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ABSTRACT: 

 

Cities worldwide are attempting to be claimed as smart, but truly classifying as such remains a great challenge. This paper aims to 

use artificial intelligence AI to classify the smart city's performance as well as the factors linked to it. This is based on the 

perceptions of residents on issues related to structures and technology applications available in their cities. To achieve this goal, the 

study included 200 cities worldwide. For 147 cities we captured the perceptions of 120 residents in each city, by answering a survey 

of 39 questions evolving around two main Pillars: ‘Structures’ that refers to the existing infrastructure of the city and the 

‘Technology’ pillar that describes the technological provisions and services available to the inhabitants. And each one is evaluated 

under five key areas: health and safety, mobility, activities, opportunities, and governance. The final score of the other 53 cities, was 

measured by using the data openly available on the internet. And this by means of different algorithms of machine learning such as 

Random Forest RF, Artificial Neural Network ANN, Support Vector Machine (SVM), and Gradient Boost (XGB). These algorithms 

have been compared and evaluated in order to select the best one. The tests showed that Random Forest RF alongside with Artificial 

Neural Network ANN, with the highest level of accuracy, are the best trained model. This study will enable other researches to use 

machine learning in the identification process of smart cities. 

 

 

1. INTRODUCTION  

The concept of smart cities has evolved over time, 

encompassing different aspects and definitions (Caragliu et al., 

2011). Early discussions laid the foundations for understanding 

the multidimensional nature of smart cities. Harrison et al. 

(2010) presented a comprehensive view of smart cities, 

highlighting the integration of various technologies, data, and 

systems to enhance urban functions. Caragliu et al. (2011) 

further emphasized the role of information and communication 

technologies (ICT) in improving the efficiency and 

competitiveness of cities. As the concept matured, scholars 

recognized the importance of sustainability in smart city 

initiatives (Lombardi et al., 2012; Albino et al., 2015). The idea 

of a smart city gradually evolved into a holistic approach that 

seeks to address environmental, social, and economic 

challenges through innovative technologies and data-driven 

solutions (Harrison et al., 2010). 

 

In the pursuit of identifying smart cities, researchers and 

practitioners have employed diverse methods and indicators. 

Sustainability has been a prominent aspect, with a focus on 

reducing resource consumption, promoting renewable energy, 

and improving environmental quality (Neirotti et al., 2014; 

Mora & Bolici, 2017). The notion of smartness, referring to the 

integration and utilization of advanced technologies, has also 

played a pivotal role in distinguishing smart cities (Batty, 2013; 

Angelidou, 2015). Moreover, performance indicators have been 

employed to evaluate the effectiveness and efficiency of smart 

city initiatives (Lai & Cole, 2022). These indicators encompass 

various dimensions such as governance, innovation, quality of 

life, and economic development (Huovila et al., 2019; Javed et 

al., 2022). By relying on such indicators, researchers and 

policymakers have attempted to quantify and compare the 

smartness of different cities (Albino et al., 2015). 

 

However, these classical methods for identifying smart cities 

often rely on manual data collection and subjective assessments. 

This approach poses limitations in terms of scalability, 

objectivity, and accuracy (Sta, 2017). This is where the potential 

of machine learning (AI) techniques becomes evident, giving 

rise to the emergence of new methods and tools, such as 

Machine Learning (ML) techniques. Since then, machine 

learning has been widely applied across various domains, 

demonstrating its predictive capabilities and ability to extract 

meaningful patterns from vast amounts of data (Lim & Maglio, 

2018). In the context of smart cities, machine learning holds 

promise for enhancing the identification and evaluation process 

(Khan et al., 2017). 

 

Machine learning techniques can leverage big data analytics to 

provide valuable insights for smart city planning and 

management (Lim & Maglio, 2018; Hodorog et al., 2022). By 

analyzing large volumes of data generated by urban sensors, 

social media platforms, and other sources, machine learning 

algorithms can identify patterns, trends, and correlations that 

may not be readily apparent to human observers (Lim & 

Maglio, 2018; Hodorog et al., 2022). This data-driven approach 

can enable evidence-based decision-making, facilitate proactive 

interventions, and enhance the overall intelligence of cities 

(Kitchin, 2014). For instance, machine learning algorithms have 

been employed to predict disease outbreaks, optimize resource 

allocation, and improve the quality of healthcare services in the 

field of healthcare (Feng & Jiao, 2021). Similarly, in the domain 

of transportation, machine learning has been utilized to predict 

traffic congestion, optimize routing, and enhance mobility 

solutions (Shafiq et al., 2020). 

