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ABSTRACT: Pedestrian pathfinding is crucial for enhancing pedestrian mobility in urban environments. In this research a method to 

generate navigation graphs based on Mobile Laser Scanning (MLS) and Handheld Laser Scanning (HMLS) data fusion is developed. 

The input data comprises a 2-kilometer urban street network that integrates both MLS and HMLS data, effectively mitigating sidewalk 

occlusions caused mainly by parked vehicles. The proposed method encompasses the following steps: (1) Deep Learning semantic 

segmentation of urban ground elements and navigation-related obstacles, (2) Static vs. Dynamic object differentiation to replicate 

conditions of unobstructed passage. (3) Sidewalk enrichment with inclination, preservation status, and width. (4) Physical accessibility 

estimation between sidewalks and crosswalks incorporating curb information. And (5) navigation graph computation based on the 

enhanced sidewalk data, crosswalks, with accurate node location and connections. Routes were calculated within a Geographical 

Information System, and results ensure that pedestrians can navigate in urban environments with precision and efficiency. 

 

 

1. INTRODUCTION 

Pedestrian mobility is a current challenge in urban areas, with 

various modes of transportation such as public transport (bus, 

tram, train), bicycles, and walking being common choices. 

Across Europe, transportation preferences vary widely by 

country, with some favouring vehicles while others prefer 

cycling or walking. Percentages of people who chose walking 

varied between 2% and 7% being Italy and Romania the countries 

with the higher rates and Poland the country with the lowest one 

(Eurostat, 2021). Despite available navigation applications, such 

as Google Maps, Bing Maps, Baidu Maps, there are challenges 

in efficiently managing routes, particularly in considering 

pedestrian accessibility. Sidewalks and crosswalks are often not 

taken into consideration in these applications, (Balado et al., 

2019). In addition, with the increase of intelligent transportation 

systems, pedestrians are vulnerable in traffic (Hamdani et al., 

2020; K. Liu et al., 2019). Therefore, the calculation of pedestrian 

navigable areas in urban environments is needed to obtain safer 

and more accessible routes. 

 

LiDAR technology is a valuable tool for improving mobility. 

Mobile Laser Scanning (MLS) technology is efficient for 

gathering extensive data, particularly for assessing road 

conditions while Handheld Mobile Laser Scanning (HMLS) 

provides an advantage by capturing data from the sidewalk's 

perspective, avoiding occlusions. However, MLS point clouds 

have limitations to construct navigation graphs. Point clouds are 

unstructured information, with noise, occlusions and strong point 

density variations, which must be processed in order to extract 

useful information (Yu et al., 2015). MLS data present occlusions 

in sidewalks, occurred by parked vehicles (Balado Frías et al., 

2020; Barros-Ribademar et al., 2022; Z. Liu et al., 2022), which 

can present problems in order to obtain the navigable pedestrian 

space. HMLS data also present unordered points, however this 

data can be used to complete the occlusions in MLS sidewalk 

point clouds. 

 

 
*  Corresponding author 

 

 

Graphs for pedestrian pathfinding have been generated for both 

indoor and outdoor spaces. In indoor environments, pathfinding 

primarily relies on the identification of doors and walls that 

delineate navigable spaces, as well as the clear floor areas 

without obstacles, which represent the navigable space. Flikweert 

et al., (2019) created an indoor navigation graph in a fast and 

automated way. They focused their research on door detection, 

being essential elements in an indoor environment. For their 

detection, 3D Medial Axis Transform (MAT) was used, 

combined with trajectory of the mobile laser scanner. (Nasir et 

al., 2014) studied pedestrians’ routing behaviours within an 

indoor environment under usual situations. A network-based 

method using Delaunay triangulation was adopted, and a utility-

based model employing dynamic programming was developed. 

They generated a sequence of waypoints for the pedestrian 

walking path using only structural definitions of the environment. 

Balado Frias et al., (2019) presented a methodology to enable the 

direct use of indoor point clouds as navigable models for 

pathfinding. They classified point clouds in horizontal and 

vertical elements according to inclination of each point respect to 

the neighbour. Point cloud regions classified as floor were 

rasterized to delimit navigable surface. A pathfinding method for 

an indoor drone based on a BIM-semantic model was proposed, 

(Chen et al., 2022). The semantic and geometric information in 

the BIM model was extracted and mapped to voxels to generate 

an indoor 3D map model called BI3DM for UAV pathfinding 

algorithm. 

