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ABSTRACT: 

 

Forests are invaluable for maintaining biodiversity, watersheds, rainfall levels, bioclimatic stability, carbon sequestration and climate 

change mitigation, and the sustainability of large-scale climate regimes. In other words, forests provide a wide range of ecosystem 

services and livelihoods for the people and play a critical role in influencing global atmospheric cycles. Providing sustainable, 

reliable, and accurate information on forest cover change is essential for an holistic forest management, efficient use of resources, 

neutralizing the effects of global warming and better monitoring of deforestation activities. Within the scope of this study, it is aimed 

to perform semantic segmentation of 5 different tree species (larch, red pine, yellow pine, oak, spruce) from Sentinel-2 satellite 

images. For this purpose, the regions where these tree species are densely populated in Turkey (Marmara, Aegean, Eastern Black 

Sea) were selected as pilot regions. A unique data set was created using the data of the selected pilot regions. As a result of the study, 

it was possible to determine the forest types temporally for the selected classes with more than 90% Intersection over Union score for 

all classes. The developed deep learning model with the created forest data set can be implemented to the other forests areas with 

same species in other parts of the world.  
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1. INTRODUCTION 

In Europe, there are 200 different forest habitats defined 

according to the European Union (EU) Habitats Directive 

(Natura 2000, 2011). Today, it is stated that one of the most 

important impacts of climate change is on forests that will affect 

the diversity of tree species. Although there is no 

comprehensive legally binding document on forests at the 

global level, various legislation has been established in various 

conventions such as the Convention on Biological Diversity 

(CBD), the UN Framework Convention on Climate Change 

(UNFCCC) and the Kyoto Protocol. UN Convention to Combat 

Desertification (UNCCD), developed in the early 1990s. The 

European Union (EU) has also put focus on biodiversity, 

climate change and desertification. In line with the 2050 vision; 

by 2050, the EU aims to protect, value and appropriately restore 

biodiversity and prevent biodiversity loss due to its essential 

contribution to ecosystem services, natural capital, natural value 

and the environment (EEA Report, 2016).  

 

Although the EU has legal frameworks, strategies, and action 

plans to protect nature and restore habitats and species, 

protections remain incomplete. Restoration has been 

implemented on a small scale and implementation and 

enforcement of legislation has been insufficient. This situation 

requires further global efforts (EU Biodiversity Targets, 2020). 

The SMART FOREST study has been successful in this regard, 

aiming to develop new methods and techniques that take into 

account the future impacts of climate change and its effects on 

the forest ecosystem and biodiversity, taking into account that 

more than half of the global GDP depends on nature and the 

services it provides, and also in line with EU objectives and 

vision. 

 

Forests, which cover about 1/3 of the world's land surface and 

account for more than 3/4 of the biological mass, are natural 

resources that provide important benefits for the world. 

However, the existence and continuity of these benefits of 

forests are threatened by various destruction factors. Among 

these factors, biotic and abiotic threats have an important place. 

In terms of biotic threats, especially pests and invasive species 

are among the most destructive factors on natural forests 

(Ivantsova, et al., 2019). The effects of insect and pathogen 

infestations on climate change in the world, forest management 

interactions and prediction methods are important for the 

assessment and mitigation of these impacts (FAO, 2021). 

 

Forest conservation, sustainable forest management, renewable 

energy, determination of forest biomass (Verkerk et al., 2019), 

carbon emission accounting (Spawn et al., 2020) and forest 

restoration practices (Goldstein et al., 2020) are of vital 

importance. Global forest management mapping is important to 

facilitate decision-making processes and mitigate the 

environmental impacts of global warming. Changes in 

precipitation patterns, increased drought and flood risks, threats 

to biodiversity are some of the important environmental threats 

that climate change may cause (Puletti et al., 2018). 

 

Today, deep learning models are widely used in semantic 

segmentation, object detection and classification applications of 

remote sensing data. These models can detect and classify 

objects more accurately and efficiently than traditional methods. 

