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ABSTRACT:  

Carbon farming, a crucial strategy in mitigating climate change and promoting sustainable agriculture, requires precise monitoring to 

assess its effectiveness. This study explores the transformative potential of remote sensing data, with a focus on the fusion of 

Multispectral and Synthetic Aperture Radar satellite data, to enhance the precision and efficiency of carbon farming monitoring. Our 

research addresses the fundamental question: How can remote sensing data optimize the monitoring of carbon farming practices? This 

question drives our investigation into the practical applications of remote sensing technology in the context of carbon farming. In this 

article, the research is carried out in Lithuania, which is often covered with clouds or their shadows, so the application of various 

satellite images becomes even more meaningful. The study shows that the use of SAR image fusion for the identification of permanent 

meadows is appropriate and meaningful. The use of MSI image fusion for the identification of intermediate crops and stubble is also 

appropriate, but more research is needed that focuses on distinguishing these practices from other spectrally very similar practices. 

 

 

1. INTRODUCTION 

1.1 Background and Significance 

The concept of "climate change," increasingly observed and 

discussed in recent times, represents one of the most significant 

challenges and threats of this century. More and more scientists 

claim that the signs of climate change are perceptible to nearly 

every inhabitant, most commonly manifested as meteorological 

extremes. These include exceptionally severe storms that 

devastate, incinerate, and flood human settlements, as well as 

habitats of flora and fauna. Climate change is intrinsically linked 

to greenhouse gases (GHGs). These gases, including carbon 

dioxide (CO2), methane (CH4) and nitrous oxide (N2O), have the 

characteristic of trapping heat, thereby elevating the overall 

temperature of the atmosphere (Lackner et al., 2022). The 

primary source of GHG is human activities in different sectors as 

energy, waste, transport, industry and also agriculture. The 

agriculture sector is a different that it not only emits emissions, 

but also has the potential sequestrate part of them from the 

atmosphere through sustainable farming practices (Ellis, 2023). 

Sustainable farming practices that concentrate into carbon 

sequestration are called carbon farming practices. 

Carbon farming emerges as a critical response to this 

environmental crisis. It is an agricultural method aimed at 

sequestering atmospheric CO2 and storing it in soil and 

vegetation. Through practices like improved crop rotation, cover 

crops, conservation tillage, agroforestry, and so on carbon 

farming not only captures CO2 but also enhances soil health, 

biodiversity, and water retention (USDA, 2023). The 

significance of carbon farming lies in its dual role: it contributes 

to mitigating climate change by reducing atmospheric GHG 

levels and simultaneously supports sustainable agriculture. As 

the world grapples with the need to reduce emissions, carbon 

farming presents a nature-based solution that aligns agricultural 

productivity with environmental stewardship. 

In addition to all the benefits of carbon farming for the soil and 

its condition, it is also important to mention that there is growing 

interest in creating incentives for enhancing soil carbon, 

including through emissions trading (Gray et al., 2022), also, 

European Union countries encourage farmers to start or continue 

such activities with various benefits. 

Carbon farming, at the intersection of sustainable agriculture, 

climate change mitigation, and sustainable business necessitates 

accurate continues monitoring to ensure its progress, efficiency 

(Basso, 2022) and kind of control that it do not turn into simple 

greenwashing.  

Analysing scientific literature, several aspects can be 

distinguished why it is important to constantly monitor carbon 

farming practices and their efficiency (Basso, 2022; Brockett et 

al., 2019; Mandal et al., 2022; Melillo & Gribkoff, 2021; Nguyen, 

2021; USDA, 2023).  

Climate change mitigation. One of the main goals today is 

climate change mitigation and carbon farming practices, such as 

improved land management, increased soil organic carbon, 

improved soil health, play an important role in removing CO2 

from the atmosphere, which is one of the main GHG gases. 

Monitoring carbon farming practices helps quantify and validate 

their impact on reducing CO2 levels in the atmosphere. 

