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ABSTRACT: 

The diversity of sensors in remote sensing allows for faster and easier detection of changes and issues across different scales, in contrast 

to conventional ground-based systems. One of the most important distinguishing features among these sensors is their varying 

resolutions, contributing to the versatility of remote sensing technologies across diverse environmental applications. In this study, the 

effectiveness of PlanetScope and Sentinel-2 satellite images with different image resolutions in detecting damage caused by a harmful 

insect (beet webworm moth - Loxostege sticticalis) in sunflower fields in Lüleburgaz district of Kırklareli in the Trace region was 

evaluated. Damage rates in sunflower fields were analyzed using various spectral indices (Enhanced Vegetation Index and Chlorophyll 

Index Green) and spectral transformation (Tasseled Cap Greenness) in conjunction with in situ data. Based on the spectral analysis, 

the satellite image dated 26 July, which showed the most severe damage, was used in the damage assessment analysis. The damaged 

areas were compared by classifying both satellite images with the Random Forest algorithm. According to the results of the 

classification accuracy assessment, PlanetScope satellite imagery showed the highest accuracy, with 90% overall accuracy and 84% 

Kappa statistics, making it a more suitable sensor choice for agricultural applications.  

 

1. INTRODUCTION 

In today's globalizing and expanding globe, the agriculture 

industry is of critical strategic importance. Meeting the food 

demands of increasing populations, providing food security, and 

protecting natural resources all raise the importance of the 

agricultural industry. According to the "OECD-FAO 

Agricultural Outlook: 2019-2028" report published by the 

Organization for Economic Cooperation and Development 

(OECD), the demand for agricultural products is expected to 

increase by approximately 15% between 2019-2028 due to 

population growth (OECD, 2023). As a result, it is critical to 

regularly monitor agricultural productivity and apply risk-

mitigation strategies. Failure to do so may have a detrimental 

influence on food security and natural resource management, 

particularly in densely populated areas. 

 

Plant stress, climatic conditions, and insect damage can all 

significantly affect the health of crops in agriculture, and it's 

crucial to determine the extent of the damage in these cases. 

Effective pest management, which includes identifying pests and 

detecting their damage, is essential to minimize their impact 

(Qin et al., 2003). One effective strategy for managing pests and 

disease stress is to detect pest damage as soon as possible, as this 

can prevent the pests from spreading to other fields and causing 

a widespread invasion. Delayed detection may necessitate the 

use of chemical methods such as disinfection, which can be 

costly and harmful to the environment. To address these 

challenges, several solutions are being developed today to 

reduce manpower, save time, and keep up to current on real time 

improvements.  

 

Remote sensing technology is one such solution that offers a 

wide range of crop monitoring and pest management 

capabilities. To analyze factors such as the timing, rate, and 

spread of pest damage to crops, satellite imagery with a variety 

of properties and resolutions is used in crop monitoring. In 

agricultural applications, high spatial resolution satellite 

imagery is preferred over low spatial resolution satellite imagery 

because heterogeneous (complex) pixels are avoided when 

obtaining information such as stress and health status of products 

through satellite images and distinguishing different situations in 

damage analysis. The spectral reflectance properties and spectra 

of different crop types, such as wheat, corn, and sunflowers, 

exhibit significant differences, highlighting the critical role of 

high spectral resolution in remote sensing-based crop mapping to 

differentiate between these crops (Wu et al., 2017). Another 

significant component is temporal resolution, because it is 

impossible to analyze the time period when pests start to damage 

plants without a satellite image of that time period. 

 

Several image transformations can be used to improve the quality 

of satellite images and extract useful information, which can aid 

in applications such as land cover classification, environmental 

monitoring, and disaster assessment. Spectral transformations, 

such as Vegetation Indices (VIs) and Tasseled Cap (TC) 

transformations, are commonly used in studies that focus on 

vegetation analysis. Vegetation Indices (VIs) are designed to 

amplify sensitivity to vegetation characteristics while mitigating 

the impact of confounding factors such as soil background 

reflectance, directional effects, and atmospheric influences. 

