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ABSTRACT: 

 

Convolutional Neural Networks (CNNs) have been widely recognized for their efficacy in image analysis tasks. This paper investigates 

the application of the 1D-CNN variant CNNs for the semantic segmentation of urban point clouds obtained through Mobile Laser 

Scanning. Ten well-known local geometric features of point clouds were used as input for the 1D CNN. Through an empirical analysis 

on the Santiago Urban Dataset, the 1D CNN was optimized in terms of numbers of convolution layers, neurons, pooling layers, dropout 

layers, dense layers, training epochs, and batch size. The performance of the proposed 1D CNN was compared with Support Vector 

Machine (SVM), Random Forest (RF), and PointNet++. Despite demonstrating a F1-score weighted at 70.3%, outperforming SVM 

but slightly lagging RF (71.6%) and significantly trailing PointNet++ (90.3%), the proposed 1D-CNN showcases a cost-effective 

potential for the segmentation of road and building classes. The relative computational requirements of the models were also discussed, 

highlighting the practical advantages and limitations of each approach. 

 

 

1. INTRODUCTION 

Artificial Neural Networks (ANNs) are one of the oldest Machine 

and Deep Learning technologies and have been in use for over 60 

years (Kurzweil, 2000). During this period, ANNs have proven 

to be effective in a wide range of classification and regression 

tasks. However, as the volume of data and task complexity 

increased, ANNs started encountering challenges in achieving 

optimal performance (Hoang et al., 2021). 

 

Convolutional Neural Networks (CNNs) emerged as an 

alternative to ANNs (Chen et al., 2021). CNNs were specifically 

designed to operate with images and other types of spatial data. 

CNNs employ convolutional layers to extract relevant features 

from input data. This approach has proven to be highly effective 

in multidimensional tasks such as image classification, object 

detection, and semantic segmentation (Kattenborn et al., 2021). 

 

In addition to traditional CNNs optimized for planar and spatial 

data, there exists a distinct variant known as 1D-CNN. Unlike 

their 2D and 3D counterparts, 1D-CNNs are tailored for 

processing one-dimensional sequential data (Kiranyaz et al., 

2021), such as time series, audio signals, and text data. 1D-CNNs 

employ convolutional layers and other architectural adaptations 

specifically suited to sequential data features. This specialization 

offers an alternative avenue for handling value-based ML 

methods (including ANNs), allowing for the effective analysis 

and extraction of features from temporal and sequential data 

sources (Ozcanli and Baysal, 2022).  

 

The objective of this work is to analyse 1D-CNN as a more 

effective alternative to ML classifiers when applied to point 

cloud processing. The research entails the selection and 

extraction of ten geometric point cloud features, the design, and 

optimization of a 1D-CNN network for semantic segmentation of 
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an urban point cloud scanned using Mobile Laser Scanning 

(MLS) technology. 

 

The reminder of this paper is structured as follows. In Section 2, 

works on semantic point cloud segmentation are compiled. The 

proposed method is explained in Section 3. Section 4 is dedicated 

to present the experiments. Sections 5 concludes this paper. 

 

 

2. RELATED WORK 

2.1 Machine Learning approaches with feature extraction 

Machine learning (ML) has revolutionized, among other fields, 

point cloud semantic segmentation. Feature extraction in this 

context involves identifying relevant characteristics or attributes 

from these points to enable accurate object recognition and 

classification. Feature extraction is a process highly dependent 

on the prior knowledge of the developer. ML in point clouds has 

been employed in many applications and scenarios. In (Rashdi et 

al., 2023), a Support Vector Machine (SVM), a Random Forest 

(RF) and an Artificial Neural Network (ANN) are compared with 

two MLS point cloud data in an urban environment, concluding 

RF reaches the highest accuracies. In (Grilli et al., 2019), a RF 

and the OvO classifier are applied to classified the Temple of 

Neptune (Paestrum) in ten classes, obtaining an average of the 

F1-score values of each class of 91.92% with the RF and a 

91.43% with the OvO classifier. Furthermore, there is more 

specialized research focusing on the distribution of geometric 

features. In Atik et al., (2021) the classification performance of 

different ML algorithms in multiple geometric scales was 

evaluated. The geometric features were generated based on the 

eigenvalues of the covariance matrix. Eight supervised 

classification algorithms were tested in four different areas from 

three datasets. Considering different areas, they obtained 
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accuracies of 93.12% with RF, 92.78% with a Multilayer 

Perceptron algorithm, 79.71% with SVM and a 97.30% with 

Linear Discriminant Analysis. In the (Balado et al., 2023), a 

distribution model based on a Klemperer rosette is contrasted 

with conventional approaches that rely on search radius and the 

number of nearest neighbours, concluding that the information 

provided by the nearest points is the most influential and 

significant for the given context. 

