minimize their impact
(Qin et al., 2003). One effective strategy for managing pests and
disease stress is to detect pest damage as soon as possible, as this
can prevent the pests from spreading to other fields and causing
a widespread invasion. Delayed detection may necessitate the
use of chemical methods such as disinfection, which can be
costly and harmful to the environment. To address these
challenges, several solutions are being developed today to
reduce manpower, save time, and keep up to current on real time
improvements.

Remote sensing technology is one such solution that offers a
wide range of crop monitoring and pest management
capabilities. To analyze factors such as the timing, rate, and
spread of pest damage to crops, satellite imagery with a variety
of properties and resolutions is used in crop monitoring. In
agricultural applications, high spatial resolution satellite
imagery is preferred over low spatial resolution satellite imagery
because heterogeneous (complex) pixels are avoided when
obtaining information such as stress and health status of products

through satellite images and distinguishing different situations in
damage analysis. The spectral reflectance properties and spectra
of different crop types, such as wheat, corn, and sunflowers,
exhibit significant differences, highlighting the critical role of
high spectral resolution in remote sensing-based crop mapping to
differentiate between these crops (Wu et al., 2017). Another
significant component is temporal resolution, because it is
impossible to analyze the time period when pests start to damage
plants without a satellite image of that time period.

Several image transformations can be used to improve the quality
of satellite images and extract useful information, which can aid
in applications such as land cover classification, environmental
monitoring, and disaster assessment. Spectral transformations,
such as Vegetation Indices (VIs) and Tasseled Cap (TC)
transformations, are commonly used in studies that focus on
vegetation analysis. Vegetation Indices (VIs) are designed to
amplify sensitivity to vegetation characteristics while mitigating
the impact of confounding factors such as soil background
reflectance, directional effects, and atmospheric influences.
These transformations typically exploit information contained in
canopy reflectance or radiance in the red and near infrared (NIR),
and are a fundamental part of the analysis of vegetation-related
studies (Fang and Liang 2008; Akkartal et. al., 2004; Kara et. al,
2023). On the other hand, TC transformations are used to capture
important landscape features by combining the original spectral
bands of satellite data linearly into a set of transformed
components - Brightness, Greenness and Wetness. This fixed,
sensor-specific transformation, based on soil and vegetation
signatures, is valuable for characterizing environmental factors in
vegetation, emphasizing general plant growth as well as distinct
changes in soil moisture, leaf density, and vegetation health (Crist
and Cicone, 1984).

The study area, Thrace region, is known for its extensive
sunflower production. The beet webworm moth (Loxostege
sticticalis, Lepidoptera: Pyralidae) can cause occasional
outbreaks during its caterpillar stage. The first documented
outbreak in Thrace was in 1975 (Unal, 1979), with a recurrence
in 2012 (Bahadir et al., 2016). This study assesses damage in the
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Liileburgaz region during the 2022 caterpillar outbreak using
PlanetScope and Sentinel-2 satellites. Analyzing various
spectral indices alongside in-situ data, a Random Forest (RF)
algorithm, employing different band combinations, classified the
satellite image with the highest pest damage. The results aim to
identify the most effective satellite data for accurate detection of
beet webworm moth damage in sunflower fields and contribute
to dynamic agricultural pest management.

2. STUDY AREA

Kirklareli province, located on the European continent, is in the
Thrace region of the Marmara Region. It covers an area of 6,459
km? and has an altitude of 203 m (Republic of Turkiye Ministry
of Environment and Urbanization, 2023). Kirklareli has a
strategically advantageous geographical location as a
transitional corridor between the European and Asian
continents, which contributes to its high potential in agricultural
and animal production. When examining the agricultural land of
Kirklareli in terms of crops and production, it is rich in cereals,
oilseeds (especially sunflower, which has a high oil content),
forage crops and industrial crops. Notably, Kirklareli
constitutes the primary sunflower cultivation area in Turkey,
contributing to 9.6% of the country's total sunflower production.