These transformations typically exploit information contained in 

canopy reflectance or radiance in the red and near infrared (NIR), 

and are a fundamental part of the analysis of vegetation-related 

studies (Fang and Liang 2008; Akkartal et. al., 2004; Kara et. al, 

2023). On the other hand, TC transformations are used to capture 

important landscape features by combining the original spectral 

bands of satellite data linearly into a set of transformed 

components - Brightness, Greenness and Wetness. This fixed, 

sensor-specific transformation, based on soil and vegetation 

signatures, is valuable for characterizing environmental factors in 

vegetation, emphasizing general plant growth as well as distinct 

changes in soil moisture, leaf density, and vegetation health (Crist 

and Cicone, 1984). 

 

The study area, Thrace region, is known for its extensive 

sunflower production. The beet webworm moth (Loxostege 

sticticalis, Lepidoptera: Pyralidae) can cause occasional 

outbreaks during its caterpillar stage. The first documented 

outbreak in Thrace was in 1975 (Ünal, 1979), with a recurrence 

in 2012 (Bahadır et al., 2016). This study assesses damage in the 
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Lüleburgaz region during the 2022 caterpillar outbreak using 

PlanetScope and Sentinel-2 satellites. Analyzing various 

spectral indices alongside in-situ data, a Random Forest (RF) 

algorithm, employing different band combinations, classified the 

satellite image with the highest pest damage. The results aim to 

identify the most effective satellite data for accurate detection of 

beet webworm moth damage in sunflower fields and contribute 

to dynamic agricultural pest management. 

 

2. STUDY AREA 

Kırklareli province, located on the European continent, is in the 

Thrace region of the Marmara Region. It covers an area of 6,459 

km2 and has an altitude of 203 m (Republic of Turkiye Ministry 

of Environment and Urbanization, 2023). Kırklareli has a 

strategically advantageous geographical location as a 

transitional corridor between the European and Asian 

continents, which contributes to its high potential in agricultural 

and animal production. When examining the agricultural land of 

Kırklareli in terms of crops and production, it is rich in cereals, 

oilseeds (especially sunflower, which has a high oil content), 

forage crops and industrial crops.  Notably, Kırklareli 

constitutes the primary sunflower cultivation area in Turkey, 

contributing to 9.6% of the country's total sunflower production. 

 

Lüleburgaz is the largest settlement in the Kırklareli province, 

covering a total area of 1370 hectares. The total arable land area 

is 82,400 hectares, of which 76,600 hectares are cultivated with 

crops (Lüleburgaz Chamber of Commerce and Industry).  As 

one of the major crops cultivated in this region, Figure 1 

illustrates the distribution of sunflower fields in the study area, 

which includes part of Lüleburgaz. 

 

 
Figure 1. Map of the study area in the Lüleburgaz neighborhood, 

Kırklareli, showing the locations of 10 in-situ sunflower fields 

overlaid on the PlanetScope satellite image (© Planet). 

 

3. MATERIALS AND METHODOLOGY 

3.1 Materials 

In this study, Sentinel-2 (S2) and PlanetScope (PS) images from 

July 6, July 16, and July 26 were utilized as the satellite dataset. 

S2 is frequently used in remote sensing applications to 

understand and monitor changes in land and agricultural 

conditions due to its 290 km area width and frequent revisit 

periods (The European Space Agency, 2023). S2 images, which 

offer different levels of atmospheric correction such as Top of 

the Atmosphere (TOA) and Bottom of the Atmosphere (BOA), 

are available free of charge from the European Space Agency. 

 

The other satellite used in this study, PS, is a constellation of 130 

satellites operated by Planet (Planet, 2023). Planet's unique 

combination of coverage, frequency, and resolution enables the 

acquisition of information regarding land surface conditions and 

changes. The main characteristics of the S2 satellite, which has 

different spatial resolutions (10m, 20m and 60m) at many 

different wavelengths (Coastal Blue - SWIR) and the main 

characteristics of the PS satellite, which has high spatial 

resolution (3m) at many different wavelengths (Green I - 

Yellow), are shown in the table below (Table 1).  