 

2.2 Deep Learning approaches with feature extraction 

Although Deep Learning (DL) applications tend to be thought of 

as an end-to-end approach, there are numerous applications that 

implement a feature extraction phase to guide the NN during 

training and prediction. Exhaustive review on DL with 3D data 

can be found in (Liu et al., 2019; Bello et al., 2020; Guo et al., 

2021). DL with feature extraction approach offers an efficient 

compromise, initiating from 3D data while enabling the 

extraction of complex features and the utilization of NN 

architectures originally designed for different data formats. In 

(Paz Mouriño et al., 2021), geometric features are harnessed to 

produce synthetic colour images derived from MLS urban data. 

These images are then subjected to semantic segmentation using 

a 2D CNN Reset. In (Balado et al., 2020), rasterized images of 

the point cloud are integrated with images of real-world objects 

obtained from Google Images to facilitate the classification of 

indoor furniture. Nonetheless, as in ML, the efficacy of feature 

extraction remains contingent upon the developer's expertise and 

domain knowledge. 

 

2.3 End-to-end DL approaches  

After the first architecture designed specifically for point cloud, 

PointNet (Qi et al., 2017a), other approaches have proven 

effective in processing and extracting valuable insights from 

these complex point cloud datasets, such as RandLA-Net (Hu et 

al., 2020) or PointCNN (Li et al., 2018). In the context, a DL 

framework for point cloud segmentation was introduced by 

(Pierdicca et al., 2020). This framework enhances the Dynamic 

Graph Convolutional Neural Network (DGCNN) by 

incorporating meaningful features such as normals and colours. 

The authors applied this method to Architectural Cultural 

Heritage and compared it with other neural networks, including 

DGCNN (Wang et al., 2019), PointNet (Qi et al., 2017a), 

PoinNet++ (Qi et al., 2017b) and PCNN (Johnson and Padgett, 

1999). For the semantic segmentation of industrial point clouds, 

(Yin et al., 2021) proposed a new deep learning-based approach 

called ResPointNet++. Their methodology involved a dataset 

comprising 80 million points, labelled with five classes. 

Remarkably, they achieved an overall segmentation accuracy of 

94% and a mean Intersection over Union (mIoU) of 87%, 

surpassing the performance of PointNet++. Nevertheless, end-to-

end DL approaches necessitate extensive training datasets, which 

may not be easily obtainable in some environments, e.g. train 

stations (Lumban-Gaol et al., 2021). 

 

2.4 Contribution 

In this work, a DL not end-to-end solution is presented and 

studied with an initial stage of feature extraction followed by the 

design and implementation of a 1D CNN to relate complex 

features. Furthermore, the proposed 1D CNN will be compared 

with other state-of-the-art ML modes (SVM and RF) and with 

end-to-end approach based on PointNet++. 

3. MATERIALS AND METHODS 

3.1 Data 

The data utilized in this study originate from the Santiago Urban 

Dataset (González-Collazo et al., 2024). The urban area was 

scanned using an MLS Riegl VUX-1HA. Street K was used for 

training and validation purposes. Due to the imbalanced nature of 

the class distribution, after feature computation, 20000 samples 

per class were randomly selected for training and validation. 

Street F and M were entirely reserved for testing. The target 

classes encompassed 8 categories: road, sidewalk, curb, building, 

vehicle, vegetation, pole, and other. 

 

3.2 Feature extraction 

The number of features defines the size of the input layer of the 

1D CNN. Recent works have shown that using too many features 

can be counterproductive for the AI algorithm (Weinmann and 

Weinmann, 2019), so in this work only 10 features related to the 

eigenvalues, the surface normals and radius are selected with a 

neighbourhood k = 25 nearest neighbours. 

 

To calculate eigenvalues from a point cloud 𝑃(𝑃𝑋𝑃𝑌𝑃𝑍) the 

covariance matrix S is needed. Covariance matrix summarizes 

how the data points vary together in three-dimensional space. The 

covariance between two points 𝑃𝑖 with 𝑃𝑋𝑃𝑌𝑃𝑍 coordinates is 

calculated as: 

𝑆 =  
1

𝑘 + 1
∑(𝑃𝑖 − �̅�)(𝑃𝑖 − �̅�)𝑇

𝐾

𝑖=0

= 0 (1) 

 

With the covariance matrix S, the eigenvalues (λ) are calculated 

following equation (2). The three eigenvalues represent the 

spread of data along the three principal axes of variation in the 

point cloud. The eigenvalues are typically sorted in descending 

order, so λ1 ≥ λ2 ≥ λ3 ≥ 0. 