Liileburgaz is the largest settlement in the Kirklareli province,
covering a total area of 1370 hectares. The total arable land area
is 82,400 hectares, of which 76,600 hectares are cultivated with
crops (Liileburgaz Chamber of Commerce and Industry). As
one of the major crops cultivated in this region, Figure 1
illustrates the distribution of sunflower fields in the study area,
which includes part of Liileburgaz.
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Figure 1. Map of the study area in the Liileburgaz neighborhood,
Kirklareli, showing the locations of 10 in-situ sunflower fields
overlaid on the PlanetScope satellite image (© Planet).

3. MATERIALS AND METHODOLOGY

3.1 Materials

In this study, Sentinel-2 (S2) and PlanetScope (PS) images from
July 6, July 16, and July 26 were utilized as the satellite dataset.
S2 is frequently used in remote sensing applications to
understand and monitor changes in land and agricultural
conditions due to its 290 km area width and frequent revisit
periods (The European Space Agency, 2023). S2 images, which
offer different levels of atmospheric correction such as Top of

the Atmosphere (TOA) and Bottom of the Atmosphere (BOA),
are available free of charge from the European Space Agency.

The other satellite used in this study, PS, is a constellation of 130
satellites operated by Planet (Planet, 2023). Planet's unique
combination of coverage, frequency, and resolution enables the
acquisition of information regarding land surface conditions and
changes. The main characteristics of the S2 satellite, which has
different spatial resolutions (10m, 20m and 60m) at many
different wavelengths (Coastal Blue - SWIR) and the main
characteristics of the PS satellite, which has high spatial
resolution (3m) at many different wavelengths (Green | -
Yellow), are shown in the table below (Table 1).
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Table 1. Comparisons of the PS and S2 satellites’ main features
(Planet, 2023).

In this study, a dataset comprising 10 sunflower fields was
utilized as in-situ data, as detailed in Table 2. This in-situ data
includes information such as the percentage of pest damage and
the date of the damage measurement. Seven sunflower fields
obtained from in-situ data were used for the training dataset,
while the remaining three fields were utilized for validation
purposes.

Field Plantation Percentage Date of

Area of Damage Damage
A 25.95 5 2022/07/29
B 19.20 5 2022/08/02
o 8.52 5 2022/08/02
D 8.05 5 2022/08/02
E 36.99 5 2022/08/01
F 15.50 10 2022/07/29
G 7.95 40 2022/07/29
H 23.99 40 2022/08/01
| 37.84 45 2022/08/01
J 28.58 50 2022/07/29

Table 2. Main features of 10 sunflower fields used in study.

3.2  Methodology

The methodology used in this study consists of two main stages,
as shown in the flowchart given in Figure 2. In the first stage,
spectral vegetation indices and spectral transformation
techniques were used to determine the health status of sunflower
fields and to examine the damage caused by pests. In the next
stage, in-situ data were regrouped into two classes and image
classification was performed using RF algorithm for three classes
(Slightly Damaged - Heavily Damaged - Fallow Field) to create
a thematic map showing different levels of damaged areas in the
study area.
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Figure 2. Flowchart of the methodology used.

3.2.1 Spectral Vegetation Index: Various spectral vegetation
indices have been developed for agricultural studies. These
indices, obtained by calculating reflectance values in two or
more spectral bands, provide information about the growth
stages of crops (Tasan et al., 2022; Sunar et al., 2011).

The study employed the Enhanced Vegetation Index (EVI) and
Chlorophyll Index Green (CIG) as spectral vegetation indices to
identify pest damage in sunflower fields and analyze crop health.
EVI uses the red, blue and near-infrared bands to account for
variations in canopy background reflectance and atmospheric
influences, and provides a more accurate estimate of vegetation
characteristics, particularly in areas of dense vegetation or under
adverse atmospheric conditions (Huete et al., 2002). Given that
the CIG is designed for the estimation of chlorophyll content in
plants, offering insights into plant vitality, chlorophyll synthesis,
and photosynthetic activity, monitoring long or medium-term
changes in chlorophyll content within vegetation becomes
pivotal for a comprehensive understanding of growth stages and
canopy stresses (Niu et al., 2022; Gitelson et al., 2005).

3.2.2. Spectral Transformation: As a spectral transformation,
TC, a technique widely used for analyzing and mapping
vegetation phenomenology, was applied in this study. Within the
generated tasseled cap components, the Greenness component is
particularly useful for understanding environmental factors in
the field and highlights significant changes in color, leaf density,
and plant health, providing valuable insights into both specific
issues like pest damage and general plant growth dynamics (Ma
et al., 2019).

