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ABSTRACT: 

Following the devastating earthquakes in Kahramanmaraş province, Türkiye, on February 6, 2023, which resulted in the loss of over 

50,000 lives and damage to more than 84,000 buildings, the pressing need for efficient damage assessment and response became 

apparent. Traditional on-site assessments are time-consuming and perilous. Most existing research leans towards segmentation and 

object detection methods for earthquake damage assessment using remotely sensed data, which demand substantial training data, 

computational resources, and time. A more practical approach can be classifying image patches to identify earthquake-affected areas 

with damaged buildings. This scene classification method categorizes image patches based on their content. Remote sensing scene 

classification assigns labels to such images using deep learning various algorithms. In this work, we developed a fully automated 

system utilizing Maxar’s very high-resolution post-earthquake satellite imagery to classify and map the scenes (image patches) 

involving collapsed and non-collapsed buildings in Antakya and Iskenderun city centers. Our approach involved two key scene 

classifiers: Classifier #1, employing deep learning models like ResNet-101, effectively detected building presence within the image 

scene with remarkable accuracy (99.17%). This classifier served as the foundation for identifying the scenes involving buildings for 

entire city in order to filter the non-urban land use. Then, Classifier #2, classified building scenes into collapsed and non-collapsed 

categories. The DenseNet-121 model excelled, achieving an accuracy of 93.33% in this task. In the end, Classifier #2 categorized 

2,429 non-collapsed and 449 collapsed scenes in Antakya and 2,291 non-collapsed and 290 collapsed scenes in Iskenderun.  

 

 
*  Corresponding author 

 

1. INTRODUCTION 

Earthquakes, which are destructive natural disasters, cause 

significant destruction to communities and infrastructure all 

around the world. One major concern is the damage caused to 

buildings in cities. To address this issue effectively, it is crucial 

to gather information about the size of the affected area, the 

extent of the damage, how many buildings have collapsed, the 

severity of damage in the affected area, and the specific types of 

damage to individual buildings. This information is essential for 

organizing urgently needed rescue efforts and planning the 

reconstruction process after a devastating earthquake (Dong and 

Shan, 2013). While it is true that accurately assessing the 

damage to individual buildings requires experts who can inspect 

both the inside and the outside, it is important to recognize the 

challenges in this process (Matin and Pradhan, 2022). This kind 

of evaluation takes a lot of time and resources and can be 

dangerous because it requires people to physically go to the 

affected area. Additionally, when earthquakes happen in large 

cities, it is nearly impossible to inspect every building quickly 

enough to meet the urgent needs of rescue operations and 

damage control (Shi et al., 2021). 

On the other hand, satellite images give a complete and up-to-

date look at the areas affected by the disaster, making it much 

quicker and more efficient to understand the damage. Having 

the ability to quickly get high-resolution satellite images right 

after an earthquake is crucial for helping rescue teams, 

allocating resources, and planning how to respond to the 

disaster (Munawar et al., 2022). Furthermore, the repetitive and 

continuous nature of satellite imaging guarantees that post-

disaster assessment can be carried out at regular intervals, 

enabling the tracking of recovery progress and identification of 

areas that may necessitate additional support (Shafapourtehrany 

et al., 2023). 

On February 6, 2023, a very devastating earthquake with a 

magnitude of 7.8 hit the southern part of Kahramanmaraş 

province in Türkiye. Nine hours later, there was another strong 

earthquake with a magnitude of 7.5 in the central part of the 

same province. These earthquakes caused a terrible disaster, 

with more than 84,000 buildings either collapsing or suffering 

severe damage and more than 50,000 people lost their lives in 

both Türkiye and Syria. Among the hardest-hit areas was Hatay 

Province, which experienced extensive damage. The 

earthquakes caused varying degrees of destruction to most of 

the masonry structure buildings in Antakya and surrounding 

cities in the Hatay Province, including wall cracking, partial 

collapses, and complete building failures (Tao et al., 2023). 