Considering that the mapping of forests has become a necessity, 

the use of deep learning models in forest detection and 

classification has become a valuable method. In contrast to 
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traditional forest segmentation, detection, and classification 

applications, it has been observed that deep learning-based 

forest segmentation, detection and classification methods are 

faster, more accurate and time efficient.  

  

In recent years, remote sensing techniques have been applied to 

biodiversity monitoring, precision agriculture, forest 

management and environmental studies (Szostak et al., 2018). 

In the last 10 years, deep learning techniques have become 

especially popular in the field of image semantic segmentation 

for the purposes of creating land use/cover maps from satellite 

imagery (Ma et al., 2019). In addition, these models can also be 

used in various applications such as monitoring deforestation, 

assessing disasters, and managing natural resources. Data 

sources such as Copernicus Sentinel-2 provide a wide 

opportunity to monitor the Earth's surface and environmental 

dynamics, including forest plantations (Isaienkov et al., 2021). 

 

Considering the role of forests in climate regulation and carbon 

sequestration, this study aims to develop a deep learning-based 

solution to provide sustainable, reliable, and accurate 

information on forest cover types. This solution would aid 

authorities and decision-makers to further improve forest 

management, efficient use of resources, neutralisation of the 

effects of global warming and monitoring of deforestation 

activities. For this purpose, a stand map consisting of 5 forest 

types (larch, red pine, yellow pine, oak, spruce) in selected pilot 

areas in Türkiye (Marmara, Aegean, Eastern Black Sea 

Regions) was created using atmospherically corrected Sentinel-

2 satellite images. The labelling process was carried out in 

cooperation with Forest Engineering experts to maximize the 

accuracy of the created dataset.  

 

Forest species mapping is crucial for forest management, forest 

degradation monitoring, habitat and biodiversity assessment, as 

well as carbon cycle and energy budget estimation (Fassnacht et 

al., 2016). The use of both optical and RADAR remote sensing 

data and methods can provide useful information on the 

composition of forest stand types and allow the study of large 

and inaccessible areas in less time compared to traditional field 

studies (Sedliak et al., 2021). Artificial intelligence and its use 

in remote sensing have become increasingly widely used in 

recent years (Martins et al., 2021). 

 

There are various studies using Sentinel-2 satellite imagery for 

forest semantic segmentation with deep learning methods. 

Bragagnolo et al. (2019) evaluated the performance of U-Net 

architecture for mapping forest cover in Amazon using Sentinel-

2 satellite imagery. They have extracted forest cover without 

going into species level and achieved precision, recall and F1-

score as 0.9356, 0.9676 and 0.9513, respectively. Freudenberg 

et al. (2019) exploited the U-Net architecture to detect palm 

trees from satellite images in two study areas in Indonesia and 

India. The authors used high resolution WorldView-2 and 

WorldView-2 satellite imagery and obtained accuracy between 

0.89 and 0.92 and F1-Score between 0.875 and 0.957. Hamdi et 

al. (2019) tested and applied an algorithm based on 

convolutional neural networks (CNN) in ArcGIS environment 

for automatic detection and mapping of damaged forest areas 

after-storm in Bavaria, Germany. A modified U-Net 

architecture optimized for pixel-wise classification of aerial 

orthophotos consisting of RGB and NIR bands with 0.2 meters 

spatial resolution was used. The authors have achieved 92% 

overall test accuracy. Miranda et al. (2019) proposed an CNN-

based segmentation method for forest monitoring in Semarang 

area, Central Java, Indonesia using Sentinel-2 satellite imagery, 

including spectral feature, spectral index, and spatial feature. 

The authors have focused on three forest classes namely 

primary dry forest, secondary dry forest, and plantation forest 

and obtained 0.9766 overall accuracy. Forstmaier et al. (2020) 

used Sentinel-2 satellite imagery with Feedforward Neural 

Networks to map Eucalyptus trees in parts of Portugal and 

Spain, focusing on Natura 2000 sites within Portugal. The 

overall accuracy achieved is 92.5%. Gargiulo (2020) presented 

an approach to fuse of Sentinel-1 and Sentinel-2 data for land 

cover mapping to overcome cloud cover issue in Sentinel-2. 