 

In outdoor environments, (Gaglione et al., 2022) studied a 

methodology for classifying a neighbourhood as more or less 

accessible for the elderly to reach urban services. They applied 

the fuzzy technique to evaluate the security and urban context 

characteristics. The obtained weights were then used to calculate 

a walking attractiveness index for the elderly using a GIS tool. 

Results shown the areas that local decision-makers should 

prioritise to improve the safety and attractiveness of routes to 
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access urban services. The sidewalk network of the historic city 

of Sabbioneta (Italy) was produced starting from point cloud data 

in (Treccani et al., 2022). The point cloud was semantically 

segmented in roads and sidewalks. They compute sidewalk 

attributes to generate a vector layer composed of nodes and edges 

with a vectorization accuracy of 98.7%. The vector layer was 

then used to compute accessible paths between Points of Interest, 

using QGIS. Balado et al., (2019) presented a methodology for 

the use of MLS point clouds for direct pathfinding in urban 

environments. They applied heuristic methods to perform 

semantic segmentation of point clouds and generated synthetic 

data to avoid occlusions. They concluded posing that the method 

enables the automatic generation of dense graphs representing the 

navigable urban space. Balado Frias et al., (2020) presented a 

method to obtain pedestrian navigation maps considering shadow 

areas and physical accessibility areas. This information was 

overlapped by a raster process and Dijkstra’s algorithm. 

Accessible ways in cities were also studied in (Luaces et al., 

2021) with an information system that creates an accessibility 

data model by ingesting different data sources: OpenStreetMap 

for base map, LiDAR data for geometry, volunteer information 

from social networks (Twitter) for accessibility problems. 

 
Almost all the above-mentioned research used point clouds for 

pedestrian pathfinding and accessible routes. However, the way 

of dealing with point cloud limitations (occlusions, point density 

variations, and noise) generates very disparate navigation graphs 

to pedestrian mobility. Methods based on fixed nodes (located in 

corners, doors, etc.) imply a high dependency on identification of 

these geometries and oversimplify routes (loss of realism). 

Methods based on a grid-like distribution are not suitable for 

application in large urban areas, since computation time of 

pathfinding algorithms increases exponentially according to the 

number of nodes to be checked. In addition, many methods still 

rely on heuristic algorithms to identify navigable ground 

elements, or on AI algorithms limited by the number of samples. 

Moreover, methods using synthetic point clouds to regenerate 

occlusions are not faithful to reality since occlusions can hide 

barriers. 

 

This study entails the fusion of point cloud data, specifically 

MLS and HMLS data, aimed at addressing occlusion challenges 

within an urban context. Urban ground elements, including the 

road, sidewalk, and curb, are delineated utilizing Deep Learning 

(DL) techniques, and their accuracy is benchmarked against 

heuristic approaches. Subsequently, a navigation graph is 

formulated, adhering to the linear layout of sidewalks while 

integrating critical mobility-related attributes such as 

accessibility, slope, preservation status and width. The practical 

applicability of this approach is assessed through a real-world 

case study, spanning a 2-kilometer urban street network, via route 

calculations executed within a Geographical Information System 

(GIS) tool. 

       

This paper is organized as follows: Section 2 elaborates on the 

methodology employed in this study. Section 3 showcases the 

results obtained. Lastly, Section 4 concludes this work. 

 

2. METHOD 

The proposed method is based in four main steps, considering 

both Mobile Laser Scanning (MLS) and Handheld Mobile Laser 

Scanning (HMLS) point clouds as input data: 1) Semantic 

segmentation and occlusion correction, 2) Static/dynamic object 

recognition, 3) Sidewalk enrichment, 4) Graph generation for 

pedestrian pathfinding. Figure 1 shows the workflow. 

 

 
 

Figure 1. Workflow of the proposed method. 

 

2.1 Semantic segmentation and occlusion correction 

Point clouds are semantically segmented into navigation-relevant 

and comprehensive components. The initial step employs 

PointNet++ for the purpose of generating semantically 

segmented MLS and HMLS point clouds, categorized into eight 

classes: road, sidewalk, curb, building, car, vegetation, pole-like 

structures, and other entities. Subsequently, the road, sidewalk, 

and curb classes are isolated from the MLS dataset utilizing 

labeled data. Crosswalks 𝐿𝑛(𝐿𝑥, 𝐿𝑦, 𝐿𝑧) are identified within the 

road points, relying on their reflectivity attributes (Mi et al., 

2021). Given that the MLS system operates exclusively on the 

road surface, the road point cloud remains unobstructed by 

occlusions. Conversely, the presence of parked vehicles 

introduces occlusions in the MLS sidewalk point cloud. To 

mitigate these occlusions, HMLS sidewalk point clouds are 

leveraged, involving a comparative analysis of distances between 

the HMLS and MLS sidewalk point clouds. HMLS sidewalk 

points that do not align within a predefined threshold distance d 

with MLS sidewalk points are retained in the final dataset. 