The central objective of this research revolves around the 

development of a fully automated system geared towards the 

classification of areas within high-resolution satellite images 

that encompass collapsed buildings. To facilitate the training 

and subsequent evaluation of the deep learning models, we 

meticulously curated an annotated dataset of Maxar satellite 

images covering Antakya and Iskenderun Cities in the Hatay 

Province. 

Initially, this dataset was meticulously annotated to differentiate 

between scenes "with buildings" and those "without buildings." 

Subsequently, predictive algorithms were employed to identify 

scenes featuring buildings, thereby distinguishing them from 

scenes devoid of any architectural structures. Subsequent to this 

classification, scenes categorized as containing individual 
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buildings underwent another meticulous annotation. In this 

phase, the labels pertained to scenes that either featured 

"collapsed buildings" or "non-collapsed buildings." This 

distinction was essential in accentuating the presence or absence 

of collapsed structures within the scene. 

It is worth noting that the detection of boundaries for the 

remnants of collapsed buildings presents a distinct challenge, 

primarily due to the unique patterns exhibited by completely 

collapsed structures, such as pancake collapses. In the context 

of Antakya and Iskenderun Cities, where a substantial number 

of buildings were severely impacted by the earthquake, this 

becomes an especially pertinent consideration. Consequently, 

the accurate geolocation of city patches featuring collapsed 

buildings assumes heightened significance, particularly in the 

context of humanitarian aid efforts immediately following the 

mainshock event. 

In pursuit of this overarching goal, it is required to ensure that 

the spatial resolution of the data under consideration attains a 

level of granularity sufficient to differentiate between 

architectural structures and various other features present within 

the urban landscape. In the context of similar research 

endeavors, the datasets frequently employed can be categorized 

into four distinct classes, namely: (1) optical data, (2) synthetic 

aperture radar (SAR) data, (3) light detection and ranging 

(LiDAR) data, and (4) ancillary data. It is noteworthy that the 

ancillary data category encompasses cartographic 

representations derived from geographic information system 

(GIS) datasets procured via remote sensing techniques, as well 

as field-based building damage assessments conducted in situ 

(Dong and Shan, 2013). 

Many research studies have looked into various ways to use 

remote sensing images to understand how earthquakes damage 

buildings. These methods generally fall into two categories. (1) 

Multi-temporal assessment: This means looking at changes in 

images over time to see damage. The traditional way is to 

compare images before and after an earthquake to spot 

differences in things like texture and brightness (Adriano et al., 

2019). While these methods work well, they need both pre-

earthquake and post-earthquake images, which can be a 

challenge in real-life situations where such data might not be 

available (Matin and Pradhan, 2022). (2) Single-post-image 

assessment: In this approach, researchers use only one image 

taken after the earthquake to figure out the damage to buildings. 

This method does not rely on having images from before the 

earthquake. These methods mainly rely on gathering statistics 

from image objects, which includes texture and shape. 

(Karimzadeh and Matsuoka, 2018; Matin and Pradhan, 2022).   

Apart from feature-based classification (Vu, 2012) and 

conventional machine learning methods (Chauhan and Singh, 

2018), some studies have explored the realm of deep learning 

techniques, which entail the identification of collapsed 

structures through patch-based analysis of single post-event 

images. In recent years, deep learning methodologies have 

emerged as the forefront techniques in the domain of machine 

learning, garnering recognition as some of the most prevalent 

methods for extracting valuable information from remote 

sensing imagery (Ozturk et al., 2023; Sariturk et al., 2022). 

These approaches are fundamentally rooted in neural networks, 

and their ascendancy within the field can be attributed to their 

remarkable capacity to autonomously learn intricate features 

ranging from low-level to high-level representations directly 

from raw image data. Consequently, this reduces the need for 

user intervention in the selection of arbitrary image features, 

setting deep learning apart from conventional machine learning 

techniques (Wang et al., 2022).  