They proposed a multi-temporal W-Net approach for 

segmentation of interferometric wide-area mode (IW) Sentinel-

1 data to map rice, water, and bare soil. (Astola et al., 2021) 

produced a canopy height model using Sentinel-2 satellite 

imagery, metadata, and topography data to predict increased 

stock volume with deep neural networks (DNN) in four forest 

regions in Central Finland. Ao et al. (2021) developed a super-

resolution CNN to produce 10-m NDVI time series by fusion of 

Landsat-8 and Sentinel-2 satellite imagery. They used the 

Structural Similarity Index (SSIM) metric for accuracy analysis 

and calculated the SSIM value for forest as 0.8487. Awad 

(2021) proposed a self-organizing deep learning (SO-Unet) 

network to classify forests in urban and peri-urban 

environments using multispectral, multi-temporal and medium 

spatial resolution Sentinel-2 satellite imagery. SO-UNet, which 

is a combination of two different machine learning 

technologies, is a combination of Son and U-Net architectures. 

The maximum accuracies obtained are 83.25% and 82.50% for 

the city and the urban environment, respectively. Borges da 

Costa (2021) compared six architectures (U-Net, DeepLabv3+, 

FPN, MANet, PSPNet, LinkNet) with four encoders (ResNet-

101, ResneXt-101, Efficientnet-b3 and Efficientnet-b7) to detect 

Eucalyptus areas using 10 spectral bands of Sentinel-2. Overall, 

the best model was DeepLabv3+ with Efficient-net-b7 

backbone, achieving 76.57% Intersection over Union (IoU). 

Isaienkov et al. (2021) presented a basic U-Net model for 

deforestation detection in the forest-steppe zone using Sentinel-

2 imagery. Malcolm et al. (2021) used Sentinel-2 imagery to 

model multivariate tree species composition in a forest stand in 

south-central Ontario, Canada. The accuracy of random forest 

(RF) and CNN estimates was tested using species-specific based 

area information. According to the average R2 values, the 

improvements in RF and CNN models were approximately 1.5 

and 2.1 times, respectively. Shumilo et al. (2021) integrated 

Sentinel-2 and Sentinel-1 satellite data for object detection and 

applied a U-Net based neural network trained using semi-

supervised learning technique. Solorzano et al. (2021) used a U-

Net architecture to generate ten class land use/land cover maps 

using different image inputs from Sentinel-1 and Sentinel-2 

satellites, MS, SAR and a combination of both (MS+SAR). The 

highest overall accuracy obtained was 76%. David and Ce 

(2022) performed semantic segmentation using Sentinel-2 

imagery to detect deforestation within two forest biomes in 

South America, the Amazon Rainforest and the Atlantic Forest. 

They used the Attention U-Net architecture for this purpose and 

achieved 0.9550, 0.9769 and 0.9461 F1-score for each study 

area, respectively. 

 

The literature review shows that even though Sentinel-2 satellite 

imagery and deep learning methods are widely used, tree 

species specific are quite limited. Therefore, in this study we 

aim to develop a deep learning model that is able to segment 

larch, red pine, yellow pine, oak, and spruce tree species. The 

outcomes of the study will provide the opportunity to be 

integrated with other satellite images and will also provide an 

important inventory and database for future studies. The created 

Sentinel-2 satellite imagery-based stand map dataset within the 
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scope of the study is an essential data source for forest semantic 

segmentation. 

 

2. MATERIALS AND METHODS 

2.1 Dataset 

Within the scope of the study, semantic segmentation of larch, 

red pine, yellow pine, oak and spruce tree species belonging to 

Izmir, Rize, Trabzon, Istanbul, Ankara, Amasya and Giresun 

regions, taking forest characteristics into account, was carried 

out using Sentinel-2 satellite images. Sentinel-2 continuously 

shares high-resolution multi-spectral and multi-temporal data 

obtained by observing the earth's surface. Sentinel-2 satellite 

images can be accessed free of charge from the Openhub 

website provided by the European Space Agency (ESA). 