 

Sidewalks, as the primary ground element for pedestrian 

navigation, demand improved segmentation to align with the 

needs of pedestrian map generation. The refinement specifically 

targets the removal of pavement outliers, reduction of redundant 

areas (from different scans), and enhancement of sidewalk 

individualization. The first step involves removing outlier points 

classified as sidewalks that hinder precise sidewalk delineation. 

These points are eliminated by measuring their distance from the 

vehicle trajectory. Points farther than a threshold t from the 

trajectory are identified as outliers and removed (see Figure 2.a 

and 2.b). Next, sidewalks are individualized based on MLS 

trajectory, resulting in a point cloud representing each sidewalk 

on both sides of the street (Figure 2.c). Lastly, small segments of 

sidewalks that have been incorrectly associated with other 

sidewalks are filtered out using a Density-Based Spatial 

Clustering of Applications with Noise (DBSCAN), (Singh & 

Meshram, 2017) (Figure 2.d and 2.e). Each sidewalk is then 

exported as a single point cloud 𝑆𝑛(𝑆𝑥, 𝑆𝑦, 𝑆𝑧). 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W9-2024 
GeoAdvances 2024 – 8th International Conference on GeoInformation Advances, 11–12 January 2024, Istanbul, Türkiye

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W9-2024-197-2024 | © Author(s) 2024. CC BY 4.0 License.

 
198



 

 
Figure 2. Sidewalk refinement 

 

2.2 Static/dynamic object recognition 

Sidewalks encompass not only fixed street furniture that can 

obstruct pedestrian passage, but also dynamic objects captured 

by MLS and HMLS that may not constitute actual obstacles. In 

the pursuit of generating more precise maps, a crucial step 

involves distinguishing between static and dynamic objects to 

eliminate sidewalk areas occupied by the latter. 

 

As MLS and HMLS surveys are conducted with a temporal gap, 

data fusion analysis plays a pivotal role in discerning static and 

dynamic objects. The process commences by considering the set 

of points classified as objects via PointNet++, (Qi et al., 2017), 

(encompassing categories such as vehicles, vegetation, poles, and 

others). Distances between the nearest neighbours in MLS and 

HMLS datasets are subsequently computed. Points are 

categorized as static objects when the distance between MLS and 

HMLS points falls below a predetermined threshold d. 

Conversely, dynamic objects are identified when the distance 

exceeds this threshold d. The static objects are then subjected to 

individualization through the DBScan algorithm, (Singh & 

Meshram, 2017), and their dimensions are evaluated, considering 

width and height 𝑏𝑊 × 𝑏𝐻 factors that significantly influence 

pedestrian navigation in accordance with ISO-21542 (ISO, 

2011).  

 

To recreate conditions conducive to unobstructed pedestrian 

passage, a buffer is applied to each object. This buffer effectively 

results in the removal of sidewalk points located within the buffer 

zone, thus optimizing the representation of the sidewalk space. 

 

2.3 Sidewalk enrichment 

Three significant factors concerning pedestrian mobility on 

sidewalks are taken into consideration: inclination (𝐼), 

preservation status (𝐶) and width (𝑊). The inclination (𝐼) value 

is derived through the normal 𝑁(𝑁𝑋, 𝑁𝑌, 𝑁𝑍) surface estimation 

of the k nearest neighbours (Equation 1). In the context of 

preservation (𝐶), a correlation with curvature is presumed to 

detect spalling and cracks, with curvature being computed from 

eigenvalues (𝜆1, 𝜆2, 𝜆3) (Equation 2) (Weinmann et al., 2015). To 

establish the width, the sidewalk is segmented into cross sections 

following the method proposed in (Balado Frias et al., 2017). 

Within each cross section, 𝑊 is determined as the distance 

between the nearest and farthest sidewalk points from the 

trajectory (Equation 3). As a result, each point is assigned an 

attribute for each feature, which is finally exported as a point 

cloud.  