 

While machine learning techniques have shown success in 

various domains, their application for identifying and defining 

smart cities has received limited attention (Khan et al., 2017). 

Most existing research has focused on utilizing machine 

learning for specific urban aspects, such as transportation, 

energy, or social media analysis (Khan et al., 2017; Bibri, 2018; 

Hodorog et al., 2022). By harnessing machine learning 

algorithms and techniques, researchers can develop models that 

learn from historical data and generate insights to identify and 

assess smart cities. For example, Kitchin (2014) discusses the 

potential of big data and smart urbanism in creating real-time 

cities, where machine learning algorithms can process massive 
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amounts of data and provide timely information for decision-

making. Jamei et al. (2017) explored the role of virtual reality 

and machine learning in planning sustainable smart cities, 

highlighting the potential of these technologies in urban design 

and development. Additionally, Khan et al. (2017) proposed a 

framework for designing and planning smart cities based on big 

data analytics, which leverages machine learning algorithms to 

analyze and extract meaningful insights from large-scale urban 

data. 

 

Machine learning holds the potential to predict future urban 

challenges and guide policy-making, with applications in 

predicting energy consumption patterns, optimizing resource 

allocation, and enhancing energy efficiency in buildings and 

infrastructure (Ullah et al., 2020; Duan et al., 2019), as well as 

supporting urban resilience and livability assessment for 

improved quality of life (Kutty et al., 2022). 

 

Despite the numerous possibilities offered by machine learning, 

its successful integration into smart city identification and 

assessment requires addressing several challenges. One key 

challenge lies in the availability and quality of data. Machine 

learning models heavily rely on accurate and comprehensive 

data to generate reliable insights. Therefore, efforts should be 

made to ensure data accessibility, standardization, and quality 

control (Hashem et al., 2016). Additionally, ethical 

considerations, such as data privacy and algorithmic fairness, 

need to be taken into account to ensure responsible and 

inclusive deployment of machine learning techniques in smart 

cities (Allam & Dhunny, 2019). 

 

While machine learning has been successfully applied in 

different domains, its use for identifying smart cities remains 

largely unexplored (Khan et al., 2017). This represents a 

significant gap in the current literature and presents an 

opportunity for future research to leverage machine learning as 

a tool to determine what a smart city truly encompasses. This 

research aims on harnessing the power of machine learning to 

enhance the identification and definition of smart cities, 

ultimately enabling more accurate, data-driven decision-making 

for urban development. 

 

2. METHOD 

Figure 1 depicts the proposed methodological approach, which 

can be summarized by the following steps: (1) Selection of 

smart cities, which will be the subject of our study or will 

constitute the experimental basis of our research; (2) 

Classification and processing of collected data from non-

structured to semi-structured format; (3) Testing various 

machine learning algorithms; and (4) Results analysis and 

discussion. Each step will be detailed below. 

 

Figure 1. The proposed methodology. 

2.1 Selection of smart cities  

During our study, we relied upon the study articulated by Lai 

and Cole, in their research on "Measuring progress of smart 

cities: Indexing the smart city indices" published in Urban 

Governance (2022). The principal aim of this study is to 

critically examine the integrity and quality of existing smart city 

indices, subsequently discerning those indices that possess the 

requisite attributes for effective international comparative 

analysis. 

 

As results from this study, we found that The Smart City Index 

(SCI), an ongoing initiative by the IMD World Competitiveness 

Center since 2019, has emerged as a pivotal tool within the 

domain of smart city assessment. Its annual evaluations, 

encompassing a diverse array of indicators across distinct 

categories, encapsulate a rigorous and comprehensive approach 

to assessing the multifaceted dimensions of smart urbanization. 

The SCI's systematic framework, designed to gauge key aspects 

such as Health and Safety, Mobility, Activities, Opportunities, 

and Governance, lends credibility to its effectiveness as a robust 

evaluation mechanism. Furthermore, the SCI's reliance on data 

gathered through citizen surveys enhances its utility, as it 

reflects the direct perceptions and sentiments of local residents. 