Within the realm of utilizing optical remote sensing data to 

identify earthquake-induced damage in affected regions, three 

principal paradigms have been extensively documented in the 

literature: detection, segmentation, and classification (Matin and 

Pradhan, 2022). Segmentation models entail the meticulous 

labelling of each pixel within an image, adhering to predefined 

damage level guidelines (Wang et al., 2023). In contrast, 

detection models necessitate the labelling of buildings in 

accordance with these damage level guidelines during the 

training phase (Jing et al., 2022). Meanwhile, the classification 

approach involves the labelling of individual image patches 

based on the presence or absence of damaged buildings within 

them.  

The existing body of research predominantly leans towards 

segmentation and object detection methodologies for earthquake 

damage assessment using remotely sensed datasets. 

Nonetheless, these approaches impose significant demands in 

terms of training data volume, computational resources, and 

time-intensive training processes. Therefore, a more practical 

approach might be to use a method that classifies the scenes 

(image patches) to identify areas in large earthquake-affected 

regions where buildings are damaged. This scene classification 

methodology aims to categorize image patches based on their 

inherent scene content. Remote sensing scene classification 

involves the assignment of specific labels to remote sensing 

scene images, accomplished through the application of various 

algorithmic techniques. Deep learning has been widely 

employed in remote sensing scene classification, yielding 

remarkable successes. Notably, the majority of these endeavors 

rely on extensive, large-scale remote sensing datasets, often 

encompassing thousands of image patches for each distinct 

category, to effectively train neural network models (Yuan et 

al., 2023). Additionally, GIS data has proven instrumental in 

delineating the boundaries of building blocks or scenes that are 

to be subjected to classification. For instance, a notable study by 

Ye et al. (2016) employed block information derived from 

urban road vector data in post-earthquake Gaofen-1 images. 

This approach facilitated the construction of a classification 

model, with building blocks as its fundamental units. The 

results of this study demonstrated high classification accuracy in 

assessing the damage degree of groups of buildings. Another 

noteworthy contribution by Ma et al. (2020) introduced an 

improved Convolutional Neural Network (CNN) architecture, 

Inception V3, which seamlessly integrated remote sensing 

imagery with block vector data for evaluating the damage 

degree of building groups within post-earthquake remote 

sensing images.  

2. METHOD 

2.1 Scene Classification Scheme 

The scene classification scheme of this study is two-fold: 

Classifier #1: The initial step involves the creation of a deep 

learning model, employing a variety of architectural 

frameworks. The primary objective of this model is to undertake 

the detection of buildings within the given image patch. To 

accomplish this, the model is meticulously trained on a dataset 

comprising annotated image patches, enabling it to make 

precise determinations regarding the presence or absence of 

buildings. This binary classification task revolves around two 

distinct classes, each signifying either the existence or absence 

of buildings within the image patches. This process allows for 
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the effective filtration of image patches devoid of any buildings, 

taking into account the inclusion of large non-urban areas 

within the Maxar images. 

Classifier #2, building upon the insights gained from the 

optimal model developed for Classifier #1, focuses on a 

subsequent stage of the analysis. Here, we embark on the task of 

refining the predictions made by Classifier #1, specifically 

targeting the subset of scenes that have been classified as 

building scenes. In this phase, we focus on the creation of 

another deep learning model, leveraging the same architectural 

frameworks as utilized in Classifier #1. The primary objective 

of this model is to categorize image patches of buildings into 

two distinct categories: those that depict collapsed structures 

and those that do not. This classification is underpinned by 

meticulously annotated image patches, allowing us to draw a 

clear distinction between areas that have undergone structural 

collapse and those that have remained intact. 

2.2 Data Preparation 

In the aftermath of the Kahramanmaraş earthquake sequence, 

Maxar Technologies furnished very high-resolution satellite 

imagery captured on February 8, 2023. This imagery resource, 

made accessible through the Maxar Open Data Program (2023), 

played a crucial role in facilitating emergency preparedness, 

risk evaluation, monitoring, emergency response coordination, 

damage assessment, and post-disaster recovery endeavors. 