3.2.3. Image Classification: Image classification is the process
of categorizing and labelling groups of pixels in an image
according to certain rules. Unsupervised and supervised image
classification are the two most common approaches. In this
study, the Random Forest, a supervised Machine Learning (ML)
algorithm, was used. The main objective is to analyze and
interpret the complex patterns and information contained in

images, transforming the raw data into more meaningful
information applicable for various environmental purposes,
including agricultural monitoring and natural resource
management.

3.2.4 Random Forest Algorithm: This algorithm, extensively
applied in supervised learning, demonstrates efficacy in both
classification and regression analyses within ML. By utilizing
ensemble learning, it integrates multiple classifiers to enhance the
overall performance of the model (IBM, 2023; Sunar et al.,
2017). This algorithm comprises a substantial number of decision
trees collaborating as a community, yielding effective
classification results through the creation of multiple independent
trees. The ultimate prediction arises from a majority vote,
wherein the class attaining the highest number of votes becomes
the model's prediction.

4. APPLICATION AND RESULTS

The beet webworm moth, scientifically described by Carl
Linnaeus in 1761, is a widespread pest found across Asia,
Europe, North America, and the Arabian Peninsula (Kuznetsova
and Chumakov, 2008). In Turkey, it is distributed in various
provinces, including Amasya, Antalya, Balikesir, Bitlis, Bursa,
Canakkale, Diizce, Istanbul, Kirklareli, Konya, Malatya, and
Kahramanmaras (Oztemiz and Ciner, 2022). This moth species,
known to feed on approximately 200 different plant species, is
recognized as a pest affecting cereals, oilseeds, legumes, fiber
crops, and vegetables (Alekhin and Kuznetsova, 2003). It causes
significant damage in agricultural areas, particularly on
economically vital crops such as soybeans, sugar beet, alfalfa,
and sunflower (Feng et al., 2004; Xiao et al., 2008).

Pests typically cause damage to plant leaves, hindering growth
by creating small holes in young plants, as illustrated in Figure 3.
Furthermore, they can impact the reproductive organs of the
plant, damaging flower buds and immature fruits. This situation
was experienced during the growth process of sunflower plant in
the study area and negatively affected the harvest productivity.

Y ¢ .3
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Figure 3. Leaf damage caused by beet webworm moths.

As an initial step, spectral reflectance profiles were extracted
from the multitemporal dataset to distinguish between slightly
and significantly damaged sunflower fields, and their spectra are
presented in Figure 4. Owing to the distinct spectral resolutions
of the PS and S2 satellites, noticeable differences exist in the
spectral reflectance curves. As clearly seen, the higher spectral
resolution of the S2 image, indicated by the higher number of
bands, allows a more continuous spectral profile to be generated,
allowing for more accurate spectral analysis.
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Figure 4. Reflectance spectra of slightly and significantly
damaged sunflower fields.

A close examination of the spectral curves of the sunflower
fields shows that the 5% damaged sunflower field has a typical
spectral curve for a healthy sunflower crop on 6 July and 16 July,
with some changes in reflectance on 26 July. Despite July being
the growing month for sunflower fields, on 26 July, it was noted
that the spectral reflectance values of the 5% damaged field in
the Red - Red Edge and NIR bands were similar to those of the
50% damaged field, deviating from the typical healthy plant
spectral curve (i.e., decrease from 0.5 to less than 0.4). This
change in vegetation health can also be seen between the PS 6 -
26 July spectral curves. In contrast, the 50% damaged field has
a significantly lower reflectance in the NIR band than the 5%
damaged field for both satellites. In particular, examination of
the S2 spectral curves on 16 and 26 July reveals a different trend
in the spectral curve of the 50% damaged field compared to that
of a typical healthy crop.

The analysis of spectral curves in PS highlights the challenge of
distinguishing between slightly and significantly damaged
fields. This difficulty is primarily due to the low spectral
resolution in the VIS-NIR region. In other words, the higher
spectral resolution of the S2 sensor with a greater number and
narrower Red Edge and NIR bandwidth clearly demonstrates
that it is a more suitable sensor for discriminating vegetation
health and providing more accurate spectral analysis.