This participatory approach not only underscores its accuracy 

but also positions it as a reliable source for insights into citizens' 

priorities and attitudes towards smart city development. As 

demonstrated by its consistent application and adaptability, the 

SCI stands as a dependable foundation for future research 

endeavors seeking to delve deeper into the complex landscape 

of smart urbanization. 

 

The methodology employed in the IMD research encompasses a 

global assessment of 141 cities. The Smart City Index 2023 

meticulously gauges residents' perceptions concerning the urban 

infrastructure and technological applications available within 

their cities. It ranks 141 cities by soliciting the perceptions of 

120 residents in each city. These perceptions are gathered 

within two pivotal pillars: Structures, focusing on existing 

infrastructure, and Technology, encapsulating available 

technological services. These pillars encompass key evaluation 

areas such as health and safety, mobility, activities, 

opportunities, and governance. Data, presented in tabular form, 

juxtaposes city scores against group benchmarks, facilitating 

comprehensive indicator comparisons.  

  

To augment our research scope, we targeted 200 cities. So to 

enhance the comprehensiveness of our study, we expanded our 

focus to encompass an additional 53 cities. Among these, data 

for 47 cities were derived from openly accessible online 

sources. This research endeavor was conducted in-house, with 

the aim of thoroughly addressing the aforementioned indicators. 

 

For the remaining 6 cities—Casablanca, Fes, Marrakech, 

Tangier, Dakhla, and Laayoun—we conducted an empirical 

survey. This survey was administered through a Google Form, 

comprising closed-ended questions meticulously aligned with 

the indicators aforementioned. The utilization of binary 

response options was chosen to facilitate both data transmission 

and subsequent analysis. The questionnaire was meticulously 

drafted in French, the prevailing language in the country, with 

the intention of reaching the widest possible audience. This 

approach was employed to maximize participation.  
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2.2 Processing the collected data 

The second section of the methodology expounds further into 

classifying and organizing the collected data, as described in 

section 1, from non-structured to semi-structured format.  

To do so, we transformed data into binary format that involves 

representing data using only two distinct values, typically 0 and 

1. This representation aims to manipulate and transmit data. 

Each subtracted value from the survey that was lower than 50% 

was represented into in the excel spreadsheet as the binary digit 

Zero (0), and subsequently every value greater than or equal to 

50% was illustrated by bit one (1). The binary format enabled 

efficient data processing through simple logical operations. 

 

The purpose of our study is to determine whether a given city 

qualifies as "smart." To accommodate this, we introduced an 

additional column labeled "target." Since we are working with a 

total of 39 indicators, we established a criterion where any city 

surpassing a strict cumulative score of 20 out of 39 would be 

recognized as "smart." This qualification is then denoted as a 

value of 1 in the "target" field for subsequent analysis. 

 

2.3 Testing different algorithms of machine learning  

The current study proposes a framework combining various 

machine learning models for the first time to thoroughly 

investigate the smartness of cities around the world, using a set 

of indicators. 

  

The classification techniques, Artificial Neural Network (ANN), 

Decision Tree (DT), Random Forest (RF), support Vector 

Machine (SVM), and Gradient Boost (XGB) are used to predict 

the level of smartness, as categorical variables, based on the 

values of the indicators under each pillar: Structure and 

Technology.  Multi-criteria performance assessment combines 

numerous heterogenous indicators across two main aspects in a 

standardized manner to a single synthetic score that explains the 

behavior of the phenomenon to be measured. 

 

3. RESULTS 

Initially, we evaluated the smartness of all 200 cities worldwide 

to answer the research question regarding the extent to which 

present-day smart cities engage in collaborative creation of 

infrastructure and technology within their development models. 

For each row, scores across each aspect under structure and 

technology pillars were added to forecast the smartness level of 

a city. 

 

Different ML algorithms were trained on the data for the smart 

cities (a total of 7800 data points) to predict whether a city is 

smart or not, based on the values for the indicators under each 

aspect. Thus, the input vector for the assessment of the 

Structural aspect comprised 19 predictors. Similarly, for 

technological aspect, the indicators related to health & safety, 

mobility, activities, opportunities in work & school and 

governance (a total of 20 indicators) were used as predictors 

that determined the response variable, namely, the level of 

smartness. The dataset was split into train and test sets that 

comprised of 80% and 20% of the complete dataset, 

respectively. 