 

Cloudless Sentinel-2 satellite images of the pilot regions 

determined within the scope of the study for May-September 

2015-2022 were downloaded. Red, Green, Blue and NIR bands 

of the downloaded satellite images with a resolution of 10 

meters were used. The images obtained from satellites are 

affected by the absorption and scattering of radiation by the 

earth's surface or by atmospheric particles. In order to remove 

these effects from the downloaded images, atmospheric 

correction was applied with the Sen2Cor application, an 

interface developed by ESA. Using the tree species data 

prepared by the experts, a different layer was created over the 

open source QGIS application for 5 different tree species to be 

segmented in the study and a class was assigned to each tree 

species. New layers were created for 5 different tree types by 

making the selections according to the tree types through the 

relevant tools. This classification process was done by assigning 

a grey level colour to a different pixel value for each species 

and thus each tree species was assigned to a colour class. Tree 

layers were created one by one for each region and saved as a 

shape file. 

 

Table 1. Tree Species Stand Information and Class Values 

 

The dataset consisting of original and mask images were 

separated as 60% train, 20% validation, 20% test and in 

accordance with the deep learning architectures to be used for 

segmentation. Since the raw size of Sentinel-2 satellite images 

(10980x10980) is too large to be used as a dataset in a deep 

learning architecture, the images were divided into 512x512 

image patches with the help of GDAL. A total of 3480 image 

pairs are obtained. Sample image patches and corresponding 

masks are given in Figure 1. 

 

 

  

 
 

Figure 1. Sample image patches and corresponding labels from 

the dataset 

 

2.2 Segmentation Methods 

Deep learning based semantic segmentation process is carried 

out using Segmentation Models Pytorch library. Therefore, first 

the dataset was re-generated in accordance with the used library.   

 

Due to their performance in multi-class segmentation in the 

literature, we preferred to utilize DeepLabv3+ and Pyramid 

Scene Parsing Network (PSPNet) architectures. 

 

In 2014, Chen et al. (2014) introduced the initial version of the 

DeepLab architecture, utilizing Atrous convolution and a fully 

connected conditional random field (CRF) to regulate feature 

map resolution. The subsequent DeepLabv2 demonstrated 

enhanced performance by incorporating the Atrous spatial 

pyramid pooling (ASPP) module, enabling object segmentation 

across various scales (L. Chen et al., 2018). DeepLabv3 came 

up with the removal of the CRF module while enhancing the 

ASPP module with batch normalization and integrating image-

level features for global context encoding (Chen et al., 2017). 

Finally, DeepLabv3+ represents the pinnacle of this 

architecture, combining the strengths of the ASPP module's 

multi-scale contextual information encoding with an encoder-

decoder structure. 

 

The PSPNet architecture incorporates a pyramid pooling 

module designed to capture the broader global context within an 

image (Zhao et al., 2017). Within its encoder subnetwork, the 

architecture integrates a CNN backbone consisting of 

convolutions. These convolutions operate on feature maps, 

Tree Species Class 

Background 0 

Black Pine 1 

Scotch Pine 2 

Red Pine 3 

Oak 4 

Spruce 5 
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which are pooled at various sizes and subsequently upsampled 

to match the original feature map size. After this process, the 

upsampled feature maps are combined or concatenated with the 

original feature maps. 

 

3. RESULTS AND DISCUSSION 

The trainings for preliminary results with DeepLabv3+ and 

PSPNet were performed using the 4-band (RGB and NIR) 

dataset with the hypermeters listed in Table 2. The listed 

hyperparameters are determined empirically. 

 

Epoch 100 

Batch Size 4 

Learning Rate 0.001 

Optimizer Adam 

Encoder Resnet34 

Activation Function Softmax2d 

Class Number 6 

Table 2. Hyperparameters used in the trainings. 

