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ABSTRACT: 

This study focused on monitoring the water volume variations of the Doroudzan dam reservoir in Shiraz, Iran, using satellite 

observations. In particular, Sentinel-3 altimetry mission (SRAL) Level-1B and Level-2 data were employed to calculate water level 

changes, addressing the limitations in accuracy for inland and shallow waters. Re-tracking of returned waveforms was applied to 

improve the accuracy of Level-2 altimetry results. Additionally, Sentinel-2 optical images were utilized to monitor the water surface 

area of the dam reservoir. The results demonstrated that re-tracking the returned waveforms significantly improved the water level 

observations compared to Level-2 data. The analysis extended to comparing the time series of water surface area estimated from 

Sentinel-2 images with in-situ data, revealing a high accuracy of 5.39%. Combining optimum water level and surface area data in 

Heron's equation facilitated the calculation of water volume variations. A remarkable correlation of 95.27% was found when 

comparing the time series of estimated water volume variations and in-situ data. This study underscores the effectiveness of 

Copernicus satellites, particularly Sentinel-3 and Sentinel-2 missions, in monitoring inland water bodies and demonstrates the 

reliability of the techniques employed for tracking dam reservoir volume variations. 

* Corresponding author

1. INTRODUCTION

Water stands as the most precious resource in nature. Given the 

escalating expenses associated with establishing sustainable, 

freshwater sources, it emerges as one of the foremost concerns 

across all human societies (Kim et al., 2008). The total water 

volume on Earth is estimated to be approximately 333 million 

cubic kilometres. This comprises 97.5% saltwater and 2.5% 

freshwater, with a mere 0.3% of the latter existing in a liquid 

state on Earth's surface, encompassing lakes, dams, and rivers 

(Eakins & Sharman, 2010; Gleick, 19993). Dams and reservoirs 

play a pivotal role in social and economic development. These 

reservoirs serve various purposes, such as the generation of 

electric energy, mitigation of floods, and provision of water 

resources for human consumption, industrial use, and irrigation 

(Nilsson, 2009; W. Wang et al., 2017; Zarfl et al., 2015; Zhou et 

al., 2016). The critical parameter in monitoring dam reservoirs 

is the volume of water stored, a factor directly influenced by the 

water level (J. F. Crétaux et al., 2016).  

Satellite altimetry missions were initially conceptualized and 

organized for ocean monitoring, typically focusing on studying 

glaciers and sea ice. Despite the continuous recording of data 

worldwide by altimetry satellites, no specific mission has been 

tailored for monitoring inland water bodies. The Brown re-

tracker, designed for inland water bodies with highly variable 

returned waveforms, is available but inefficient. Consequently, 

various re-tracking methods have been developed to measure 

rivers, lakes, reservoirs, and wetlands (Tarpanelli & Benveniste, 

2019). In the initial studies on inland water bodies, the 

monitoring of water levels in the Great Lakes in the United 

States and Africa was conducted using altimetry data from 

Seasat, Geosat, and TOPEX/Poseidon satellites (Birkett, 1995; 

Cazenave et al., 1997; Mercier et al., 2002; Morris & Gill, 

1994). Subsequent research expanded the application of 

altimetry to rivers, including the Amazon, Negro, Ob, Mekong, 

Ganges, Brahmaputra, and Po, among others (Birkinshaw et al., 

2010; Domeneghetti et al., 2014; Frappart, Calmant, et al., 

2006; Kouraev et al., 2004; Leon et al., 2006; Tarpanelli et al., 

2013). 

Due to the large footprint of the satellite, which exceeds the 

width of water in small to medium rivers (ranging from 40 to 

800 meters), the topography around the river introduces noise 

into the radar's return signal. Consequently, water level 

measurement is more effective for wide rivers than narrow ones. 