 

Main features 
 

PS S2 

Spectral  

resolution 

 
Spatial   
resolution 

3-m 10-m / 20-m / 60-m 

Temporal 

resolution 

Daily 

10 days with each 

satellite five days with 

(Sentinel 2A & 2B) 

Radiometric 

resolution 

8 bytes 12 bytes 

Table 1. Comparisons of the PS and S2 satellites' main features 

(Planet, 2023). 

 

In this study, a dataset comprising 10 sunflower fields was 

utilized as in-situ data, as detailed in Table 2. This in-situ data 

includes information such as the percentage of pest damage and 

the date of the damage measurement. Seven sunflower fields 

obtained from in-situ data were used for the training dataset, 

while the remaining three fields were utilized for validation 

purposes. 

 

Field  
Plantation 

Area 

Percentage 

of Damage 

Date of 

Damage 

A 25.95 5 2022/07/29 
B 19.20 5 2022/08/02 
C 8.52 5 2022/08/02 
D 8.05 5 2022/08/02 
E 36.99 5 2022/08/01 
F 15.50 10 2022/07/29 
G 
H 

7.95 
23.99 

40 
40 

2022/07/29 
2022/08/01 

I 
J 

37.84 
28.58 

45 
50 

2022/08/01 
2022/07/29 

Table 2. Main features of 10 sunflower fields used in study.  

 

3.2 Methodology 

The methodology used in this study consists of two main stages, 

as shown in the flowchart given in Figure 2. In the first stage, 

spectral vegetation indices and spectral transformation 

techniques were used to determine the health status of sunflower 

fields and to examine the damage caused by pests. In the next 

stage, in-situ data were regrouped into two classes and image 

classification was performed using RF algorithm for three classes 

(Slightly Damaged - Heavily Damaged - Fallow Field) to create 

a thematic map showing different levels of damaged areas in the 

study area.  
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Figure 2. Flowchart of the methodology used. 

 

3.2.1 Spectral Vegetation Index: Various spectral vegetation 

indices have been developed for agricultural studies. These 

indices, obtained by calculating reflectance values in two or 

more spectral bands, provide information about the growth 

stages of crops (Taşan et al., 2022; Sunar et al., 2011).  

 

The study employed the Enhanced Vegetation Index (EVI) and 

Chlorophyll Index Green (CIG) as spectral vegetation indices to 

identify pest damage in sunflower fields and analyze crop health. 

EVI uses the red, blue and near-infrared bands to account for 

variations in canopy background reflectance and atmospheric 

influences, and provides a more accurate estimate of vegetation 

characteristics, particularly in areas of dense vegetation or under 

adverse atmospheric conditions (Huete et al., 2002). Given that 

the CIG is designed for the estimation of chlorophyll content in 

plants, offering insights into plant vitality, chlorophyll synthesis, 

and photosynthetic activity, monitoring long or medium-term 

changes in chlorophyll content within vegetation becomes 

pivotal for a comprehensive understanding of growth stages and 

canopy stresses (Niu et al., 2022; Gitelson et al., 2005). 

 

3.2.2. Spectral Transformation: As a spectral transformation, 

TC, a technique widely used for analyzing and mapping 

vegetation phenomenology, was applied in this study. Within the 

generated tasseled cap components, the Greenness component is 

particularly useful for understanding environmental factors in 

the field and highlights significant changes in color, leaf density, 

and plant health, providing valuable insights into both specific 

issues like pest damage and general plant growth dynamics (Ma 

et al., 2019). 

 

3.2.3. Image Classification: Image classification is the process 

of categorizing and labelling groups of pixels in an image 

according to certain rules. Unsupervised and supervised image 

classification are the two most common approaches. In this 

study, the Random Forest, a supervised Machine Learning (ML) 

algorithm, was used. The main objective is to analyze and 

interpret the complex patterns and information contained in 

images, transforming the raw data into more meaningful 

information applicable for various environmental purposes, 

including agricultural monitoring and natural resource 

management.  