 

To compare the classification models, we used the overall 

accuracy (ACC). Among the single models, ANN showed the 

highest performance in predicting the smartness of cities on the 

training dataset (97% accuracy), SVM and DT classifiers, on 

the other hand, showed a close performance of 95% and 92% of 

accuracy, respectively. Both, the ensemble models, RF and 

XGB showed a higher and equal accuracy compared to each 

other. They showed, similarly to ANN, the most accurate 

prediction on the test dataset, with 97,5% of accuracy each. 

 

Building upon this analysis conducted on 200 cities under the 

two pivotal pillars—structural and technological—it was 

noteworthy that the study found a distinct pattern. Among the 

examined cities, a significant majority, accounting for 60%, 

were classified as 'smart', while the remaining 40% fell into the 

'non-smart' category. This distribution implies a clear contrast in 

the developmental orientation and integration of these cities, 

forming the basis for understanding the defining factors that 

delineate 'smartness'. 

 

Figure 2. Number Comparison of Smart and Non-Smart Cities. 

 

In examining the structural pillars of smart city development 

across 200 cities worldwide (Fig. 3), a discernible trend 

emerges. Smart cities, identified as those showcasing a 

comprehensive and robust infrastructure alongside advanced 

technological provisions, exhibit distinctive characteristics 

within the structural dimension. 

The data extracted from the study underscores a substantial 

correlation between certain indicators within the structural 

domain and the classification of cities as 'smart' or 'non-smart'. 

Notably, indicators related to fundamental necessities and 

community well-being prominently differentiate these 

classifications. 

For cities categorized as 'smart' (indicated by 1), an evident 

trend surfaces, highlighting their strengths in critical 

infrastructure elements. Fig 3(a)- 3(b)- 3(e) shows factors such 

as adequate basic sanitation (SH 1), efficient recycling services 

(SH 2), robust medical service provision (SH 5), alongside 

efficient public transport (SM 8), abundant green spaces (SA 9), 

vibrant cultural activities (SA 10), accessible employment 

opportunities (SO 11), quality educational access (SO 12), 

lifelong learning prospects (SO 13), active job creation (SO 14), 

inclusive measures for minorities (SO 15), accessibility in local 

government decisions (SG 16) shown in Fig. 3(h) to Fig. 3(p) ) 

are notably higher in smart cities Moreover, substantial 

feedback mechanisms on local government projects (SG 19) are 

evident, as illustrated in Fig. 3(s). 
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       Figure 3. Structural Pillar Evaluation: Comparative Analysis of 19 Key Indicators Across Smart & Non-Smart Cities 
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Conversely, non-smart cities (designated as 0) tend to exhibit 

higher values in indicators pointing to persistent challenges. 

Factors in Fig. 3(c) - 3(d) respectively demonstrate public safety 

concerns (SH 3) and prevalent air pollution issues (SH 4) 

prevalent in non-smart cities. Furthermore, Fig. 3(f) - 3(g) 

portray housing affordability challenges (SH 6) and intensified 

traffic congestion (SM 7) prevalent among these cities. 

Moreover, pointing towards governance challenges, indicators 

SH17 and SH18 are depicted respectively in Fig. 3(q) - 3(r), 

showcasing concerns regarding corruption in governance (SG 

17) and a lack of resident involvement in decision-making (SG 

18). 

The discernible disparities within these indicators imply a 

strong correlation between the quality of structural elements and 

the classification of cities as 'smart'. It suggests that cities 

excelling in essential services, environmental quality, cultural 

vibrancy, educational opportunities, employment prospects, and 

community participation tend to align more closely with the 

definition of 'smart cities'. This underscores the significance of 

robust infrastructure and community-focused services in 

shaping the smartness measure of cities on a global scale. 

 

Meanwhile, in examining the technological pillar (Fig. 4) and 

its influence on the categorization of cities into 'smart' and 'non-

smart', discernible patterns underscore the significance of 

specific indicators in differentiating between these 

classifications. 

The data extracted from the study reveals a compelling trend 

among cities labeled as 'smart' (denoted by 1) regarding their 

technological infrastructure, showcased in Fig. 4. Notably, a 

significant percentage of these smart cities exhibit high values 

in specific indicators. Fig. 4(b)- 4(c) and 4(d) respectively 

represent online giving platforms (T2), efficient online city 

maintenance reporting (T3), and enhanced air pollution 

monitoring (T4). Furthermore, Fig. 5(f) portrays streamlined 

medical appointment arrangements (T6).  