Improving Soil Health. Applying carbon farming practices on 

farms not only contributes to climate change mitigation, but also 

has significant benefits for improving soil health. Practices like 

cover cropping and reduced tillage increase organic matter in the 

soil, enhancing its fertility and structure. Continuous monitoring 

provides an understanding of whether the practices are 

effectively contributing to soil health. 

Policy Making. For policy and law makers, continuous 

monitoring of such practices provides essential data to shape 

effective environmental and agricultural policies. Timely and 

correct policy formation ensures compliance with international 

agreements on climate change, such as the Paris Agreement. 

Financial Initiatives and Support. For various economic 

initiatives, such as carbon credits or other support providers, the 

main evidence that carbon farming practices are sustainable and 

effective is continuous monitoring of the situation. In this 

position, monitoring is important for both parties – the entity 

providing support and the entity receiving it. 
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R&D. Continuous monitoring provides scientists with valuable 

data for various ongoing studies related to agriculture, climate 

change or environmental protection. Ongoing monitoring helps 

understand the long-term impact of carbon farming practices and 

allows for the development of new, effective methods. 

Global Food Security. It was mentioned above that carbon 

farming practices help improve soil health. Better soil health 

makes it possible to significantly reduce the use of various 

pesticides and of course to grow a larger amount of crops. 

Therefore, it is important to monitor whether these practices are 

followed and whether they are really effective on a particular 

farm and can meet future food needs. 

Adaptation to Climate Change. In addition to mitigation, it is 

equally important to adapt to the ongoing effects of climate 

change. Healthy soil has more organic matter, which can better 

withstand extreme weather conditions, reducing the vulnerability 

of farms to droughts and floods. 

Carbon and sustainable farming practices in general should 

obviously be constantly monitored, but there are some challenges 

here. 

 

1.2 Challenges in Carbon Farming Monitoring 

Carbon sequestration is a long-term process. It requires 

continuous and long-term monitoring to understand the true 

impact of carbon farming practices, which can be resource-

intensive. The traditional way to assess the effectiveness of 

carbon farming practices is through physical sampling in the 

fields. This method is quite expensive and time-consuming, so 

samples are often taken with a big gap of a year, for example 

every 5 years, because otherwise it is not economically 

worthwhile (Gray et al., 2022). Physical sampling is considered 

to be one of the most accurate methods of determining soil carbon 

and monitoring the overall sequestration situation in fields, but 

this method may also not always be accurate. Soil carbon content 

can vary greatly over short distances and at different depths, 

making it difficult to identify sampling sites that are accurately 

representative on a wider scale. It is important to consider the 

topography of the area, soil type and texture, climate of the area, 

weather, etc. when selecting sampling sites (Brady & Weil, 

2016). 

Physical measurements of the soil are recommended in any case, 

because time to time need accurately as possible to estimate the 

carbon content of the soil, but with the help of remote sensing, it 

is possible to monitor the fields of sustainable farming 

continuously without interruption and see earlier if the applied 

practices are beneficial, if the soil condition, crop condition, and 

yield increase. Several main advantages of using satellite images 

can be distinguished: large territorial coverage, consistent and 

uniform coverage of the territory, economic benefits. The use of 

satellite images also has some disadvantages. As already 

mentioned, carbon farming practices are a long process and 

require long and very frequent monitoring of the ground surface. 

In this situation, priority is given to free and publicly available 

satellite data sources, otherwise monitoring would become an 

extremely expensive process. Currently, the best resolution 

publicly available product is data from the Sentinel satellites. 

Although the Sentinel satellites have a sufficiently high 

resolution (grid size of 10 m), this may still be too low a 

resolution to identify smaller objects, smaller farmers' plots or 

certain practices such as reduced tillage. 

Clouds are also a big problem, which can disrupt continuous 

monitoring. In the territory of Lithuania, there are cases when 

multispectral images may not be available for three or even more 

months due to cloud cover. The loss of intermediate images from 

continuous monitoring can make it difficult to keep track of what 

was done when - for example, when the crop was harvested, 

when the land was cultivated and whether it was cultivated, etc. 