 

𝑑𝑒𝑡(𝑆 − λI) = 0 (2) 

 

From the eigenvalues (λ1, λ2, λ3), the surface normals 
(N𝑋, 𝑁𝑌, 𝑁𝑍) and the radius r, the following 10 features are 

estimated (Weinmann et al., 2015) with equations (3 to 12):  

 

𝑎𝑛𝑖𝑠𝑜𝑡𝑟𝑜𝑝𝑦 𝐴λ =  
λ1 − λ3

λ1
 (3) 

𝑒𝑖𝑔𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝐸λ =  − ∑ 𝑒𝑖ln (𝑒𝑖)

3

𝑖=1

 (4) 

𝑒𝑖𝑔𝑒𝑛𝑠𝑢𝑚 Σλ = λ1 + λ2 + λ3 (5) 

𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 𝐶λ =  
λ3

(λ1 + λ2 + λ3)
 (6) 

𝑜𝑚𝑛𝑖𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑂λ =  √λ1λ2λ3
3

 (7) 

𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑡𝑦 𝐿λ =  
λ1 − λ2

λ1
 (8) 

𝑝𝑙𝑎𝑛𝑎𝑟𝑖𝑡𝑦 𝑃λ =  
λ2 − λ3

λ1
 (9) 

𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑖𝑡𝑦 𝑆λ =  
λ3

λ1
 (10) 

𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙𝑖𝑡𝑦 𝑉𝑁 =  1 − |𝑁𝑍| (11) 

𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝐷𝑟 =  
3(𝑘 + 1)

4𝜋𝑟3
 (12) 
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3.3 1D CNN architecture definition and training 

In the examination of 1D CNN architectures, certain 

hyperparameters are held constant across all tests. This decision 

is grounded in the extensive research conducted by the authors in 

previous works, which has established nearly standardized values 

for many hyperparameters. The unchanging hyperparameters are 

itemized in Table 1 for reference.  

 

Hyperparameter Value 

Learning rate 0.001 

Optimizer Adam 

Regularization method Dropout 

Dropout 0.3 

Activation method (conv) RelU 

Kernel size (conv) 3 

Kernel size (pool) 2 

Strides (conv) 1 

Strides (pool) 2 

Table 1. Fixed hyperparameters. 

 

The optimization effort of the CNN architecture focuses on the 

selection of the number of convolutional layers, neurons, pooling 

layers and dropouts, and on the training (number of epochs and 

batch size). The selection was experimentally conducted by 

training and validating the network with 5000 samples per class 

on the weighted F1-score results. 

 

3.3.1 The convolutional layer plays a pivotal role in reducing 

the number of parameters within the neural network while 

efficiently extracting essential features. In this layer, a small 

weight matrix, referred to as a kernel or filter, is systematically 

moved across the input data. At each position during this process, 

a computation involving multiplication and summation takes 

place within specific regions of the feature map. The outcome of 

these operations yields a novel feature map that accentuates 

distinct patterns or attributes within the 1D input vector. The 

convolutional layers also govern the network's depth and its 

ability to capture intricate data relationships. The number of 

selected convolutional layers is 8, as it yielded the highest F1-

weighted score (Figure 1).  

 

3.3.2 The number of neurons in each layer (hidden units) 

governs the complexity and the network's capacity to capture 

patterns in the data. The convolutional layers have 256 and 512 

neurons, as determined by the configuration that resulted in the 

highest F1-weighted score (Figure 2). 

 

3.3.3 The pooling layer is employed to diminish the spatial 

dimensions of the input representation, consequently reducing 

the quantity of parameters and computational workload in the 

network. This reduction layer applies an aggregation function 

over a rectangular region of the input, using the maximum 

function (max-pooling) in this case, to derive a single value 

representing that specific area. Three pooling layers have been 

selected, as they yielded a slightly higher F1-weighted score 

compared to other configurations (Figure 3). 

 

 

 

 

 

3.3.4 The dropout layer involves randomly deactivating a 

fraction of neurons during each training iteration, to identify 

redundant patterns in the data, thereby mitigating overfitting. 