Notably, the Maxar Open Data catalog offers versatile data 

formats, including GeoJSON, CSV, and MosaicJSON, thereby 

affording convenience for data utilization in various 

programming languages. In our research study, we used an 

interactive mapping repository, created by Wu (2023), to access 

and visualize the GeoDataFrame specific to the Kahramanmaraş 

Earthquake catalog, which encompasses Maxar satellite 

imagery information. The GeoDataFrame provides URLs for 

each individual image, enabling seamless retrieval and 

subsequent downloading of these images in TIFF format to the 

working directory for further analysis and utilization. 

In our research, we deliberately designated two contiguous 

Maxar images (with RGB bands of 0.5 m resolution) 

characterized by quadkeys 031133023302 and 031133023303. 

These images, each spanning a substantial area of the Antakya 

City Center, boasted dimensions of 17408×17408 pixels. As 

depicted in Figure 1, a deliberate partitioning strategy was 

employed. This entailed the allocation of two discrete regions 

for training purposes and an additional two distinct areas 

designated for testing, facilitating the annotation of labels 

essential for both classifiers. Furthermore, a sole validation area 

was exclusively set aside for the purpose of model validation. 

Training Area 1 is situated within the city center, characterized 

by a dense concentration of buildings. Conversely, Training 

Area 2 is positioned outside the urban confines, showcasing 

non-building land use patterns (including parks, forests, 

agricultural lands etc.). Both of these delineated regions, 

denoted by red coloring, were chosen to serve as the basis for 

selecting and annotating training samples essential for the 

building/non-building classifier, referred to as Classifier #1. In 

the context of selecting and annotating training samples for the 

collapsed/non-collapsed classifier, denoted as Classifier #2, we 

exclusively leveraged Training Area 1. A similar procedure was 

applied to our test areas, highlighted in yellow. Testing Area 1 

is located within a densely inhabited zone, while Testing Area 2 

occupies a non-inhabited zone. These test areas play a critical 

role in evaluating the predictive performance of Classifier #1. 

However, Testing Area 1 is solely utilized to assess the 

predictive capabilities of Classifier #2. For validation purposes, 

an area demarcated in blue was selected, characterized by a 

blend of both inhabited and non-inhabited land use. In 

summation, our efforts yielded a collection of training, testing, 

and validation image patches. The dataset for training Classifier 

#1 comprised 200 samples for each class (‘Building’ and ‘Non-

Building’) with 90 samples allocated for validation and 60 for 

testing in each class. In total, Classifier #1 utilized 400 samples 

for training, 180 for validation, and 120 for testing. Classifier 

#2, on the other hand, utilized 200 samples for training in each 

class (‘Collapsed’ and ‘Non-Collapsed’), with 90 samples 

designated for validation and 60 for testing in both classes. 

Consequently, Classifier #2 also utilized a total of 400 samples 

for training, 180 for validation, and 120 for testing. The image 

patches were standardized to a size of 224×224 pixels, ensuring 

consistent inputs for our model evaluations. 

Figure 1. Antakya City Center and the areas comprising training, testing, and validation scenes 

2.3 Deep Learning Models 

Given their demonstrated efficacy in previous instances like the 

ImageNet Large Scale Visual Recognition Challenge, well-

established architectures were employed, specifically VGG (16 

and 19), MobileNetV2, ResNet (50, 50V2, 101), and DenseNet 

(121 and 169), for both classifiers. To ensure comprehensive 

model training, the number of training epochs was set at 32 for 
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Classifier #1 and 64 for Classifier #2. Batch sizes for training, 

validation, and testing phases were configured as 8, 4, and 2, 

respectively. The activation function used was softmax, and the 

loss function was categorical_crossentropy. The models were 

trained using Google Colab's T4 GPU, offering 40 cores, 16 GB 

GPU memory, 12 GB RAM, and a maximum memory 

bandwidth of 300 GB/sec. 