 

3.2.4 Random Forest Algorithm: This algorithm, extensively 

applied in supervised learning, demonstrates efficacy in both 

classification and regression analyses within ML. By utilizing 

ensemble learning, it integrates multiple classifiers to enhance the 

overall performance of the model (IBM, 2023; Sunar et al., 

2017). This algorithm comprises a substantial number of decision 

trees collaborating as a community, yielding effective 

classification results through the creation of multiple independent 

trees. The ultimate prediction arises from a majority vote, 

wherein the class attaining the highest number of votes becomes 

the model's prediction. 

 

4. APPLICATION AND RESULTS 

The beet webworm moth, scientifically described by Carl 

Linnaeus in 1761, is a widespread pest found across Asia, 

Europe, North America, and the Arabian Peninsula (Kuznetsova 

and Chumakov, 2008). In Turkey, it is distributed in various 

provinces, including Amasya, Antalya, Balıkesir, Bitlis, Bursa, 

Çanakkale, Düzce, Istanbul, Kırklareli, Konya, Malatya, and 

Kahramanmaraş (Öztemiz and Ciner, 2022). This moth species, 

known to feed on approximately 200 different plant species, is 

recognized as a pest affecting cereals, oilseeds, legumes, fiber 

crops, and vegetables (Alekhin and Kuznetsova, 2003). It causes 

significant damage in agricultural areas, particularly on 

economically vital crops such as soybeans, sugar beet, alfalfa, 

and sunflower (Feng et al., 2004; Xiao et al., 2008). 

 

Pests typically cause damage to plant leaves, hindering growth 

by creating small holes in young plants, as illustrated in Figure 3. 

Furthermore, they can impact the reproductive organs of the 

plant, damaging flower buds and immature fruits. This situation 

was experienced during the growth process of sunflower plant in 

the study area and negatively affected the harvest productivity. 

 

 
Figure 3. Leaf damage caused by beet webworm moths. 

 

As an initial step, spectral reflectance profiles were extracted 

from the multitemporal dataset to distinguish between slightly 

and significantly damaged sunflower fields, and their spectra are 

presented in Figure 4. Owing to the distinct spectral resolutions 

of the PS and S2 satellites, noticeable differences exist in the 

spectral reflectance curves. As clearly seen, the higher spectral 

resolution of the S2 image, indicated by the higher number of 

bands, allows a more continuous spectral profile to be generated, 

allowing for more accurate spectral analysis. 
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Figure 4. Reflectance spectra of slightly and significantly 

damaged sunflower fields. 

 

A close examination of the spectral curves of the sunflower 

fields shows that the 5% damaged sunflower field has a typical 

spectral curve for a healthy sunflower crop on 6 July and 16 July, 

with some changes in reflectance on 26 July. Despite July being 

the growing month for sunflower fields, on 26 July, it was noted 

that the spectral reflectance values of the 5% damaged field in 

the Red - Red Edge and NIR bands were similar to those of the 

50% damaged field, deviating from the typical healthy plant 

spectral curve (i.e., decrease from 0.5 to less than 0.4). This 

change in vegetation health can also be seen between the PS 6 - 

26 July spectral curves. In contrast, the 50% damaged field has 

a significantly lower reflectance in the NIR band than the 5% 

damaged field for both satellites. In particular, examination of 

the S2 spectral curves on 16 and 26 July reveals a different trend 

in the spectral curve of the 50% damaged field compared to that 

of a typical healthy crop. 

 

The analysis of spectral curves in PS highlights the challenge of 

distinguishing between slightly and significantly damaged 

fields. This difficulty is primarily due to the low spectral 

resolution in the VIS-NIR region. In other words, the higher 

spectral resolution of the S2 sensor with a greater number and 

narrower Red Edge and NIR bandwidth clearly demonstrates 

that it is a more suitable sensor for discriminating vegetation 

health and providing more accurate spectral analysis. 