In the subsequent phase, two spectral vegetation indices (EVI
and CIG) along with TC-Greenness were applied to all S2 and
PS images using the Google Earth Engine platform. Figure 5
shows the spectral index values for ten fields and emphasizes the
temporal variation of insect damage to biomass.
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Figure 5. Comparison of multitemporal EVI, CIG and TC-
Greenness profiles for ten sunflower fields.

When examining the graphs in Figure 5, a notable decrease is
observed in both the spectral index and TC Greenness values for
all fields from July 6 to July 26. Additionally, it is observed that
the S2 and PS satellite systems show similar EV1 values across
all fields. However, this trend is not observed in CIG values,
especially on July 16. For instance, the CIG index value for the
S2 satellite of Field A decreases from 6 on July 6 to 4 on July 16.
In contrast, for the PS satellite of the same field, CIG values
remained relatively consistent, staying around 5 on both days.
Similar variations are noted in all slightly damaged fields, while
this pattern is consistent for both satellites in significantly
damaged fields.

When examining the TC-Greenness component, as illustrated in
Figure 5, it is important to note that this component could not be
calculated for the PS dataset due to the absence of sensor-
dependent coefficients required for this transformation.
However, in general, it is observed that the TC-Greenness graph
obtained with S2 is similar to the S2 EVI.

Given the similarity in spectral profiles among fields with
comparable damage areas, it was considered more appropriate to
categorize the in-situ data into two primary classes: slightly
damaged areas (damage classes A to F in Table 2) and
significantly damaged areas (damage classes G to J in Table 2).
This reclassification enhances the clarity of rapidly detecting
damage in the area and identifying the peak damage periods. In
other words, to more accurately evaluate and compare these two
main damage classes, two spectral indexes and TC-Greenness
transformations were applied to both S2 and PS satellite images,
and the results are presented in Figure 6.
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Figure 6. Comparison of multitemporal EVI, CIG and TC-
Greenness profiles for 2 main (slightly and significantly)
damaged classes.

Comparing the spectral index and transformation graphs
presented in Figure 6, temporal differences become evident,
indicating a decreasing trend for the two main damage groups in
both datasets. These graphs offer valuable insights into the
initiation and progression of damage. Specifically, on July 6, the
index values for slightly damaged and significantly damaged
classes were closely aligned. However, a sudden decrease in the
index values of the significantly damaged class on July 16
indicates a decline in plant health. This decrease provides
evidence of deterioration attributed to pest damage. The
decreasing trend persists, signifying ongoing damage caused by
pests and leading to the identification of the period between July
16 and July 26 as the initiation of damage. In a final assessment,
July 26 is pinpointed as the date when pest damage reaches its
peak, aligning with the date recorded in in-situ measurements
and interviews with farmers.

As the final step, images taken on July 26, determined as the
peak of damage, were classified using the RF algorithm,
resulting in the creation of a damage thematic map for the study
area. The classification process considered three main classes:
slightly damaged sunflower fields, significantly damaged
sunflower fields, and fallow fields characterized by abundant
bare soil (open field). Various scenarios were explored during
this step, incorporating not only the original bands but also
spectral indices, transformed component, and/or their
combinations in the classification process. Table 3 displays the
classification output images generated under various scenarios.

Visual analysis of the classification results reveals that the fields
situated at the top of the road exhibit more severe damage
compared to those at the bottom. Additionally, in the majority of
output images from the classification scenarios, the visual
analysis indicates a higher presence of the significantly damaged
class in the PS outputs compared to the S2 outputs.

Another visual analysis result indicates that field boundaries are
more easily detected in the output images from the PS satellite

system, owing to its higher spatial resolution compared to the S2
satellite images.

The classification results should undergo not only visual analysis
but also quantitative assessment using an error matrix. Table 4
presents the calculated overall accuracy and Kappa statistics for
each classification. Upon examining the accuracy measurements,
it was observed that higher accuracies were achieved when
excluding the Coastal band (B:) in the classifications for both
satellites. Consequently, the B: band was not considered in other
scenarios.