One of the disadvantages is the fact that satellite images "see" 

only the surface of the earth and cannot make any observations 

under the upper layer of the earth. In terms of carbon farming 

practices and soil carbon content, it would be useful to identify 

and monitor the situation at a certain depth in the soil, but satellite 

imagery is not suitable for this. 

Observing carbon farming practices remotely in some cases 

becomes a real challenge for scientists. Some practices may not 

be visually very different from a farmer's normal activities, such 

as intermediate crops and winter crops, or some tillage, such as 

mill-till and mulch-till, may be visually difficult to distinguish. 

 

1.3 Study Objectives and Approach 

This study explores the potential of remote sensing data, with a 

focus on the fusion of multispectral (MSI) and Synthetic 

Aperture Radar (SAR) satellite data, to enhance the precision and 

efficiency of carbon farming monitoring. In this article, the 

research is carried out in Lithuania, which is often covered with 

clouds or their shadows, so the application of various satellite 

images becomes even more meaningful. 

Various remote sensing data such as panchromatic, multispectral, 

hyperspectral, SAR images covering different parts of the 

electromagnetic spectrum are obtained from different earth 

observation satellites. These data can be processed and used to 

solve various tasks, but in many cases, using only one type of 

images, the obtained result may not be sufficient to solve the task. 

Therefore, in order to have a more detailed understanding of the 

observed and analyzed surface of the earth, to obtain more 

information about the observed object, the fusion of different date 

of data becomes an excellent solution.  

Analysing research papers of scientists (Andrade et al., 2021; 

Chanussot et al., 1999; De Laurentiis et al., 2021; Fitrzyk, 2019; 

Higgins et al., 2021; Lu et al., 2010; Marí et al., 2023; 

Metrikaityte et al., 2022; Pal et al., 2019; Shamaoma et al., 2023), 

in which they applied the fused SAR and/or MSI images for land 

use land cover (LULC) segmentation, it can be seen that the 

fusion of multiple data produces more accurate results, but the 

percentage of accuracy varies in some cases quite strongly. This 

may be influenced by the satellite images used, different land 

cover classes distinguished, and different classification 

algorithms used. It is also very important to pay attention to the 

fact that in the analyzed articles, research is carried out on 

territories of various areas, which are located in different 

geographical areas, this may also be the reason why the results 

obtained by different scientists are so different. 

In this study, three different agricultural activities that contribute 

to carbon sequestration in agriculture were selected for analysis - 

permanent meadows, intermediate crops and stubble. These 

activities and their monitoring are of interest to the government, 

farmers and scientists alike.  

Lithuania is committed to the European Union not to cultivate 

and/or restore permanent meadows. Permanent pasture or 

meadow means an area of land which has been under permanent 

grasses or has not been cultivated naturally for five or more years 

and which is intended for the grazing of livestock, for grass or for 

grass production and which can be reseeded without being sown. 

A permanent pasture or meadow may contain individual trees 

and/or shrubs (Nacionalinė mokėjimo agentūra prie Žemės ūkio 

ministerijos, 2023b). Permanent pastures or meadows contribute 

to agricultural carbon sequestration thanks to their extensive root 

system, which stores carbon in the soil. Compared to annual 

crops, permanent meadows have very little soil disturbance, 

which helps to maintain a higher level of organic soil carbon. 

Permanent meadows are also more resilient to climate change, 
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such as drought and extreme weather conditions (Conant et al., 

2001). 

Intermediate crops, also known as cover crops, are also an 

important farming practice to increase carbon sequestration and 

improve soil health. Intermediate crops cover the soil surface 

with their aboveground mass after harvesting the main crops, thus 

reducing soil erosion, absorbing soil nutrients, improving soil 

structure and fertility, and reducing the spread of weeds, diseases 

and pests on arable land (Nacionalinė mokėjimo agentūra prie 

Žemės ūkio ministerijos, 2023a; Poeplau & Don, 2015). Farmers 

who carry out this activity undertake to grow the intermediate 

crops over the winter, i.e. to sow them by 1 September and 

maintain them until 1 March of the following year. The 

intermediate crops may consist of perennial leguminous and bell 

grasses, oilseeds, leguminous crops, bell cereals or a mixture of 

these groups of crops (Nacionalinė mokėjimo agentūra prie 

Žemės ūkio ministerijos, 2023a).  