ResNet tackles the vanishing gradient issue with skip-

connections, allowing earlier layer outputs to influence later 

ones, aiding gradient flow (He et al., 2016). We employ 

ResNet50, ResNet50V2, and ResNet101, tailored to various 

depths. VGG features increasing depth via stacked 

convolutional layers, with 3x3 filters, ReLU activation, batch 

normalization, and max-pooling. VGG-16 and VGG-19, with 

16 and 19 weight layers respectively, provide deeper 

representations (Simonyan and Zisserman, 2014). DenseNet 

fosters information flow by densely connecting layers. Each 

convolutional layer links to all previous ones, followed by 

ReLU and batch normalization. DenseNet-121 and DenseNet-

169 offer progressively deeper features (Huang et al., 2017). 

MobileNet optimizes for efficiency with MobileNetv2 using 

depthwise separable convolutions, suitable for resource-

constrained devices, while maintaining accuracy. 

2.4 Performance Evaluation 

To evaluate classifier performance, essential metrics are 

utilized. True Positives (tp) indicate accurate classifications of 

buildings and collapsed scenes. True Negatives (tn) denote 

correct identifications of non-building, non-collapsed scenes. 

False Positives (fp) and False Negatives (fn) signify 

misclassifications. A confusion matrix is employed for 

evaluation, crucial for quantifying performance, to compute 

following metrics: Accuracy provides an overall measure of 

how well a classification model correctly predicts both positive 

and negative instances. The formula for accuracy is calculated 

as (tp + tn) / (tp + fn + fp + tn). Precision assesses the accuracy 

of positive predictions made by the model, focusing on the 

instances it identifies as positive. The formula for precision is tp 

/ (tp + fp).  Recall evaluates the model's ability to correctly 

identify positive instances among all actual positive instances. 

The formula for recall is tp / (tp + fn). The F-1 Score is the 

harmonic mean of precision and recall, providing a balanced 

measure of a model's overall performance. The formula for the 

F-1 Score is (2 * Precision * Recall) / (Precision + Recall). 

Evaluation metrics also encompass the Receiver Operator 

Characteristic (ROC) curve and Area under the ROC Curve 

(AUC). ROC curves leverage probability curves to assess 

classifier performance. Higher AUC values denote superior 

accuracy, with values exceeding 0.9 aligning with established 

benchmarks. 

2.5 Predictive Inference 

Following rigorous training and evaluation, the top-performing 

models were selected for predictive inference. The trained 

classifiers play a crucial role in predicting building and 

collapsed scenes in Antakya City and its neighboring 

Iskenderun (image quadkey: 031133021303), both affected by 

the Kahramanmaraş Earthquake sequence. Utilizing these 

classifiers, image patches across these cities are systematically 

assessed, representing a unique approach that relies on 

relatively limited annotated data. This strategic step enhances 

the ability to monitor and analyze urban areas, resulting in 

valuable insights for post-earthquake damage assessment. 

3. RESULTS  

3.1 Classifier #1  

Classifier #1 is designed with the specific objective of 

identifying the existence of buildings within the image patch 

under consideration. As detailed in Table 1, it is evident that all 

employed model architectures have demonstrated commendable 

performance in the classification of both building and non-

building scenes. Notably, each of these models has achieved a 

minimum accuracy of 0.87, a precision of 0.78, a recall of 0.95, 

and an F-1 score of 0.86.  

However, among the array of models assessed, the ResNet-101 

model has exhibited a remarkable level of proficiency, 

consistently outperforming its counterparts across all metrics. 

With an accuracy score of 0.9917, precision at 0.9833, perfect 

recall (1.000), and an impressive F-1 score of 0.9916, the 

ResNet-101 model has emerged as the frontrunner in terms of 

classification prowess. These results highlight the model's 

effectiveness in detecting buildings within the image patch, 

affirming its importance in our classification framework. Most 

models achieved a perfect recall score of 1.000, ensuring no 

false negatives in their predictions. 