 

In the subsequent phase, two spectral vegetation indices (EVI 

and CIG) along with TC-Greenness were applied to all S2 and 

PS images using the Google Earth Engine platform. Figure 5 

shows the spectral index values for ten fields and emphasizes the 

temporal variation of insect damage to biomass. 

 
Figure 5. Comparison of multitemporal EVI, CIG and TC-

Greenness profiles for ten sunflower fields. 

 

When examining the graphs in Figure 5, a notable decrease is 

observed in both the spectral index and TC Greenness values for 

all fields from July 6 to July 26. Additionally, it is observed that 

the S2 and PS satellite systems show similar EVI values across 

all fields. However, this trend is not observed in CIG values, 

especially on July 16. For instance, the CIG index value for the 

S2 satellite of Field A decreases from 6 on July 6 to 4 on July 16. 

In contrast, for the PS satellite of the same field, CIG values 

remained relatively consistent, staying around 5 on both days. 

Similar variations are noted in all slightly damaged fields, while 

this pattern is consistent for both satellites in significantly 

damaged fields. 

 

When examining the TC-Greenness component, as illustrated in 

Figure 5, it is important to note that this component could not be 

calculated for the PS dataset due to the absence of sensor-

dependent coefficients required for this transformation. 

However, in general, it is observed that the TC-Greenness graph 

obtained with S2 is similar to the S2 EVI. 

 

Given the similarity in spectral profiles among fields with 

comparable damage areas, it was considered more appropriate to 

categorize the in-situ data into two primary classes: slightly 

damaged areas (damage classes A to F in Table 2) and 

significantly damaged areas (damage classes G to J in Table 2). 

This reclassification enhances the clarity of rapidly detecting 

damage in the area and identifying the peak damage periods. In 

other words, to more accurately evaluate and compare these two 

main damage classes, two spectral indexes and TC-Greenness 

transformations were applied to both S2 and PS satellite images, 

and the results are presented in Figure 6. 
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Figure 6. Comparison of multitemporal EVI, CIG and TC-

Greenness profiles for 2 main (slightly and significantly) 

damaged classes. 

 

Comparing the spectral index and transformation graphs 

presented in Figure 6, temporal differences become evident, 

indicating a decreasing trend for the two main damage groups in 

both datasets. These graphs offer valuable insights into the 

initiation and progression of damage. Specifically, on July 6, the 

index values for slightly damaged and significantly damaged 

classes were closely aligned. However, a sudden decrease in the 

index values of the significantly damaged class on July 16 

indicates a decline in plant health. This decrease provides 

evidence of deterioration attributed to pest damage. The 

decreasing trend persists, signifying ongoing damage caused by 

pests and leading to the identification of the period between July 

16 and July 26 as the initiation of damage. In a final assessment, 

July 26 is pinpointed as the date when pest damage reaches its 

peak, aligning with the date recorded in in-situ measurements 

and interviews with farmers. 

 

As the final step, images taken on July 26, determined as the 

peak of damage, were classified using the RF algorithm, 

resulting in the creation of a damage thematic map for the study 

area. The classification process considered three main classes: 

slightly damaged sunflower fields, significantly damaged 

sunflower fields, and fallow fields characterized by abundant 

bare soil (open field). Various scenarios were explored during 

this step, incorporating not only the original bands but also 

spectral indices, transformed component, and/or their 

combinations in the classification process. Table 3 displays the 

classification output images generated under various scenarios. 

 

Visual analysis of the classification results reveals that the fields 

situated at the top of the road exhibit more severe damage 

compared to those at the bottom. Additionally, in the majority of 

output images from the classification scenarios, the visual 

analysis indicates a higher presence of the significantly damaged 

class in the PS outputs compared to the S2 outputs. 

 

Another visual analysis result indicates that field boundaries are 

more easily detected in the output images from the PS satellite 

system, owing to its higher spatial resolution compared to the S2 

satellite images. 