Dropout has proven to be effective across a spectrum of tasks and 

neural network architectures, including CNNs, owing to its 

enhanced resilience and adaptability. Its ability to enhance 

generalization and overfitting has been validated in numerous 

applications (Srivastava et al., 2014). In this architecture, only 

one dropout layer is chosen, as it delivers the highest F1-

weighted score (Figure 4). 

 

 

Figure 1. F1-score according to number of convolutional layers. 

 

 

Figure 2. F1-score according to number of neurons. 

 

 

 

Figure 3. F1-score according to number of pooling layers. 
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Figure 4. F1-score according to number of dropouts. 

 

 

Figure 5. F1-score according to batch size for 70 epochs. 

 

 

Figure 6. F1-score according to batch size for 100 epochs. 

 

 

Figure 7. F1-score according to batch size for 200 epochs. 

 

 

3.3.5 The dense layer, also known as a fully connected layer, 

is a type of layer in which each node or unit in the previous layer 

is connected to every node in the current layer, receiving input 

from all the outputs of the previous layer. The dense layer is 

particularly valuable for classification and prediction tasks 

because it enables the neural network to discover nonlinear 

relationships between input data and output labels. The dense 

layer is positioned at the end of the CNN architecture and 

comprises as many neurons as there are predicted classes. 

 

3.3.6 To determine the number of epochs and batch size, a 

series of training experiments with their respective validations 

are conducted, varying the number of epochs (up to 200) and 

batch size (ranging from 8 to 1024). Training runs with a low 

number of epochs were disregarded due to their inferior 

performance when compared to the results obtained for 70 

epochs (Figure 5), 100 epochs (Figure 6), and 200 epochs (Figure 

7). An excessively high number of epochs leads to a notable 

increase in processing time without a significant improvement in 

the F1-weighted score. Furthermore, the batch size refers to the 

quantity of samples that can be concurrently processed by the 

CNN and is constrained by the available computer memory 

(RAM or GPU). Given these considerations, a compromise 

solution was reached by selecting 100 epochs for the final 

training and a batch size of 64, even though it may not yield the 

highest F1-weighted score configuration. 

  

Table 2 enumerates the architecture and hyperparameters derived 

from empirical experimentation.  

 

Hyperparameter Value 

Layers (conv) 4+4 

Neurons 256-512 

Layers (pool) 3 

Layer (dropout) 1 

Epochs 100 

Batch 64 

Table 2.  Experimental hyperparameters.  

 

4. RESULTS AND ANALYSIS 

4.1 Training performance 

Table 3 presents the training results on the validation set. Both 

the SVM and the 1D CNN exhibited underfitting and were unable 

to capture the complexities of the urban environment data. This 

underfitting is primarily attributed to the simplicity of the SVM 

and the 1D CNN, as the RF managed to achieve a better fit with 

the same samples. Additionally, an increase in the number of 

samples leaded to an improvement in the results of the SVM, but 

not of the 1D CNN, as no significant increase was observed when 

transitioning from 5000 to 20000 samples per class. Conversely, 

the RF displayed clear overfitting (reaching 100% F1-score), 

which will be confirmed in the following Section 4.2, because RF 

exhibited a F1-score reduction on the test set. 

 

 F1-weighted  

SVM 40.0% 

1D CNN 68.8% 

RF 100% 

 

Table 3.  Validation results during training.  
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 Road Sidewalk Curb Building Vehicle Vegetation Pole Other Weighted 

SVM 58.1% 19.9% 1.4% 30.1% 0.0% 37.9% 2.3% 0.0% 31.8% 

1DCNN 76.6% 53.6% 4.8% 77.2% 45.3% 47.1% 8.6% 5.5% 70.3% 

RF 82.9% 51.7% 4.7% 77.2% 46.7% 47.7% 9.4% 5.4% 71.6% 

PointNet++ 90.8% 75.6% 64.1% 95.0% 83.1% 81.2% 57.1% 23.3% 90.3% 

 

Table 4.  F1-score comparison in the test set by class and weighted by the number of samples. 

 

 
Figure 8. Street F on test set coloured by class (one facade removed to improve visualization). 

 

 
Figure 9. Street M on test set coloured by class (one facade removed to improve visualization). 

 

4.2 Quantitative and qualitative comparison 

The comparison of F1-scores per class for the application of 

SVM, RF, 1D CNN, and PointNet++ is illustrated in Table 4, 

alongside the F1-score weighted with the sample number. Similar 

F1-score values were observed between 1D CNN and RF, despite 

the substantial disparities in the training. SVM achieved a notably 

low F1-weighted (31.8%). PointNet++ attained the best result 

with a F1-weighted of 90.3%. However, PointNet++ was trained 

with all the SUD samples, except those of test, without limiting 

itself to 20000 samples per class as in the other classifiers. 