 Architecture Performance Metrics 

C
la

ss
if

ie
r 

#
1
 

 Accuracy Precision Recall F-1 Score 

DenseNet-121 0.9583 0.9167 1.0000 0.9565 

DenseNet-169 0.9167 0.8333 1.0000 0.9091 

MobileNetv2 0.9750 0.9500 1.0000 0.9744 

ResNet-50 0.9333 0.8667 1.0000 0.9286 

ResNet-50v2 0.9583 0.9167 1.0000 0.9565 

ResNet-101 0.9917 0.9833 1.0000 0.9916 

VGG-16 0.8750 0.7833 0.9592 0.8624 

VGG-19 0.8833 0.7833 0.9792 0.8704 

C
la

ss
if

ie
r 

#
2
 

DenseNet-121 0.9333 1.0000 0.8824 0.9375 

DenseNet-169 0.8833 1.0000 0.8108 0.8955 

MobileNetv2 0.7000 1.0000 0.6250 0.7692 

ResNet-50 0.7750 0.7667 0.7797 0.7731 

ResNet-50v2 0.9000 0.9500 0.8636 0.9048 

ResNet-101 0.7500 0.5833 0.8750 0.7000 

VGG-16 0.8750 1.0000 0.8000 0.8889 

VGG-19 0.8583 0.9833 0.7867 0.8741 

Table 1. Performance of Architectures Used for Classifier #1 

and #2 

 

Figure 2. (a) ROC Curve of Classifier #1 (ResNet-101) and (b) 

Classifier #2 (DenseNet-121) 
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Furthermore, as depicted in Figure 2(a), plotted ROC curves 

and AUC values (0.9997) show that ResNet-101 model can be 

considered successful in terms of classifying the buildings and 

non-building samples.   

Figure 3 illustrates Classifier #1's prediction outcomes with the 

ResNet-101 model on select test samples. In Figure 3(a), a 

correctly identified building scene (tp) is shown. Figure 3(b) 

displays a misclassified non-building scene (fn), while Figure 

3(c) exhibits an accurately recognized non-building scene (tn). 

 

 

Figure 3. Predictions on Test Samples of Classifier #1 

 

3.2 Classifier #2  

Classifier #2 was specifically designed to identify collapsed 

buildings within the image patch under analysis. As outlined in 

Table 1, most of the employed model architectures have 

exhibited commendable performance in classifying both 

collapsed and non-collapsed scenes. It is noteworthy that each 

of these models achieved a minimum accuracy of 0.70, a 

precision of 0.58, a recall of 0.63, and an F-1 score of 0.70. 

However, among the various models evaluated, the DenseNet-

121 model consistently stood out, surpassing its peers across all 

metrics. With an impressive accuracy score of 0.9333, perfect 

precision at 1.000, a recall of 0.8824, and an F-1 score of 

0.9375, the DenseNet-121 model emerged as the top performer 

in terms of classification capability. These results underscore 

the effectiveness of this model architecture in successfully 

detecting collapsed structures within the image patch, 

solidifying its prominence within our classification framework. 

Additionally, as illustrated in Figure 2(b), the plotted ROC 

curves and the AUC value of 0.9956 demonstrate that the 

DenseNet-121 model can be considered highly effective in 

classifying collapsed and non-collapsed samples. 

Figure 4 presents the prediction results of Classifier #2 utilizing 

the DenseNet-121 model on a selection of test samples. In 

Figure 4(a), we can see two samples correctly classified as 

collapsed scenes (tp). In Figure 4(b), two samples are depicted 

that were incorrectly classified as collapsed scenes (fp). Lastly, 

in Figure 4(c), we highlight two samples that were correctly 

identified as non-collapsed scenes (tn). 