 

The classification results should undergo not only visual analysis 

but also quantitative assessment using an error matrix. Table 4 

presents the calculated overall accuracy and Kappa statistics for 

each classification. Upon examining the accuracy measurements, 

it was observed that higher accuracies were achieved when 

excluding the Coastal band (B₁) in the classifications for both 

satellites. Consequently, the B₁ band was not considered in other 

scenarios. 
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Table 3. Classification output images for various scenarios on the 

most damaged date (July 26th). 

Legend 

Slightly Damage Significantly Damage Fallow Land 
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As presented in Table 3 and Table 4, visual and quantitative 

differences in the results arise between the two satellite images, 

attributed to variations in their spatial and spectral resolutions.  

The use of different combinations of two indices/component, 

instead of employing all indices/component in the classification 

process, has been observed to positively impact accuracy. As 

indicated in Table 4, the best scenarios selected were not the 

same between the two satellite images, owing to their varying 

image resolutions. 

 

Table 4. Accuracy assessments for various classification 

scenarios, including overall accuracy and Kappa statistics. 

 

Specifically, the best result obtained from the classification of 

PS satellite images is a 90% overall accuracy using (All Bands - 

B₁) + CIG classification. In contrast, this scenario does not yield 

the highest accuracy (i.e., 82%) for S2 classified images. The 

highest accuracy result for S2 is achieved with (All Bands - B₁) 

+ EVI, TCG classification with 84% Overall accuracy. In this 

context, this raises the question of whether it would have been 

possible to achieve higher than 90% overall accuracy with this 

classification for PS if TCG coefficients had been determined for 

PS.  

 

The computed areas for each of the three classes from the 

scenario that yields the highest classification accuracy for both 

S2 and PS are presented in Table 5. When comparing the areas 

of the classes in Table 5, the most notable difference is observed 

in the significantly damaged class. This discrepancy can be 

attributed to variations in sunflower planting dates across the 

region, indicating that the chosen date for image classification 

(i.e., July 26) may not be representative of the entire area. Given 

that the choice of the July 26 date is consistent with existing in 

situ data, the need for more comprehensive in situ and ancillary 

data is underlined. This is crucial not only for accurately 

determining the optimum date indicating damage, but also for all 

processing stages. 

 

Fields S2 PS  

Slightly 

damaged 

(decare) 

9187.3 8655.3 532 

Significantly 

damaged 

(decare) 

12426.6 14479.2 2052.6 

Fallow land 

(decare) 
3726.7 2203.5 1523.2 

Table 5. Comparison of the computed areas for main classes in 

highest accuracy scenario. 

 

5. CONCLUSION 

This study was initiated to evaluate the infestation of beet 

webworm moths in sunflower fields in Lüleburgaz in 2022 using 

remote sensing techniques and to determine varying degrees of 

damage in the fields. To achieve this, in-situ data was collected 

from specific fields and accurate damage assessments were made 

through various image processing analyses, including vegetation 

indices and machine learning-based image classification. 

 

Despite the limitations in accuracy assessment due to the small 

number of available in-situ data, overall accuracy for different 

classification scenarios, evaluating the contribution of spectral 

indices and transformations to image classification, ranged from 

a minimum of 75% to a maximum of 90%. Due to differences in 

image resolutions, particularly spectral and spatial, between the 

two satellite systems (and the inability to determine TC-

Greenness coefficients for PS), the most accurate classification 

scenarios varied. PS achieved 90% overall accuracy with (All 

Bands – B₁) + CIG classification, while S2 achieved 84% overall 

accuracy with (All Bands – B₁) + EVI, TC-Greenness 

classification. 

 

The study's findings highlight the significant contribution of 

remote sensing technology in detecting temporal changes in pest 

damage during the growth stages of agricultural products and 

subsequently determining damage rates. This not only aids 

decision-making authorities in taking necessary precautions but 

also provides better opportunities for effective agricultural 

management. 
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