However, this also depends on the type of altimetry sensor 

available on the satellite (LRM or SAR). For instance, in the 

Amazon River, the world's largest river, Santos da Silva et al., 

(2010) achieved an RMSE of about 30 cm with the Envisat 

satellite. With SAR altimeters, accuracy improves, enabling the 

monitoring of narrower rivers due to their high resolution along 

the track (Schneider et al., 2018). 

However, processing satellite altimetry measurements for small 

to medium rivers is intricate due to the large footprint of the 

antenna, even in cross-direction SAR mode (which has the same 

footprint width as conventional altimetry). Unique re-tracking 

algorithms have been developed to estimate water level changes 

precisely and process complex reflection waves (Biancamaria et 

al., 2017; Sulistioadi et al., 2015). 

Recently, the combination of satellite radar altimetry with 

satellite images has been employed to assess changes in water 

volume in large river basins, such as the Negro River basin 

(Frappart et al., 2005, 2008, 2011), the downstream basin of the 

Mekong River (Frappart, Do Minh, et al., 2006), and the lower 

Ob River basin (Frappart et al., 2010). Several studies have 
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attempted to analyze changes in water volume for lakes and 

reservoirs of dams using the integrated approach of satellite 

altimetry data and satellite images. 

The changes in the volume of the Aral Lake were reconstructed 

utilizing a digital bathymetry model and water level data 

obtained from the TOPEX/Poseidon (T/P) altimetry mission (J.-

F. Crétaux et al., 2005). A separate study established the 

relationship between water level and water volume for the 

Fengmen Dam reservoir using water level data from in-situ 

gauges and water surface area data obtained from Landsat 

mission images (Peng et al., 2006). Another study focused on 

Dongying Lake, China, converted the water level data from the 

T/P altimetry mission to water storage using the established 

relationship between water level and water storage, derived 

from T/P altimetry data and in-situ water storage measurements  

(Zhang et al., 2006). The water storage changes in nine lakes of 

the Peace-Athabasca Delta in Canada were calculated using 

water level data from in-situ gauges and water surface area data 

from remote sensing images (Smith & Pavelsky, 2009). 

Additionally, changes in the water volume of Lake Isabel were 

analyzed using the Heron method's approximate relationship. 

This analysis utilized altimetry data from the Envisat mission 

(RA-2) obtained through the Ice-1 re-tracking algorithm, in-situ 

gauges, and water surface area data obtained from Envisat radar 

images (ASAR) processing. The study covered the period 

between February 2003 and December 2006 (Medina et al., 

2010). 

The methods mentioned above rely on the availability of 

bathymetric maps, in-situ gauges, or water volumes, which can 

be challenging or impossible for most remote lakes. Recently, a 

combination of GRACE satellite gravity measurements with 

satellite altimetry and optical satellite imagery data has been 

employed to investigate water volume variations in large inland 

waters, as seen in the study on the Aral Sea (Singh et al., 2012). 

However, the characteristics of GRACE impose limitations on 

its meaningful application to study areas smaller than 200,000 

square kilometres. This constraint is a significant drawback for 

hydrological studies involving many lakes and dam reservoirs 

with relatively small sizes (Singh et al., 2012). In another study, 

the volume of Lake Mead in the United States of America and 

Lake Tana in Ethiopia was compared based on the lowest water 

level values using GRLM, RLH, Hydroweb, ICESat-GLAS, and 

water surface area data from satellite images. The water surface 

resulting from the processing of Landsat TM/ETM+ images was 

examined using the surface-height relationship integration 

method  (Duan & Bastiaanssen, 2013). In monitoring the water 

volume variations of Lake Victoria, elevation data from ERS-1, 

ERS-2, and Envisat obtained through the Ice-1 re-tracking 

algorithm, along with water surface area data from 

MODIS/Terra image processing, were used over 22 years (Tong 

et al., 2016). Also, in Iran, some studies have been related to the 

watersheds, as described in the sources (Ahmadi et al., 2022; 

Barezaei & Jalali, 2023; He et al., 2023; Jalali et al., 2021; 