 
𝐼 = |𝑎𝑡𝑎𝑛𝑔

√𝑁𝑋
2 − 𝑁𝑌

2

𝑁𝑍
| (1) 

 
𝐶 =

𝜆3

𝜆1 + 𝜆2 + 𝜆3
 

 

(2) 

 
𝑊 = 𝑌𝑚𝑎𝑥 − 𝑌𝑚𝑖𝑛 (3) 

 

2.4 Graph generation for pedestrian pathfinding 

The process of generating the graph relies on the selection of 

nodes situated on sidewalks and crosswalks, followed by the 

establishment of connections between these nodes and 

subsequent accessibility analysis. The input data for this process 

comprises the following components: 

 

• Individualized sidewalks point clouds 𝑆𝑛 =

(𝑆𝑥, 𝑆𝑦, 𝑊, 𝐼, 𝐶) 

• Individualized crosswalks point clouds 𝐿𝑛 = (𝐿𝑥 , 𝐿𝑦) 

• Curb point cloud 𝐾 = (𝐾𝑥, 𝐾𝑦) 

Sidewalk point clouds encompass pertinent information 

regarding the inclination (I), preservation status (C), and width 

(W) of each point. Additionally, curb data plays a crucial role in 

the computation of accessibility from sidewalks to crosswalks, 

with a particular focus on accommodating individuals with 

reduced mobility. 

 

The initial step for graph generation involves the utilization of 

Principal Component Analysis (PCA) on the sidewalk point 

cloud data to ascertain the forward direction. Following this 

determination, a grid with a cell size g is superimposed along this 

forward direction to estimate the count of sidewalk nodes. 

Subsequently, the central point of each grid cell is employed to 

generate sidewalk nodes and associate the pertinent point cloud 

attributes (𝑊, 𝐼, 𝐶) with each node. 

 

The attributes inclination I and preservation C are assigned as the 

respective averages within the grid cell. As for the attribute width 

W, it is determined as the minimum width among the points 

linked to each node, signifying the most constricted pedestrian 

space at that point. Furthermore, two nodes are created at the 

boundaries of the forward direction to ensure seamless 

connectivity with the nearest crosswalks, thus facilitating 

accessibility analysis. 

 

To handle crosswalk data, the DBScan algorithm is applied 

individually to each crosswalk's mark. Following this clustering, 

the centroid of each marking is computed, along with the 

calculation of the azimuth between consecutive nodes. In the 

final representation, each crosswalk is represented by a single 
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central node, and additional nodes are introduced at each 

extremity of the forward direction.  

 

The connectivity between sidewalk and crosswalk nodes is 

established based on their proximity and alignment with the 

forward direction. Nodes that deviate significantly from the main 

direction are identified as outliers and subsequently removed 

from the graph to ensure the accuracy of the representation. 

 

Finally, the physical accessibility of crosswalks is assessed based 

on curb information. Each entry/exit side of the crosswalks is 

discretized into cells with dimensions 𝑔𝑐 × 𝑔𝑠 in the main 

direction of the crosswalk and the sidewalk, respectively. The 

assessment is conducted by evaluating whether there are enough 

cells devoid of curb points to ensure the existence of a clear and 

unobstructed passage space in accordance with the ISO-21542 

standard. If an adequate number of free cells is found, the edge 

corresponding to that entry/exit side of the crosswalk is marked 

as accessible, Figure 3. This determination contributes to the 

accurate representation of the physical accessibility of 

crosswalks in the generated graph. 

 

 

Figure 3. Accessibility analysis. 

 

3. RESULTS 

3.1 Case study 

This method was tested in a 2-kilometer urban street network 

sited in Santiago of Compostela (Spain), which contains MLS 

and HMLS data. A Riegl VUX-1HA MLS scanner was used to 

acquire the point clouds from a car perspective and the HMLS 

ZEB GO scanner was also used to scan the urban environment 

from a pedestrian perspective. Technical characteristics are 

summarized in Table 1. More information of Santiago Urban 

Dataset (SUD) is available on (González-Collazo et al., 2024). 

 

The proposed method was executed according to the following 

parameters: 

• Threshold 𝑑 to fusion sidewalks and detect dynamic 

objects was set according to MLS and HMLS point 

cloud registration errors.  

• Threshold 𝑡 = 10 m empirically to delimit and individ-

ualize sidewalks. 

• Buffer of height 𝑏ℎ = 2.2 m and width of 𝑏𝑤 = 0.4 m 

around static objects according to ISO-21542. 

• Sidewalk width was calculated at cross sections of 1 

m.  

• Curvature and inclination were calculated based 𝑘 =

25 neighbours, (Weinmann et al., 2015).  