 

The performance of 1D CNN and RF was highly comparable, 

even identical for the buildings class. However, 1D CNN 

exhibited superior performance exclusively in segmenting 

sidewalks and curbs, whereas RF excelled in the segmentation of 

roads, vehicles, vegetation, and poles. Overall, the behaviour of 

1D CNN displayed typical traits of ML algorithms, with 

outcomes heavily favouring classes with larger sample sizes over 

those with fewer samples. Notably, PointNet++ demonstrated 

significantly superior results across all classes. 
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Figures 8 and 9 depict segments of streets F and M, utilized 

during the testing phase. Substantial disparities in the point 

distribution between the 1D CNN and RF results were not 

discernible. Both models exhibit confusions primarily pertaining 

to the accurate differentiation between road and sidewalk 

segments, misclassification of tree trunks as poles, the erroneous 

classification of lower building sections as other entities, and the 

misattribution of vegetation points to the building boundaries.  

 

4.3 Computing time 

Two different computers were used for training and testing: 

• Computer 1: CPU Intel Core i5-1135G7 with 8GB 

RAM and GPU Intel Iris Xe Graphics.  

• Computer 2: CPU Intel Core i7-10750H with 16GB 

RAM and GPU Nvidia RTX2060 Mobile. 

 

The training durations are documented in Table 5. Notably, the 

SVM model exhibited the lengthiest training period, coinciding 

with its comparatively suboptimal performance outcomes. 

Conversely, the RF and 1D CNN models featured similar training 

times. PointNet++ model necessitated a longer training period, 

spanning a total of 24 hours. However, this extended training 

duration was conducted on a significantly more potent 

computational infrastructure and with an expanded dataset 

sample size. The RF and 1D CNN exhibited efficient training 

times and relatively comparable performance while PointNet++, 

while requiring a more extended training period, showcased its 

capabilities when executed on a substantially powerful 

computing platform and a larger dataset.  

 

Computer Samples AI Model Training time 

1 160k SVM 40 hours 

1 160k RF 10 hours 

1 160k 1D CNN 9.4 hours 

2 143M PointNet++ 24 hours 

Table 5.  Training times.  

 

4.4 Discussion 

Although promising, the results obtained with the 1D CNN did 

not meet expectations and even failed to outperform RF, a 

benchmark Machine Learning technique. While the proposed 1D 

CNN demonstrated effective segmentation capabilities for 

building and road classes, slightly better values were achieved 

with RF, without the need to invest time in configuring the 

numerous parameters required for 1D CNN optimization. 

Additionally, training times of 1D CNN and RF were similar. 

 

Regarding the comparison between the 1D CNN and PointNet++, 

the 1D CNN (and the RF) demonstrated the feasibility of training 

on computers with limited computational resources. In contrast, 

the implementation of PointNet++ required more robust 

computational (graphic) resources and a longer training time. 

However, the results obtained with PointNet++ were close to the 

reference data, affirming that point Neural Networks are more 

effective for accurately segmenting point clouds in urban areas 

than other ML methods. 

 

 

5. CONCLUSION AND FUTURE WORK 

In this work, a 1D Convolutional Neural Network was designed 

for segmenting urban point clouds acquired through Mobile 

Laser Scanning. Ten well-known local geometric features of 

point clouds were used as input for the 1D CNN. Optimal 

numbers of convolution layers, neurons, pooling layers, dropout 

layers, dense layers, training epochs, and batch size were 

empirically selected. The proposed 1D CNN was trained and 

tested using data from the Santiago Urban Dataset, and compared 

with Support Vector Machine, Random Forest, and PointNet++. 

 

The 1D CNN exhibited a F1-score weighted of 70.3%, notably 

superior to SVM (31.8%), slightly lower than RF (71.6%), and 

significantly behind PointNet++ (90.3%), even though 

PointNet++ was trained with a much larger dataset. The 1D CNN 

proved to be a cost-effective solution for segmentation, primarily 

for road and building classes, compared to end-to-end Deep 

Learning methods such as PointNet++, but RF also demonstrated 

similar behaviour without require tedious parameter selection. 

 

Future work will consider the use of post-processing techniques, 

such as morphological filtering, to enhance the coherence and 

precision of segmentations, particularly in areas where both the 

1D CNN and RF exhibit weaknesses. 
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