 

Since the training result was much lower than expected and one 

class was not predicted at all. Sentinel-2 images in the original 

dataset contain 4 bands (Red, Green, Blue, NIR) with a 

resolution of 10 meters. Since the number of images in the 

dataset is not sufficient to train a network from scratch, in order 

to use pre-trained network weights, the dataset was created as 

three bands. In the 3-band (Red, Green, NIR) dataset, the near 

infrared (NIR) band is especially used since that the band 

composition is useful for analyzing vegetation. The conversion 

of the images from 4 to 3 bands was performed with the help of 

the Geographic Data Abstraction Library (GDAL) in Python 

environment. Once the dataset with 3-bands is created, training 

for both architectures was performed using the same 

hyperparameters as the 3-band data set. Additionally, we have 

used Imagenet weights for the pre-trained encoder weights. 

 

Class IoU 

PSPNet DeepLabv3+ 

Background 0.81684534 0.89005732 

Black Pine 0.61107649 0.76234377 

Scotch Pine 0.53619071 0.7255401 

Red Pine 0.49261042 0.67852724 

Oak 0.00000000 0.00000000 

Spruce 0.64043717 0.77678646 

Table 3. IoU scores for both architectures trained with 3-band 

dataset with 512x512 pixel size. 

 

The analysis of the results showed that the oak species could not 

be distinguished and mostly is mixed with the background. 

Therefore, we have deeply examined the oak tree class in the 

dataset and found that mislabeled data were produced due to the 

construction of roads, buildings, etc. in the areas seen as forest 

over the years. In order to enhance the dataset further for a more 

robust solution, the dataset was pre-processed using the 

Normalised Difference Vegetation Index (NDVI), which is used 

to measure the health and density of vegetation cover. 

 

NIR RED
NDVI

NIR RED

−
=

+
     (1) 

 

NDVI = Normalised Difference Vegetation Index 

NIR = Near-Infrared Band 

RED = Red Band 

 

NDVI for each of the images is calculated and all green areas in 

the image were saved as shape data. The intersections of the 

recorded forest shape file and the data prepared by the experts 

were obtained on QGIS software and a more accurate label file 

corresponding to Sentinel-2 images was obtained. 

 

As a result of the training, it was observed that the DeepLabv3+ 

architecture provided higher performance in the segmentation of 

the dataset, so training trials were continued with the 

DeepLabv3+ architecture with the new dataset. 

 

It was also concluded that the pixel size of image chips was too 

large for the architecture. In the subsequent training trials, we 

created new datasets with different image chip sizes in order to 

assess the effect of the pixel size. Two new datasets were 

created using image chips with 128x128 and 64x64 pixel sizes 

using 3-band dataset. The new datasets have 9412 and 52250 

image chips for 128x128 and 64x64 pixel sized datasets, 

respectively. 

 

The training results with a 3-band 128x128 pixel resolution 

dataset provided IoU values of 66.97%, 47.14%, 50.09%, 

55.28%, 60.06% and 55.54% for background, larch, scotch 

pine, red pine, oak, and spruce classes, respectively. Even 

though the accuracy metrics have increased, the values were 

still insufficient for future studies. One main reason for these 

results is the high background ratio within the dataset. 

Considering that the tree labels are irregular and discontinuous 

(Figure 1), we performed another training using the 64x64 pixel 

sized dataset which has less background information and 

making sure to have a more balanced dataset among classes. For 

this purpose, image chips having background more than 70% 

are removed from the dataset.  The accuracy assessment of the 

training conducted with the 64x64 pixel sized dataset achieved 

IoU values of 74.81%, 68.98%, 73.42%, 78.58%, 78.28% and 

74.32% for background, larch, scotch pine, red pine, oak, and 

spruce classes, respectively.  

 

The experiments within this study showed that the dataset with 

a resolution of 64x64 pixels consisting of 3 bands (RGNIR) 

using DeepLabv3+ architecture provided the best IoU metrics 

for all tree classes. Finally, in order to fine-tune the results we 

performed some hyperparameter tests. The final hyperparameter 

settings that achieved the best results are given in Table 4 and 

Table 5, respectively. 