Furthering this pattern, from T10 to T14, Fig. 4(j)- 4(k)- 4(l)- 

4(m) and 4(n) respectively showcase simplified public transport 

scheduling (T10), mobile-based traffic congestion updates 

(T11), easy online show and museum ticket purchases (T12), 

accessible online job listings (T13), and effective IT education 

in schools (T14). Additionally, Fig. 5(t) highlights the indicator 

T20, demonstrating the processing of identification documents 

online, effectively reducing waiting times. Remarkably, 

indicators T12, T13, and T16 stand out with nearly universal 

adoption among these 'smart' cities, depicted in Fig. 4(j)- 4(k) 

and 4(p) respectively. 

Conversely, non-smart cities (represented by 0) tend to 

showcase higher values in indicators such as accessible online 

city maintenance reporting (T1) portrayed in Fig. 4(a); while 

Fig. 4(e) highlights streamlined public service-oriented Wi-Fi 

provision (T5). Furthermore, Fig. 4(g)- 4(h), and 4(i) 

respectively represent reduced congestion through car-sharing 

apps (T7), efficient parking location apps (T8), and enhanced 

bicycle sharing services (T9). Moreover, Fig. 5(o) showcases 

simplified public transport ticketing online (T15), whereas Fig. 

4(q)- 4(r), and 4(s) respectively illustrate improved public 

access to city finances (T17), enhanced online voting systems 

(T18), and facilitated resident idea proposals (T19). 

The distinction observed within these indicators underscores the 

pivotal role of specific technological aspects in categorizing 

cities as 'smart' or 'non-smart'. It suggests that cities excelling in 

advanced technological integration, particularly in streamlined 

job access, online educational resources, and simplified 

identification procedures, are more aligned with the 

classification of 'smart cities'. Conversely, cities focusing on 

accessible public services, efficient mobility solutions, and 

enhanced governance through technological means stand out 

among the 'non-smart' category. 

4. DISCUSSION & CONCLUSION 

This study introduced a novel assessment framework, 

combining multivariate data and diverse machine learning 

models to evaluate the smartness of 200 cities worldwide based 

on selected indicators. The proposed approach integrates the co-

creation of structural and technological pillars within existing 

development models of smart cities. Analysis of multivariate 

data and city scores facilitates a comprehensive understanding 

of cities' performance in structural and technological aspects, 

enabling ongoing performance monitoring for smart cities. 

 

The utilization of different machine learning classifiers aimed to 

predict smartness levels for each city. Among these classifiers, 

the XGB and RF models emerged as the most accurate, as 

demonstrated by their high ACC parameter values. Ensemble 

modeling notably outperformed individual learning models, 

establishing its efficacy in predicting cities' smartness levels. 

 

The pivotal difference distinguishing 'smart' cities primarily lies 

within the realm of technological prowess. It's the 

overwhelming prevalence of specific technological indicators 

that emphasizes the critical role of technological integration in 

shaping a city's 'smartness'. To earn the label of 'smart,' a city 

must prioritize and advance its technological infrastructure. This 

aspect serves as the distinctive feature and hallmark of 

comprehensive advancement, seamlessly integrating technology 

into daily life. 

 

 
Figure 5. Comparative Analysis of Structural and  

Technological Pillars in Smart Cities. 
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Figure 4. Technological Pillar Evaluation: Comparative Analysis of 20 Key Indicators Across Smart & Non-Smart Cities.
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Technological capabilities serve as the primary driver in 

distinguishing a city's 'smart' status, outlining the imperative 

nature of technological advancement in modern urban 

development. Embracing innovation and integrating technology 

into urban infrastructure signify the evolution towards a smarter 

status. Such initiatives attract investments, expertise, and talent, 

fostering economic growth and defining the trajectory of 

smarter cities. 

 

Understanding that no single city excels uniformly, it is crucial 

to recognize and learn from successful cities. Their models of 

urban development serve as blueprints for progress, attracting 

fresh ideas, jobs, and growth. Learning from these cities 

facilitates the development of livable and intelligent urban 

environments, essential for overall urban improvement. 

Ultimately, the success blueprint of each highly efficient city 

lies in its unique urban development model. 
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