Leaving stubble on the field after harvest is part of extensive 

farming, where farmers contribute to maintaining biodiversity 

and a stable and strong ecosystem. Leaving stubble standing over 

winter reduces the risk of erosion from wind and water, thus 

protecting the soil and reducing changes in the surface water 

ecosystem. Stubble is a valuable winter food source for wild birds 

collecting spent grain and weed seeds (Lietuvos Respublikos 

žemės ūkio ministerija, 2021). After harvesting, farmers must 

leave the stubble until 1 March next year. 

Farmers must declare these activities each year in order to receive 

financial support under certain European support programs. 

In research by Metrikaityte et al. (2022) shown that fusion of two 

SAR images is very suitable for change detection. This method 

has been applied to the detection of permanent meadows. 

Permanent meadows were chosen as a target because it is 

expected to be unchanging and farmers cannot start active 

farming in such areas. Stubbles and intermediate crops, being 

relatively short and often homogeneous in structure, might not 

provide enough surface roughness contrast to be effectively 

distinguished by SAR, especially compared to taller vegetation 

or structures. SAR images are radar-based and do not provide 

spectral information in the visible and near-infrared range, which 

is crucial for identifying different types of vegetation. The 

spectral signatures of stubbles and intermediate crops in these 

ranges are often used to distinguish them from other land cover 

types, which is not possible with SAR. Optical and multispectral 

imagery, which provides detailed spectral information, is 

generally more suitable for identifying and differentiating 

between various types of crops and agricultural residues.  

 

2. METHOD 

2.1 Data Collection Methods 

In this study were used synthetic aperture radar (SAR) Sentinel-

1 and multispectral (MSI) Sentinel-2 satellite images distributed 

by the European Space Agency (ESA) (Table 1). 

 

Data 

fusion 
Satellite Data type Date 

S
A

R
 d

at
a 

fu
si

o
n
 

Sentinel-1 Level-1 SLC 2019-07-14 

Sentinel-1 Level-1 SLC 2020-07-14 

Sentinel-1 Level-1 SLC 2021-07-15 

Sentinel-1 Level-1 SLC 2022-07-16 

Sentinel-1 Level-1 SLC 2023-07-11 

M
S

I 
d

at
a 

fu
si

o
n
 

Sentinel-2 L2A 2023-08-02 

Sentinel-2 L2A 2023-08-12 

Sentinel-2 L2A 2023-08-15 

Sentinel-2 L2A 2023-10-10 

Sentinel-2 L2A 2023-10-19  

Data 

fusion 
Satellite Data type Date 

Sentinel-2 L2A 2023-10-25  

Table 1. Data sources used in this study 

SAR images are classified as active remote sensing, when 

information about the object under study is obtained by emitting 

a pulse of electromagnetic radiation and recording the return 

reflection of the same pulse from the object under study. 

Multispectral images are classified as passive remote sensing, 

which means that the sensor captures the energy emitted by 

another electromagnetic source (for example, the Sun) and then 

reflected from the object under study. Multispectral images 

consist of several monochromatic images of the same image with 

different spectra, each of which is obtained by photographing the 

object with a different optical filter. According to the selected 

filter, the image is passed only from a certain spectrum of 

electromagnetic wavelengths. Such different monochromatic 

images are called bands. 

Intermediate crops and stubble are activities that take place after 

a crop has been harvested until the next crop is sown.  

 

Figure 1. Calendar of stubbles and intermediate crops seasons  

 

Taking into account the periods of farming activity shown in the 

Figure 1, it is recommended to identify stubble on satellite 

images in August and intermediate crops in October. Permanent 

meadows should be green throughout the year apart from the 

winter season. As SAR satellite images were used to identify 

permanent meadows, which are less dependent on specific 

seasonal variations in vegetation compared to optical imagery, 

the month of July was chosen in the study to identify these areas. 