 

Epoch 200 

Batch Size 8 

Learning Rate 0.0003 

Optimizer Adam 

Encoder Timm-regnety_320 

Encoder Weights Imagenet 

Activation Function Softmax2d 

Class Number 6 

Table 4. Final Hyperparameters 

 

 
Black 

Pine 

Red 

Pine 

Scotch 

Pine 
Oak Spruce 

IoU 

Score 
0.9194 0.9436 0.9461 0.9608 0.9470 

Precision 0.9526 0.9637 0.9665 0.9756 0.9667 

Recall 0.9635 0.9781 0.9844 0.9845 0.9789 

F1-Score 0.9580 0.9709 0.9723 0.9800 0.9728 

Table 5. Accuracy metrics for the final training using the 3-

band 64x64 pixel sized dataset with the updated 

hyperparameters. 
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The results show that all tree species were segmented above 

90% on all accuracy metrics in the test dataset. Confusion 

matrix calculated from the test dataset is given in Figure 2. 

Confusion matrix shows that tree species do not generally mix 

with each other. We can see that the most confused tree classes 

are Black Pine and Scotch Pine. However, they are all mostly 

mixed with the background class. Considering that the 

background class also consists other tree species, one solution 

could be creating an additional “other trees” class. This can 

prevent the confusion between other trees and roads, buildings, 

etc. 

 

 

Figure 2. Confusion Matrix 

 

Sample predictions from the trained deep learning architecture 

are given in Figure 3. Similar to the accuracy metric results, 

visual interpretations also show promising results. 

 

4. CONCLUSION 

The existence of forests is of great importance due to the 

benefits they provide for living life. Forests need to be protected 

to provide a more sustainable life for living organisms. In 

addition to providing habitat for most living things, forests 

improve air quality, prevent most natural disasters, provide 

important nutrients, and the water cycle necessary for life.  

 

Forest mapping is of great importance in protecting the 

existence of forests. Nowadays, in addition to forest 

identification, determination of forest type has become a 

necessity to prevent damage to forests. Thanks to fast and 

reliable forest mapping, legal protection and management of 

forests can be easier. In addition, forest fires can be prevented, 

and necessary information can be provided to protect forest 

biodiversity. 

 

Within the scope of this study, a tree segmentation model based 

on deep learning for 5 tree species using remote sensing data 

was developed. The accuracy and visual interpretations show 

that the trained model is sufficient for producing stand maps, 

monitoring temporal change and management of forests.   

 

 
(a) 

     
(b) 

     

(c) 

     

(d) 

      

(e) 

Figure 3. Sample predictions from the test dataset. Left 

Column: Sentinel-2 Image Patch, Middle Column: Ground 

Truth, Right Column: Prediction Result 

 

In order to train deep learning architectures to sufficiently, an 

accurate and well-balanced dataset is essential. Since forests are 

large and mixed communities, there are often problems in the 

production of their labels. The fact that the growth ages of the 

trees are not known accurately, the frequency of occurrence 

within a region and the canopy openness ratios vary greatly 

which are also important factors affecting the quality of the 

labels. The experiments in this study showed that use of NDVI 

significantly smooths labelling process. Hence, in this study, we 

created a novel tree species dataset with Sentinel-2 imagery. 

 

It was determined that one of the most important parameters 

affecting the accuracy is the band combination used in the 

dataset. The initial weights could not be used when a 4-band 

data set was used. Deep learning algorithms require a large 

amount of data while training, however we were not able to 

expand our dataset further due to the limited pilot regions. 

Considering that this deficiency directly affects the accuracy of 
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the training, use of pre-trained weights was the only for the 

purposes of the study. Therefore, it is concluded that the most 

appropriate band combination for a deep learning-based forest 

classification within the scope of this study should be 3 bands as 

Red, Green and near infrared (NIR). 

 

The created dataset is exploited for training DeepLabv3+ and 

PSPNet architectures. The problems encountered during the 

study showed that some parameters highly affect the 

performance of the trained model. For example, using small 

sized image chips is more effective for irregular and 

discontinuous objects. 

 

As a result of the study, deep learning methods can be 

effectively used for forest type mapping with accurate and 

reliable results. This approach minimizes manual labor with 

cost-effective solutions.  

 

In the future work, we plan to enrich our dataset with more tree 

species and add “other trees” class in order to prevent mixing 

tree classes with the background. 
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