All Bands

All Bands-B1

(All Bands-B1)
+EVI

(All Bands-B1)
+CIG

(All Bands-B1)
+EVI, CIG

Legend

Fallow Land

Slightly Damage | Significantly Damage

Table 3. Classification output images for various scenarios on the
most damaged date (July 26th).
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As presented in Table 3 and Table 4, visual and quantitative
differences in the results arise between the two satellite images,
attributed to variations in their spatial and spectral resolutions.
The use of different combinations of two indices/component,
instead of employing all indices/component in the classification
process, has been observed to positively impact accuracy. As
indicated in Table 4, the best scenarios selected were not the
same between the two satellite images, owing to their varying
image resolutions.

[ ] Overall Kappa
Accuracy || Accuracy
B All Bands 0.78 0.63
All Bands — B: 0.81 0.70
(All Bands — B1) + EVI 0.81 0.68
(All Bands — B1) + CIG 0.82 0.71
N (All Bands — B:1) + TCG 0.79 0.66
w
(All Bands — B1) + EVI, CIG 0.83 0.72
(All Bands — B1) + EVI, TCG 0.84 0.73
(All Bands — B:) + CIG, TCG 0.77 0.62
(All Bands —TB(’;(); EVI, CIG, 0.81 0.72
W All Bands 0.75 0.59
All Bands — B 0.88 0.79
% (All Bands — B1) + EVI 0.85 0.75
(All Bands — B1) + CIG 0.90 0.84
(All Bands — B:) + EVI, CIG 0.88 0.80

Table 4. Accuracy assessments for various classification
scenarios, including overall accuracy and Kappa statistics.

Specifically, the best result obtained from the classification of
PS satellite images is a 90% overall accuracy using (All Bands -
B.1) + CIG classification. In contrast, this scenario does not yield
the highest accuracy (i.e., 82%) for S2 classified images. The
highest accuracy result for S2 is achieved with (All Bands - B:)
+ EVI, TCG classification with 84% Overall accuracy. In this
context, this raises the question of whether it would have been
possible to achieve higher than 90% overall accuracy with this
classification for PS if TCG coefficients had been determined for
PS.

The computed areas for each of the three classes from the
scenario that yields the highest classification accuracy for both
S2 and PS are presented in Table 5. When comparing the areas
of the classes in Table 5, the most notable difference is observed
in the significantly damaged class. This discrepancy can be

attributed to variations in sunflower planting dates across the
region, indicating that the chosen date for image classification
(i.e., July 26) may not be representative of the entire area. Given
that the choice of the July 26 date is consistent with existing in
situ data, the need for more comprehensive in situ and ancillary
data is underlined. This is crucial not only for accurately
determining the optimum date indicating damage, but also for all
processing stages.

Fields S2 PS A

Slightly

damaged

(decare)
Significantly

damaged

(decare)
Fallow land

(decare)
Table 5. Comparison of the computed areas for main classes in
highest accuracy scenario.

9187.3 8655.3 532

12426.6 14479.2 2052.6

3726.7 2203.5 1523.2

5. CONCLUSION

This study was initiated to evaluate the infestation of beet
webworm moths in sunflower fields in Liileburgaz in 2022 using
remote sensing techniques and to determine varying degrees of
damage in the fields. To achieve this, in-situ data was collected
from specific fields and accurate damage assessments were made
through various image processing analyses, including vegetation
indices and machine learning-based image classification.

Despite the limitations in accuracy assessment due to the small
number of available in-situ data, overall accuracy for different
classification scenarios, evaluating the contribution of spectral
indices and transformations to image classification, ranged from
a minimum of 75% to a maximum of 90%. Due to differences in
image resolutions, particularly spectral and spatial, between the
two satellite systems (and the inability to determine TC-
Greenness coefficients for PS), the most accurate classification
scenarios varied. PS achieved 90% overall accuracy with (All
Bands — B:) + CIG classification, while S2 achieved 84% overall
accuracy with (All Bands — B:) + EVI, TC-Greenness
classification.

The study's findings highlight the significant contribution of
remote sensing technology in detecting temporal changes in pest
damage during the growth stages of agricultural products and
subsequently determining damage rates. This not only aids
decision-making authorities in taking necessary precautions but
also provides better opportunities for effective agricultural
management.
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