 

2.2 Data Fusion Technique Overview 

The fusion of remote sensing data products has the purpose to 

make synergistic use of the data. This can have multiple reasons. 

For example, bands of the visible spectrum from one sensor can 

be combined with near infrared bands of another. The result of 

fused data can only be as good as the geographical location of the 

input products. 

The SAR data provided by the ESA have different characteristics 

when compared to the MSI data, both in terms of their physical 

properties and the principle of image acquisition, so both images 

require preprocessing so that they can be combined later.  

An essential part of merging is the transfer of data from one raster 

to another. If the raster distances of the trap pixels and/or the 

orientation do not match, then you need to either select new 

rasters or review the image preprocessing process. Ana B. Ruesca 

and Marco Peters have provided examples of how the pixels of 

two different rasters mismatch in their tutorial (Ruescas & Peters, 

2022). Figure 2 shows examples of three types of overlap: when 

there is a different distance between two raster pixels (Overlap 

1); when there is an overlap between raster pixels (Overlap 2); 

when there is a different orientation of the rasters (Overlap 3). 
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Figure 2. Three types of overlap of 2 rasters with different 

pixel-spacing (Ruescas & Peters, 2022) 

 

Raster mismatch can be resolved by raster resampling. There are 

several resampling algorithms available, such as Nearest 

Neighbor Resampling, Bilinear Interpolation, Bicubic 

Interpolation and Bisinic Interpolation. In this study, SAR and 

MSI images of the same grid size are used, so none of the 

mentioned algorithms will have a significant impact, so the 

Nearest Neighbor resampling algorithm was chosen, which is 

dominant among other scientists. 

In this study, two image fusion techniques were tested to identify 

selected carbon farming practices, two SAR images fusion and 

MSI images of one month fusion. 

Fusion of the SAR images is performed using waves coherence, 

average and difference, and the result is presented as an RGB 

composite. The SAR images from two different dates are 

processed in a standard way, their coherence is calculated and 

additionally the average and difference of the waves also 

calculated. In the next step, all these three parameters are 

presented in an RGB composite, where R is the coherence, G is 

average and B difference. In the resulting RGB image, green 

areas indicate forests and vegetation, yellow areas indicate urban 

areas, blue areas indicate changes that have taken place and 

magenta areas indicate areas where no changes have occurred. 

The fusion of the two SAR images is particularly suitable for 

identifying land cover land use changes that have or have not 

occurred. The areas of permanent meadows should not change 

over time, so fusion of SAR images from different years should 

give the same result - no change. The results of the method tested 

are presented in Section 3.1. 

For the MSI image fusion, Sentinel-2 images were used and 

subjected to standard processing such as atmospheric corrections, 

cloud and shadow removal, discarding of bands not relevant to 

the study and calculation of additional indices. The fusion of the 

images is necessary because of the holes that appear when clouds 

and shadows are cut out. Three additional indices have been 

selected for this study - Normalized Difference Turbidity Index 

(NDTI), Red-Edge Normalized Difference Vegetation Index 

(NDVIre), Modified Normalized Difference Water Index 

(MNDWI).  

The NDTI index is useful for measuring soil and vegetation 

moisture, and provides a good contrast between different 

vegetation types. The NDVIre index reflects strongly on dead 

foliage and is useful for identifying vegetation types, soils and 

urbanised areas, but it also indicates limited water infiltration and 

reflects poorly on green vegetation, which is rich in chlorophyll. 

The MNDWI index provides an excellent contrast between clear 

and turbid water and penetrates relatively well into clear water, 

helping to highlight plants on the surface of water bodies and 

vegetation, reflecting green light more strongly than any other 

colour of the visible spectrum. 