Kordi & Yousefi, 2022; Mohammadpouri et al., 2023). 
Another study focused on the vital role of monitoring lake 

dynamics in understanding water balance, resource 

management, and ecological sustainability. Concentrating on 

Lake Victoria, Africa's largest lake, the research utilizes 15 

years of multi-source satellite data, including MODIS, Jason-1/-

2/-3, and GRACE, to estimate water volume changes. The 

methodology involves deriving water level and surface area data 

from satellite altimetry and imagery, constructing accurate 

regression models, and comparing results with terrestrial water 

storage changes from GRACE data. The findings reveal 

consistent trends in water volume changes and terrestrial water 

storage. Multi-timescale analyses, encompassing inter-annual, 

inter-monthly, and variation periods, provide comprehensive 

insights into Lake Victoria's dynamic water volume fluctuations 

(Lin et al., 2020). Recently, a study utilized ICESat-2 and 

Google Earth Engine to monitor water level and volume 

changes in 11 lakes and eight reservoirs within the Yellow 

River Basin. In-situ validation demonstrates a low Root Mean 

Square Error of 7 cm. Seasonal variations are noted in natural 

lake water levels, while reservoirs exhibit sharp rises and falls. 

Precipitation significantly influences natural lake levels and 

indirectly impacts reservoir water discharges. The research 

indicates that uncertainty in water volume change estimation 

using ICESat-2 and GEE is less than 9% (Liu et al., 2022). 

Also, A different study estimated the monthly variation in 

surface water volume in the Thac Mo hydroelectric reservoir, 

located in South Vietnam, from 2016 to 2021. By utilizing 

Sentinel-1 observations for surface water extent and Jason-3 

altimetry data for water level variation, the study reveals that, 

except for the drought years in 2019 and 2020, the surface water 

extent of the Thac Mo reservoir varies from 50 to 100 km², and 

the water level ranges from 202 to 217 meters. High 

correlations are observed between surface water extent and level 

(R = 0.948), Sentinel-1 and Sentinel-2 observations (R = 0.98), 

and Jason-3 altimetry data and in situ measurements (R = 0.99; 

RMSE = 0.86 m). The water volume fluctuates between -0.3 

and 0.4 km³ month−1, demonstrating strong agreement with in 

situ measurements (R = 0.95; RMSE = 0.0682 km³ month−1). 

The study emphasizes the efficacy of diverse satellite 

observations for monitoring lake water storage variations, 

particularly beneficial for regions lacking in situ measurements 

or facing accessibility constraints (Pham-Duc et al., 2022). 

In this study, Sentinel-3 SRAL (Synthetic Aperture Radar 

Altimeter) altimetry data will be employed to monitor variations 

in the water level in the Doroudzan dam reservoir. 

Consequently, an attempt is made to re-track the returned 

waveforms of the SRAL mission using the threshold re-tracking 

algorithm. Ultimately, the water level time series is selected 

with greater accuracy than in-situ gauges and is utilized to 

estimate the volume variations of the dam reservoir. 

Furthermore, optical satellite images from the Sentinel-2 

mission, characterized by excellent spatial and temporal 

resolution, are utilized to generate a time series depicting 

changes in the water surface area of the Doroudzan dam 

reservoir. By possessing information on both the water level and 

the water surface area of the dam reservoir, an estimation of the 

variations in the dam volume is presented and subsequently 

compared with in-situ volume data. 

Additionally, a two-by-two analysis is conducted on changes in 

water level, water surface area, and dam reservoir volume, 

accompanied by identifying the most significant increases, 

decreases, and average changes in these parameters. 