• Sidewalks nodes were obtained with a distance 𝑔 =

 5 𝑚. 

• Each entry/exit side of the crosswalks was meshed 

with cells 𝑔𝑐 × 𝑔𝑠, being 𝑔𝑐 = 1 𝑚 and 𝑔𝑠 = 10 𝑐𝑚. 

 

 Riegl VUX-1HA ZEB-GO 

Field of view 

(vertical/horizontal) 
360º full circle 270º/360º 

Angular resolution 

(vertical/horizontal) 
0.001º 1.8º/0.625º 

Range (m) 1.2-420 30 

Accuracy (mm) 5 10 - 30 

Pts/s Up to 1,000,000 43,200 

Wavelength (nm) Near infrared 905 

Weight (kg) 3.75 1 

 

Table 1. Technical characteristics of Riegl VUX-1HA and 

ZEB-GO 

 

3.2 Semantic segmentation of ground elements 

PointNet++ model was tested on the dataset as baseline approach. 

The parameters used for the pre-processing and training of 

PointNet++ were: 

• Random cube size: 10 m per point cloud 
• Random Rotation: Z axis 
• Random sampling: 32768 points 

• Scale data: [0,1] 

• Epochs: 2000 
• Batch size: 2 

• Optimizer: Adam 
• Learning Rate: 0.001 

• Batch norm. momentum: 0.9 

The quantitative results in the streets designated as test according 

to SUD are shown in Table 2 in comparison with algorithm 

published in (Balado Frias et al., 2017). The accuracies of the 

ground elements were very similar with both methods, however, 

PointNet++ errors corresponded to a noise-like error while the 

Balado Frias et al., (2017) errors affect entire zones thus breaking 

the connectivity of the navigation graph. The Balado Frias et al., 

(2017)  algorithm could not be applied to the HMLS data because 

it relies on the existence of curbs to segment ground elements, 

while curbs were not captured from the perspective of the HMLS 

sensor. The processing time with (Balado Frias et al., 2017) 

algorithm was 12 m/min while with PointNet++ the time 

processing is 7 m/min, obtaining more classes.  

 

The results from PointNet++ proved to be of sufficient quality 

for integration into the proposed methodology. Sidewalks were 

correctly completed with data from both scanners (MLS and 

HMLS), Figure 4.b, while curb points were obtained with some 

noise in the space of sidewalks, Figure 4.a. 
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   Road Sidewalk Curb Building Vehicles Vegetation Poles Others 

(Balado Frias et 

al., 2017) MLS 
93.71% 78.79% 63.44%      

PointNet MLS 90.83% 75.58% 64.14% 94.95% 83.12% 81.19% 57.10% 23.31% 

PointNet HMLS 62.20% 70.31% 0.00% 94.95% 63.91% 78.56% 61.75% 51.69% 

Table 2. Accuracies using PointNet++. 

 

 

Figure 4. Semantic segmentation: a) Curbs and crosswalks, b) 

Sidewalks, c) Dynamic objects, d) Static objects 

3.3 Dynamic and static objects 

Static and dynamic elements were extracted from vehicles, 

vegetation, pole-like elements and other classes, computing 

distances between MLS and HMLS point clouds. The application 

of this method to the whole area may induce errors, e.g., vehicles 

scanned from different perspectives may be assumed to be 

dynamic objects. However, parked vehicles do not have influence 

on the navigation, due to the are not placed in the navigable 

space. As far as its application directly on the sidewalk is 

concerned, 91.6% correct detection of static objects (Figure 4.d) 

was obtained, and no dynamic object (Figure 4.c) was wrongly 

classified as static. Also, noise points were removed from static 

objects, being were classified as dynamic objects. 

 

3.4 Sidewalk enrichment 

Following the enrichment of the sidewalks, each segment was 

further subdivided into 1-meter sections for compute inclination, 

curvature and width values. Across almost all segments, 90% of 

points were within an inclination value between 0º and 15º.  

 

Example of enriched sidewalk is shown in Figure 5. In Ramón 

Cabanillas Street (200 meters), most points exhibit inclinations 

between 0º and 6º. The sidewalks also presented low values of 

local curvature ranging from 0 to 0.32, indicating favourable 

conditions. In Frei Rosendo Salvado Street (200 meters), most 

points had curvature values below 0.05. 