 

𝑁𝐷𝑇𝐼 = (𝑆𝑊𝐼𝑅 1 − 𝑆𝑊𝐼𝑅 2)/(𝑆𝑊𝐼𝑅 1 + 𝑆𝑊𝐼𝑅 2) (1) 

 

𝑁𝐷𝑉𝐼𝑟𝑒 = (𝑅𝑒𝑑𝐸𝑑𝑔𝑒 1 − 𝑅𝑒𝑑)/(𝑅𝑒𝑑𝐸𝑑𝑔𝑒 1 − 𝑅𝑒𝑑) (2) 

 

𝑀𝑁𝐷𝑊𝐼 = (𝐺𝑟𝑒𝑒𝑛 − 𝑆𝑊𝐼𝑅 1)/(𝐺𝑟𝑒𝑒𝑛 + 𝑆𝑊𝐼𝑅 1) (3) 

 

where  SWIR 1 is Sentinel-2 B11 band 

 SWIR 2 is Sentinel-2 B12 band 

 RedEdge 1 is Sentinel-2 B05 band 

 Red is Sentinel-2 B04 band 

 Green is Sentinel-2 B03 band 

 

Supervised classification of MSI fusion images was performed to 

identify the objects to be analysed in the study. Random Forest 

algorithm was used for classification. A sample library from 

different national datasets was created for classification training 

and validation: 

• data on farmers' declarations of land for the years 2021, 

2022 and, separately, for stubble and intermediate 

crops; 

• forest cadastre data; 

• cadastre of rivers, lakes and ponds; 

• Corine Land Cover data; 

• data set on the farmland, cropland and crop types. 

 

Figure 3 shows the library of created samples. The results of the 

classified MSI images are presented in Section 3.2. 
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2.3 Study Area 

An area in north of Lithuania was selected for the study (Fig. 4). 

The study area spans approximately 3883,4 km2 and includes 

both urban and rural landscapes. This territory was chosen 

because of its extensive farming. Crops are the main focus of 

farming in this region due to its high productivity, so there are a 

large number of farmers who have been applying or are starting 

to apply sustainable or carbon farming practices for some time.  

 

 

Figure 4. Study area 

 

 

 

3. RESULTS 

3.1 SAR Data fusion Analysis Findings 

For the identification of permanent meadows, 5 years of SAR 

satellite images of the vegetation peak were selected, from 2019 

to 2023. An annual assessment of the changes in the area was 

carried out, as well as an overall assessment of the whole period, 

i.e. the situation between 2019 and 2020, between 2020 and 2021, 

between 2021 and 2022, between 2022 and 2023 and finally 

between 2019 and 2023. The result of the SAR image fusion is 

presented as an RGB composite, with green indicating forests and 

vegetation areas, yellow indicating urban areas, blue indicating 

changes that have occurred, and magenta indicating areas where 

no changes have occurred. 

The results (Fig. 5) show that SAR image fusion alone is suitable 

for identifying areas of permanent meadows, but that this requires 

time series analysis. The analysis of the fusion images shows that 

in the individual annual images and in the image for the whole 

period, the parcels of land that do not fall within our known areas 

change their values continuously, which vary due to matched or 

unmatched growing seasons, and only those parcels known to be 

permanent meadows retain a constant value. Consistent and long-

term surveys can not only identify new areas of permanent 

meadows, but also assess whether some areas have been 

ploughed or reforested. 

3 pav. Bandų vertės Figure 3. Example of library of created samples for satellite image classification. Source is the type of activity in field; S2_4, 

S2_3…S2_12 are Sentinel-2 Band 4, 3…12; NDTI, NDVIre, NDWI – calculated indexes. 
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Figure 5. Examples of results, of SAR images fusion. Green 

colour – forests and vegetation, blue – changes, 

magenta – no changes, yellow lines – known areas 

of permanent meadows 

 

3.2 MSI Data Fusion Analysis Findings 

For the identification of intermediate crops and stubbles, MSI 

fusion images from August and October 2023 were used. 

Examples of the results are shown in Figure 6. The areas shown 

in the figures are classified into 10 different land cover classes 

according to their reflectance characteristics and structural 

properties.  