3.3 Predictive Inference Results 

We conducted predictive inference using trained classifiers to 

identify building/non-building scenes and collapsed/non-

collapsed scenes across the entire Antakya and Iskenderun city 

centers. This endeavor had two primary objectives: first, to 

quantify the number of scenes within each category, and 

second, to create maps based on these categories. As per the 

predictions made by Classifier #1, the map depicting 

building/non-building scenes is presented in Figure 5(a) for 

Antakya and Figure 6(a) for Iskenderun. Correspondingly, 

Classifier #2's predictions, which illustrate collapsed/non-

collapsed scenes, can be found in Figure 5(b) for Antakya and 

Figure 6(b) for Iskenderun. Based on these predictions, 

Classifier #2, on the other hand, categorized these scenes into 

2,429 non-collapsed and 449 collapsed scenes in Antakya, and 

2,291 non-collapsed and 290 collapsed scenes in Iskenderun 

(see Figure 7). 
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Figure 4. Predictions on Test Samples of Classifier #2

 

Figure 5. (a) Predictions of Classifier #1 on each scene in Antakya (ResNet-101), (b) Predictions of Classifier #2 on each building 

scene in Antakya (DenseNet-121)
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Figure 6. Predictions for Iskenderun (a) Classifier #1 (ResNet-101), (b) Classifier #2 (DenseNet-121) 

 

 
 

Figure 7. Scene Distribution by City 

 

4. DISCUSSION & CONCLUSION 

In this study, we designed a fully automated system that utilizes 

high-resolution post-earthquake satellite imagery from Maxar to 

classify and map scenes, including both collapsed and non-

collapsed buildings in the city centers of Antakya and 

Iskenderun. Classifier #1, utilizing deep learning models such as 

ResNet-101, demonstrated remarkable accuracy in detecting the 

presence of buildings within image scenes, achieving a 99.17% 

accuracy. This classifier served as the foundation for identifying 

scenes with buildings across the entire city to filter out non-

urban areas. Subsequently, Classifier #2 was employed to 

categorize building scenes into collapsed and non-collapsed 

groups, with the DenseNet-121 model achieving an accuracy of 

93.33% in this task. Ultimately, Classifier #2 identified 2,429 

non-collapsed scenes and 449 collapsed scenes in Antakya, 

along with 2,291 non-collapsed scenes and 290 collapsed scenes 

in Iskenderun. DenseNet-121 being the best model for this 

scene classification task could be attributed to several reasons. 

First, DenseNet is known for its dense connectivity pattern, 

which allows each layer to receive input from all preceding 

layers. This dense connectivity helps in feature reuse and 

learning more complex representations, which can be beneficial 

for scene classification tasks. Second, DenseNet architectures 

often have fewer parameters compared to traditional 

architectures like VGG and ResNet. This parameter efficiency 

can be crucial, especially when the analyst has limited 

computational resources or a smaller dataset. 
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The practicality of scene classification methods, as highlighted 

in the literature review, cannot be overstated. By swiftly 

classifying image patches based on their inherent content, scene 

classification offers a pragmatic and efficient approach to 

identifying earthquake-affected areas, especially in large-scale 

disaster scenarios. This streamlined approach, supported by the 

remarkable successes of deep learning in remote sensing scene 

classification, holds promise as a vital component of rapid 

response efforts following an earthquake event. By simplifying 

the labeling process and expediting damage assessment, scene 

classification emerges as a valuable tool for aiding and rescue 

activities in the aftermath of earthquakes. 

A limitation of our study is the challenge posed by varying 

angles in the imagery, leading to ambiguity in damage 

identification. Hence, Classifier #2 does not assess damage 

extent due to these constraints. Future research should prioritize 

improving building footprint datasets and obtaining ample 

labeled data for specific disaster types. Furthermore, 

investigating deep learning models for building damage 

assessment, especially through unsupervised domain adaptation, 

holds promise. This is critical since disaster scenarios often lack 

labeled data in the target domain. 

CODE 

The code employed in this project is available at: 

 

https://github.com/geoaihub/GeoAdvances-EQ-Scene-

Classification-2023-Kahramanmaras 
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