 

2. METHODS 

2.1 Water level from L1B and L2 data from Sentinel-3A 

Sentinel-3 constitutes an ocean and land mission, employing a 

constellation of two satellites, namely Sentinel-3A and Sentinel-

3B. Sentinel-3A was launched on 16 February 2016, and its 

data became available in June 2016. Subsequently, Sentinel-3B 

was found on 25 April 2018, and its data became accessible 

from December 2018. This study utilized three years of 

Sentinel-3A data from March 2016 to December 2019. The 

SRAL instrument, serving as the primary topographic sensor for 

water level measurements, played a crucial role in our research 

and is detailed in (Q. Gao et al., 2019). To obtain altimeter 

measurements, Sentinel-3 SRAL transmits pulses at a Ku-band 

frequency, supplemented by a C-band frequency, to rectify 

range delay errors resulting from the varying electron density in 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W9-2024 
GeoAdvances 2024 – 8th International Conference on GeoInformation Advances, 11–12 January 2024, Istanbul, Türkiye

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W9-2024-189-2024 | © Author(s) 2024. CC BY 4.0 License.

 
190



 

the ionosphere (Q. Gao et al., 2019). Sentinel-3 operates in two 

main modes: SAR mode and LRM. Given the global 

availability of SAR mode, we could retrieve inland water levels 

over any area tracked by Sentinel-3. Three levels of processed 

altimeter data are accessible: Level-0, Level-1, and Level-2 

products. Our study used Level-1 non-time-critical (NTC) 20 

Hz data to perform water level retrieval through the threshold 

re-tracking algorithm. Additionally, Sentinel-3 Level-2 re-

trackers data from the European Space Agency (ESA) were 

employed for comparison. The primary objectives of Level-2 

processing for SAR mode data are to furnish fundamental re-

tracked altimeter estimates for various surfaces, including 

oceans, coastal zones, ice sheets, and sea ice elevations (Q. Gao 

et al., 2019; Tayfehrostami et al., 2022). Distinct re-tracking 

algorithms are better suited for specific surfaces in Level-2 data, 

such as ocean re-tracking, OCOG re-tracking, ice sheet re-

tracking, ice re-tracking, and sea ice re-tracking. Regrettably, 

re-tracker results of ice-related surfaces are unavailable for 

inland water bodies. Consequently, we employed results from 

other Sentinel-3 Level-2 re-trackers for comparison. 

The selected case study is Doroudzan Dam, situated at latitude 

30°12'28" and longitude 52°25'5", located 70 km northwest of 

Shiraz-Marvdasht in Iran. Built on the Kor River, the dam 

regulates approximately 760 million cubic meters of water 

annually, primarily for irrigation in agricultural activities. The 

dam supports around 42 thousand hectares of land in the 

Ramjard block and approximately 34 thousand hectares in the 

Karbal and Kanara Marvdasht areas. Additionally, the power 

plant associated with this dam generates 45.5 gigawatt-hours of 

electricity each year. Through the examination of passes from 

the Sentinel-3A mission, it was observed that crossing number 

253 provides substantial coverage of the study area. 

A space-borne radar altimeter serves as a primary tool for 

monitoring oceans, and its applicability extends to inland water 

bodies, such as lakes, dams, and rivers. The principle of 

altimetry, as described in (Roohi, 2017), involves applying 

geophysical and atmospheric corrections. This study initially 

extracted altimetry data for 253 passes of the Sentinel-3A 

mission over the study area. Subsequently, corrections were 

implemented for the wet troposphere, dry troposphere, 

ionosphere, solid earth tide, geocentric pole tide, center of 

gravity (COG), and the geoid. Given that the study aimed to 

utilize official Sentinel-3A L1B data directly and compare it 

against Level-2 official products, the incorporation of 

corrections available in the Level-2 product was considered. 

The threshold re-tracker, developed in 1997 primarily for 

measuring the height of ice sheets (Davis, 1997), offers key 

advantages, including implementation simplicity and internal 

accuracy in terms of repeatability (Davis, 1995). Here, 

repeatability refers to the stability of re-tracking in selecting the 

re-tracking point (Davis, 1997). The threshold re-tracker is 

typically assessed with 10%, 20%, and 50% thresholds. 

Research has shown that the 10% threshold yields the highest 

repeatability, while the 20% threshold is suitable for 

measurements over ice sheets. To determine the re-tracking 

gate, a linear interpolation is conducted between adjacent 

samples at a position where the threshold value intersects the 

leading edge of the waveform. The computational procedure is 

outlined as follows. 