In the example in Figure 6, the identified stubble areas can be 

seen in light green, which cover most of this area. A visual 

analysis of the result shows that the classification was successful, 

but additional calculations were performed to assess the 

accuracy. 

 
Figure 6. a – RGB image used for stubble areas identification, b 

– classified image where are identified stubble areas, 

c - RGB image used for intermediate crop areas 

identification, d – classified image where are 

identified intermediate crops 

 

Figure 6 shows an example of the result of the identification of 

intermediate crops. For the identification of intermediate crops, 

an area with active farming activity was specifically selected. 

This area was chosen in order to test whether the use of MSI 

image fusion and additional indexes can distinguish intermediate 

crop areas from other visually similar vegetation areas. 

To assess the accuracy of classified satellite images, were 

employed statistical metrics: the weighted mean F1-score and the 

kappa coefficient.  

To evaluate the results, a weighted average of F1 accuracy was 

used, which is valid for all types of classification algorithms. It is 

useful to observe the F1 value when the distribution of land use 

classes is uneven. The F1 value is composed of precision (P) and 

recall (R) values (IBM, 2023).  

 

𝐹1 = 2 ∗
(𝑃∗𝑅)

(𝑃+𝑅)
      (4) 

 

where P - over the number of true positives (Tp) plus the 

number of false positives (Fp) 

 R - over the number of true positives (Tp) plus the 

number of false negatives (Fn) 

 

𝑃 =
𝑇𝑝

(𝑇𝑝+𝐹𝑝)
      (5) 
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𝑅 =
𝑇𝑝

(𝑇𝑝+𝐹𝑛)
      (6) 

 

F1 values are interpreted as a measure of the overall performance 

of the model, ranging from 0 to 1, where 1 is the best model result 

and below 0,5 the result is minimal. This is balanced by the 

ability of the model to capture positive cases and be accurate 

(Allwright, 2022). 

The kappa coefficient, or Cohen's kappa, measures the agreement 

between the classified image and a reference image, adjusting for 

the possibility of the agreement occurring by chance. A higher 

kappa value indicates a stronger agreement beyond chance. In our 

study, the kappa coefficient provides an essential measure of the 

overall reliability of the classification, giving us insight into how 

effectively our classification model performs in comparison to 

random chance (McHugh, 2012). 

Below provided a list of interpreting the kappa coefficient and 

the reliability of the data, which helps to better understand the 

results obtained: 

- 0-0,2 – None; 

- 0,2-0,4 – Minimal; 

- 0,4-0,6 – Weak;  

- 0,6-0,8 – Moderate; 

- 0,8-0,9 – Strong; 

- above 0,9 – Almost Perfect.   

 

Formula for calculating the Kappa coefficient: 

 

𝐾 =
𝑁 ∑ 𝑋𝑖𝑖−∑ 𝑋𝑖+𝑋+𝑖

𝑛
𝑖=1

𝑛
𝑖=1

𝑁2−∑ 𝑋𝑖+
𝑛
𝑖=1 𝑋+𝑖

    (7) 

 

where  N - amount of calculations 

 n - the number of rows and columns of pixels in 

the matrix 

 Xii - the number of calculations in row i and 

column i 

 X+i, Xi+ - total number of columns and rows 

 

The accuracy results are presented in Table 3. 

 

Class F1 

August result for stubble area. Kappa = 0,87 

Cultivated meadows 0.66 

Stubble 0.61 

Intensive cultivated crops 0.91 

Natural meadows 0.85 

Forests 0.99 

Stagnant water 1.00 

Urban areas 0.89 

Sand dunes 0.99 

Peatlands 0.97 

October result for intermediate crop area. Kappa = 0,86 

Cultivated meadows 0.89 

Intermediate crops 0.84 

Natural meadows 0.66 

Forests 0.90 

Stagnant water 0.97 

Urban areas 0.82 

Sand dunes 1.00 

Peatlands 0.38 

Table 2. Results of classifications of stubble and intermediate 

crop areas 

The accuracy of stubble identification in the classified image on 

August month was quantified using the F1-score, a measure that 

combines precision and recall. Our results indicated an F1-score 

of 0.61 for the stubble class. This suggests a moderate level of 

accuracy, implying that while a majority of the stubble areas were 

correctly identified, there were instances of misclassification or 

missed detections. The kappa coefficient for the entire 

classification process was calculated to be 0.87. This high value 

indicates a strong agreement between the classified results and 

the reference data, suggesting that the overall classification, 

despite the challenges in accurately identifying stubble, was 

generally reliable and consistent. 