 

Width values were between 1.3 meters and 9.5 meters. The 

widest segments include points of road or building entrances, 

which were misclassified as sidewalks. However, such 

occurrences were isolated, with approximately 10 instances 

across the entire urban street network. The widest sections were 

typically found at sidewalk corners, while medium width values 

fall within the range of 3 to 6 meters. Fernando III Street 

exemplified width results.   
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Figure 5. Sidewalk point cloud enrichment: a) Inclination in 

Ramón Cabanillas Street, b) Curvature in Frei Rosendo Salvado 

Street, c) Width in Fernando III Street. 

3.5 Graphs 

The graphs were visually represented by connecting lines 

between sequential nodes. Both nodes and lines were stored in 

the shapefile format. Each line contained the class (sidewalk, 

crosswalk or connection sidewalk-crosswalk), and physical 

accessibility for persons with reduced mobility. Lines connecting 

sidewalk nodes also included data on inclination, curvature, and 

width values. Accessibility values in sidewalk-crosswalks were 

assigned depending on the presence or absence of curbs. A value 

of 1 signifies accessible for persons with reduced mobility, 

whereas a value of 0 denotes no accessible.  

The open-source software QGIS was employed for visualizing 

the results and conducting various tests. Given that the case study 

is located in Santiago de Compostela, the chosen coordinate 

system was ETRS89/UTM ZONE 29. The outcomes for sidewalk 

and crosswalk nodes are shown in Figure 6.a and Figure 6.b. The 

final number of nodes obtained in the pedestrian graph was 991 

(835 sidewalk nodes and 156 crosswalk nodes) for the 2-

kilometer urban street network. 

 

 
Figure 6. Graph generation: a) crosswalk nodes, b) sidewalk 

nodes, c) Pedestrian graph with example route 
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After generating the final graph, a route was computed using the 

Network analysis plugin in QGIS, as illustrated in Figure 6.c. An 

initial and final point were designated, and subsequently, the 

optimal route was determined based on the graph while 

considering the pedestrian crossings. This resulted in a route 

covering 625 meters, encompassing 160 nodes. The estimated 

time required to traverse this route was 7 minutes and 30 seconds, 

considering an average pedestrian speed of 5 km/h. In the method 

presented in (Balado et al., 2019), 140 nodes were counted within 

every 10 meters, while in the present method 2 nodes were 

represented for each 10 meters, which leads to reduce 

computation time. 

 

Although several issues were addressed, it is important to note 

that the effectiveness of the proposed method is strongly tied to 

the quality of the input data. Notably, anomalies were identified 

during the evaluation, including a single gap within a sidewalk 

and four instances where sidewalk graphs erroneously 

overlapped with the road. These discrepancies can be largely 

attributed to misclassified data points when using PointNet++, 

emphasizing the importance of data quality and preprocessing in 

the graph generation process. 

 

 

4. DISCUSSION AND CONCLUSIONS 

This research introduces an innovative method for the precise 

generation of pedestrian navigation maps using MLS and HMLS 

point cloud data. The study employed a 2-kilometer urban street 

network dataset obtained from Santiago de Compostela (Spain) 

as input. This dataset underwent semantic segmentation via the 

PointNet++ algorithm, categorizing it into eight classes, which 

included road, sidewalk, curb, building, vehicle, vegetation, 

pole-like structures, and other entities. The key innovation lies in 

the effective utilization of both MLS and HMLS data to address 

sidewalk occlusions resulting from parked vehicles and to 

differentiate between static and dynamic objects. This 

differentiation significantly enhances the accuracy of pedestrian 

pathfinding, ensuring that navigable areas are accurately 

identified and represented. The method not only provides clear 

sidewalks free for pedestrian transit but also enriches them by 

calculating three essential features: inclination, the preservation 

status and the width. 

 

Following the proposed method, an accurate and comprehensive 

pedestrian graph was successfully generated, featuring 

interconnected nodes representing sidewalks and crosswalks. 

Each node was automatically generated and annotated with its 

typology, and physical accessibility information. The pathfinding 

functionality embedded within the system enables pedestrians to 

effortlessly search for the shortest route by specifying their 

starting position and desired destination. This feature enhances 

the usability and practicality of the generated graph, facilitating 

efficient navigation for pedestrians in urban environments. 

 

The outcomes significantly rely on the precision of the utilized 

DL architecture. As part of future work, alternative architectures 

will undergo testing, considering their respective specifications. 

Furthermore, the proposed method will be extended to compute 

public transportation graphs (bus, bike-sharing, and taxi). 

Additionally, there is potential for enhancing pathfinding 

algorithms by incorporating more characteristics (shadowy, 

luminosity, greenery, or other services).  
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