1. Thermal noise (PN) is obtained by averaging the first five 

gates: 
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where N is the total number of waveform gates, and n1 = n2 = 4 

are the beginning and end gates of waveform removed to 

prevent signal interference error (aliasing).  

3. The threshold level is obtained from the following Equation: 

(3) ( )N NTh P q A P   ,= + −  

where A is calculated from Equation (2) and q is the threshold 

value (for example, 0.2 equals 20%). 

4. The Gateret is calculated from the following Equation: 
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where k is the first gate whose power exceeds the threshold Th. 

Figure (1) shows the re-tracked waveform of the 126th pass and 

46th cycle using the threshold re-tracker for 10% to 90% 

thresholds. 

 

 

 
Figure 1. Re-tracking of the waveform for the 126th pass and 

the 46th cycle was conducted using the threshold algorithm with 

various thresholds. 

2.2 Water surface area from Sentinel-2 

In this study, we employed the Level-1C data from the Sentinel-

2 mission imagery, selecting images with a cloudiness 

percentage below two percent based on the time series of 

altimetry data from the Sentinel-3A mission (one image per 

month). Sentinel-2 mission images are accessible online at 

(https://earthexplorer.usgs.gov/).  

Water indices are commonly computed to improve the 

differentiation between water bodies and other objects. These 

indices are valued for their straightforward implementation and 

robust calculation capabilities, making them extensively utilized 

in dynamic analyses (Campos et al., 2012; Li & Roy, 2017; 

Tayfehrostami et al., 2023). The GEE-based monitoring in this 

study incorporates NDWI, thresholding, and post-processing 

techniques, including vegetation masking to eliminate non-

water fields and minimum connection pixels to reduce sparse 

noise. The NDWI index is calculated as follows (B. C. Gao, 

1996): 

(5) NDWI Green NIR

Green NIR

 

 

−
=

+
 

Where 
Green and 

NIR are surface reflectance values of 

Sentinel-2 green and near-infrared bands, respectively. After 

applying the NDWI index to the images, Binary segmentation 

was conducted to extract water pixels from images. Ultimately, 

the water surface area of the study area was computed. Figure 
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(2) displays the Doroudzan dam reservoir extracted for 

November 6, 2019. 

 
Figure 2. Extracted Dam Reservoir from Sentinel-2 Mission 

Images 

 

2.3 Estimation of volume variations  

With information on the water level and surface area of the 

dams' reservoirs, it becomes feasible to estimate the volume 

variations of the reservoirs by applying the Heron relation, as 

proposed by: 

( )2 1 1 2 1 2

1
ΔV ( )

3
H H A A A A= − + + +  (6) 

In the equation provided above, ΔV represents the volume 

variations of the dam reservoir, while H1, H2, A1, and A2 

denote the water levels and surface areas on adjacent dates, 

respectively. 

Applying equation (6), the consecutive monthly volume 

variations of the dam reservoir were computed. Subsequently, 

by iteratively differentiating the time series of in-situ data for 

the absolute volume of the dam reservoir, monthly time series 

of volume variations were generated. The estimated volume 

variations time series were compared and evaluated using the 

correlation coefficient parameter against the time series of in-

situ volume variations. The time series of water level changes 

and monthly water surface area changes were also calculated. A 

pairwise correlation analysis of these parameters and their 

average, maximum increase, and maximum decrease was also 

conducted. 

Also, to validate and compare the estimated water level, water 

surface area, and volume variations obtained from the 

aforementioned missions, data from the Doroudzan Dam, 

sourced from the Iran Water Resources Management Company 

(https://www.wrm.ir/), were employed. This company releases 

comprehensive information in the periodic report on the 

hydrological and meteorological conditions of Iran's dams. The 

report comprises daily values for parameters including rainfall, 

evaporation, inflow, water level, reservoir volume, dam 

reservoir water surface area, and average temperature. 
Furthermore, in the current study, the correlation coefficient 

(CORR) has been employed as an indicator to assess the extent 

of the direct (linear) relationship between the obtained results 

and the validation data. The relationship is articulated as follows  
(B. Wang, 2019): 
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Similarly, the root mean square index (RMSE) has been utilized 

in this study as a metric to assess the accuracy of the results. 