The October results when intermediate crops were identified 

show an F1-score of 0.84 for this class. This high score indicates 

a strong accuracy level, suggesting that most intermediate crop 

areas were correctly identified with few instances of 

misclassification. 

The overall kappa coefficient for the classification was 0.86, 

reflecting a high level of agreement between the classified image 

and reference data. This suggests that the classification process 

was generally reliable and consistent, despite the specific 

challenges in accurately identifying intermediate crops.  

 

4. DISCUSION & CONCLUSIONS 

In this study, we utilized SAR and MSI data to identify and 

monitor different carbon farming practices, specifically focusing 

on permanent meadows, stubble, and intermediate crops. The 

results provide valuable insights into the efficacy of these remote 

sensing techniques for agricultural land monitoring. 

The analysis of the results shows that the use of SAR image 

fusion for the identification of permanent meadows is 

appropriate, but requires specific data processing and long-term 

monitoring. At the same time, we can see that the result is good 

and suitable for visual analysis, but the classification of such an 

image can be a challenge because the values of the individual 

grids in the same plot are quite heterogeneous. Additional 

processing may be required to classify this result and use it for 

further calculations and analysis. 

Focusing on the stubble category within the broad land use land 

cover classification system has highlighted the difficulties in 

accurately identifying crop residues using satellite imagery. The 

average F1 score of stubble shows that distinguishing it from 

other land cover types is a difficult task, which is further 

complicated in different agricultural areas. However, the robust 

kappa coefficient shows that our classification model is very 

consistent across categories, which confirms the overall 

effectiveness of our approach. 

To improve the accuracy and reliability of our classification 

process, especially for stubble detection, it is necessary to 

continuously improve and further analyse our algorithms. The 

need to improve stubble classification is underlined by the 

moderate detection performance, which suggests that more 

sophisticated imaging techniques or additional data should be 

included in future research. 

The examination of intermediate crops through an extensive land 

use land cover classification process has provided valuable 

insights. The high F1 score of the model reflects its competence 

in accurately classifying intermediate crops. However, due to the 

lower reliability index, these results have to be interpreted with 

caution as it indicates that the intermediate crop category may be 

misclassified. The significant kappa coefficient reaffirms the 

consistency of the model across different land use land cover 

types. It has also been observed that intermediate crops correlate 

quite strongly with arable land and natural meadows. The 

correlation with arable land is obtained when the attempt to 

identify the intermediate crops was premature, i.e. before they 

had germinated. In contrast, once the crop has sufficiently 

matured, it becomes difficult to distinguish it from grassland. 

These results highlight the challenges of classifying agricultural 

landscapes using satellite images, especially for intermediate 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W9-2024 
GeoAdvances 2024 – 8th International Conference on GeoInformation Advances, 11–12 January 2024, Istanbul, Türkiye

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W9-2024-257-2024 | © Author(s) 2024. CC BY 4.0 License.

 
263



 

crops, which have different spectral characteristics at different 

growth stages and species. To increase the accuracy of 

identification of stubble and intermediate crops in future 

iterations of the model, it will likely be necessary to integrate 

additional spectral data or temporal information in order to more 

effectively identify the unique characteristics of these farming 

activities. 

Future studies plan to include more and more different carbon 

farming practices in the identification process. Given the 

reasonably good results of the SAR fusion analysis, it is planned 

to concentrate on a wider application of SAR imagery, which 

would greatly enrich and facilitate observations in areas such as 

Lithuania, where observations could be carried out continuously 

and independently of meteorological conditions. 
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