The relationship for the RMSE index is expressed as follows (B. 

Wang, 2019): 

2
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(8) 

In the relationships above, Ai represents the estimated results, 

A is their average, Bi denotes the validation data, B is its 

average, and n represents the amount of data. The correlation 

coefficient assumes values between -1 and +1; a value closer to 

one signifies a stronger direct correlation between the two data 

series. This parameter's sign indicates the connection's nature, 

whether direct or inverse. Furthermore, a smaller RMSE value 

is indicative of better accuracy. The relation of the relative 

RMSE index is as follows: 

100%
RMSE

RRMSE
A

=   (9) 

 

3. RESULTS 

Initially, to monitor the water level of Doroudzan Dam, an 

analysis of Level-2 and Level-1B SAR altimetry data from the 

Sentinel-3A mission was conducted. The time series of the 

water level was obtained, and results indicated that the OCOG 

re-tracker yielded results closer to the in-situ gauge than other 

re-trackers in the Level-2 data. 

Furthermore, re-tracking the returned waveforms using the 

threshold algorithm revealed that the water level time series 

calculated with a 60% threshold provided superior results 

compared to other thresholds and closely matched the in-situ 

gauge measurements. Subsequently, the time series of the 

optimal water level for Doroudzan Dam, obtained from 

processing Level-2 data and re-tracking the returned waveforms 

with a 60% threshold, were consolidated. The outcomes are 

presented in Table 1, which was then compared with in-situ 

gauge measurements using parameters such as Root Mean 

Square Error (RMSE), correlation coefficient. 

Table 1. Evaluation of the final time series of the water level of 

Doroudzan Dam. 

Method RMSE (cm) CORR (%) 

L2 processing - 

OCOG 
38.23 99.23 

60% threshold 37.73 99.30 

 

The findings in Table 1 demonstrate that re-tracking the 

returned waveforms with the threshold algorithm, explicitly 

using a 60% threshold, enhances accuracy by 1.3%. 

Additionally, it exhibits a 0.07% higher correlation with the in-

situ gauge than the water level obtained from the OCOG re-

tracker. Figure (3) illustrates the conclusive time series of water 

levels for Doroudzan Dam based on these improved results. 

 
 

Figure 3. The final time series of the water level of Doroudzan 

Dam. 

Following the pre-processing and post-processing steps detailed 

in section 3.2, the time series of the water surface area was 

extracted from Sentinel-2 mission images. This extracted time 

series of the water surface area from Sentinel-2 images was then 

compared with the in-situ surface area time series, utilizing two 
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parameters: correlation coefficient and relative RMSE, as 

depicted in Figure (4). 

 
Figure 4. Time series of surface areas obtained from Sentinel-2 

and in-situ data. 

The evaluation and comparison of the two time series yielded 

relative RMSE values of 5.39% and a correlation of 97.30%. 

These results demonstrate the excellent and effective 

performance of the method employed for calculating the water 

surface area of Doroudzan Dam from the optical images of the 

Sentinel-2 mission. 

Finally, the successive volume variations of the dam reservoir 

were calculated by inputting the time series of water level and 

surface area into Heron's relation. Figure (5) showed the 

estimated subsequent volume variations of the Doroudzan Dam 

reservoir. 

 
Figure 5. Time series of volume variations from Heron's 

relation and in-situ data. 

The estimated time series of volume variations exhibited a high 

correlation of 95.27% with the in-situ volume variation time 

series. This high correlation underscores the optimal utilization 

of input parameters for Heron's equation, namely water level 

and surface area, and the enhanced capability of this equation to 

calculate volume variations accurately. 

The analysis results for the highest increase, highest decrease, 

and average variations of three parameters—water level, surface 

area, and volume of Doroudzan Dam—are presented in Table 2. 

Table 2. The greatest increase, the greatest decrease, and the 

average variations in the water level, surface area, and water 

volume. 

Parameter 

Water level 

variations 

(m) 

surface area 

variations 

(km2) 

Volume 

variations 

(mcm) 

Average 0.09 0.17 2.33 

Highest 

increase 
4.09 7.07 100.94 

Highest 

decrease 
-2.80 -2.22 -78.61 

 

According to Table 2, the highest increase in water level, 

surface area, and volume occurred with values of 4.09 meters, 

7.07 km2, and 100.94 million cubic meters (mcm) from March 

6, 2019, to April 2, 2019. This period typically experiences 

increased rainfall. Conversely, the most significant decrease in 

water level, surface area, and volume was observed from April 

29, 2019, to May 26, 2019, with values of 2.80 meters, 2.22 

km2, and 78.61 mcm, respectively. 

Additionally, Table 2 reveals the average water level, surface 

area, and volume increase over the entire study period. 

The correlation analysis conducted for the three parameters—

water level, surface area, and volume variations—revealed a 

correlation of 98.86% between water level and volume 

variations, 84.97% between water surface area and volume 

variations, and 87.23% between water level and water surface 

area variations. These results indicate a robust linear correlation 

among the three time series of variations in water level, surface 

area, and volume. Figure (6) visually presents the analysis 

results described in this section. 

 
Figure 6. Correlation analysis between variations in water level, 

surface area, and volume. 

 

4. DISCUSSION&CONCLUSION 

In this study, variations in water level, surface area, and volume 

of the Doroudzan Dam reservoir in Iran were investigated 

utilizing different missions of Copernicus satellites. The 

Sentinel-3A altimetry mission, the first to capture the entire 

globe in SAR mode with a footprint size of 300 meters along 

the track, was employed to monitor water levels. Additionally, 

Sentinel-2 mission images were utilized to monitor the water 

surface area of the dam reservoir concurrently with altimetry 

data. By inputting the water level and water surface area 

information into Heron's equation, the time series of volume 

variations for the dam reservoir were derived. The summarized 

results are as follows: 
1) The re-tracking of returned waveforms with the threshold 

algorithm using a 60% threshold improves accuracy by 1.3% 

and increases the correlation by 0.07% compared to the water 

level time series obtained from the OCOG re-tracker of Level-2 

(L2) data in comparison with the in-situ gauge. 

2) The evaluation and comparison of the time series of 

estimated surface areas from Sentinel-2 satellite imagery and in-

situ surface areas resulted in relative RMSE values of 5.39% 

and a correlation of 97.30%. These outcomes underscore the 

excellent and effective performance of the method employed for 

calculating the water surface area of Doroudzan Dam using 

optical images from the Sentinel-2 mission. 

3) The analysis conducted for the correlation between the three 

parameters of variations in water level, surface area, and 

volume revealed a 98.86% correlation between variations in 

water level and volume, 84.97% between variations in surface 

area and volume, and 87.23% between variations in water level 

and water surface area. 

4) The highest increase in water level, surface area, and water 

volume occurred with values of 4.09 meters, 7.07 km2, and 

100.94 mcm from March 6, 2019, to April 2, 2019, which 

typically experiences higher rainfall. Conversely, the most 

significant decrease in water level, surface area, and volume 

variations occurred from April 29, 2019, to May 26, 2019, with 

values of 2.80 meters, 2.22 km2, and 78.61 mcm, respectively. 

Furthermore, the results indicate an average increase in the 

water level, surface area, and volume of Doroudzan Dam during 

the study period. 
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The results of this study highlight the high capability and 

effective performance of various missions from Copernicus 

satellites in monitoring inland water bodies. Additionally, the 

study underscores the effectiveness of the methods employed to 

monitor volume variations in dam reservoirs. 
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