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ABSTRACT: 

The accuracy of digital elevation models (DEMs) in urban areas is influenced by numerous factors including land cover and terrain 

irregularities. Moreover, building artefacts in global DEMs cause artificial blocking of surface flow pathways. This compromises 

their quality and adequacy for hydrological and environmental modelling in urban landscapes where precise and accurate terrain 

information is needed. In this study, the extreme gradient boosting (XGBoost) ensemble algorithm is adopted for enhancing the 

accuracy of two medium-resolution 30-metre DEMs over Cape Town, South Africa: Copernicus  GLO-30 and ALOS World 3D 

(AW3D). XGBoost is a scalable, portable and versatile gradient boosting library that can solve many environmental modelling 

problems. The training datasets are comprised of eleven predictor variables including elevation, urban footprints, slope, aspect, 

surface roughness, topographic position index, terrain ruggedness index, terrain surface texture, vector roughness measure, forest 

cover and bare ground cover. The target variable (elevation error) was calculated with respect to highly accurate airborne LiDAR. 

After training and testing, the model was applied for correcting the DEMs at two implementation sites. The corrections achieved 

significant  accuracy gains which are competitive with other proposed methods. There was a 46 – 53% reduction in the root mean 

square error (RMSE) of Copernicus DEM, and a 72 - 73% reduction in the RMSE of AW3D DEM. These results showcase the 

potential of gradient-boosted decision trees for enhancing the quality of global DEMs, especially in urban areas. 

1. INTRODUCTION

For quantitative assessments of environmental processes and 

hazards in urban areas, one of the critical requirements are 

reliable digital elevation models (DEMs). Important urban 

applications of DEMs include change detection, urban 

monitoring (Sirmacek et al. 2010), site selection and suitability 

analysis, and flood simulation and modelling. However, DEMs 

are known to suffer accuracy defects in urban areas due to 

sensor distortions, source data attributes, and errors inherent in 

the DEM production methods. Moreover, building artefacts in 

global DEMs cause artificial blocking of surface flow pathways 

in hydrological modelling (Liu et al., 2021). These errors 

compromise their quality and adequacy for hydrological and 

environmental applications (e.g., flood and watershed 

modelling) where precise and accurate terrain information is 

needed. High/very high-resolution DEMs e.g., from airborne 

light detection and ranging (LiDAR) are often prohibitively 

expensive at the city scale. Several space-borne LiDAR 

missions have been launched in recent years (e.g., ICESat, 

ICESat-2, GEDI), but do not provide wall-to-wall elevation 

coverage. Consequently, medium-resolution synthetic aperture 

radar (SAR) or photogrammetric global DEMs are a viable 

option, especially in data-sparse regions. 

Several methods including machine learning have been 

proposed to improve DEM accuracy in urban areas (e.g., Liu et 

al. 2021; Olajubu et al. 2021; Xu et al. 2021; Hawker et al. 

2022). For example, Kim et al. (2020) integrated Sentinel-2 

multispectral imagery with an artificial neural network (ANN) 

for improving the accuracy of 30 m shuttle radar topography 

mission (SRTM) DEM in dense urban cities. Similarly, Liu et 

 

al. (2021) adopted the random forest model for the correction of 

building artefacts in the MERIT DEM using publicly available 

datasets such as global population density, satellite night-time 

lights and OpenStreetMap buildings. Hawker et al. (2022) 

applied random forest for the removal of forests and building 

offsets from the 30 m Copernicus DEM to produce a globally 

corrected DEM product referred to as FABDEM. 

Tree-based ensemble machine learning algorithms have become 

prominent in the machine learning community, and they have 

proven to be very reliable. Decision trees enable researchers to 

gain a straightforward understanding of the connections 

between objects at varying levels of detail (Miao et al., 2012). 

Moreover, decision trees are reputedly tolerant to 

multicollinearity (Climent et al 2019; Han et al., 2019; Pham 

and Ho, 2021). Despite the appeal of tree-based ensemble 

algorithms, the remote sensing community is yet to harness 

their full potential for DEM correction and/or enhancement. 

Several important terrain conditioning factors and parameters 

were not considered in some previous studies, and there are still 

some unknowns regarding the interdependence between terrain 

parameters and their specific contributions to machine learning 

predictions, when applied to DEM correction.  

Among the tree-based ensembles in use, gradient tree boosting 

which uses decision trees as weak learners has performed 

excellently in numerous machine learning tasks and applications 

(e.g., Samat et al., 2020; Bentéjac et al., 2021; Łoś et al., 2021). 

In this study, the extreme gradient boosting (XGBoost) 

algorithm is adopted. XGBoost is a scalable end-to-end tree 

boosting system that is commonly used by data scientists, 
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provides state-of-the-art results on many problems, and has 

excelled in numerous data mining and machine learning 

challenges (Chen and Guestrin, 2016). One of the reasons that 

XGBoost has been very successful is because it is scalable in 

different scenarios. This study aims to integrate XGBoost with 

terrain and land cover parameters for urban correction of 

Copernicus and ALOS World 3D DEMs in a section of Cape 

Town, South Africa.  

2. METHODS

2.1 Study Area 

The City of Cape Town  in South Africa is a large urban area 

with an intense movement of people, goods and services, high 

population density, extensive developments, industrial areas and 

multiple business districts (Western Cape Government, 2022). 

Cape Town is a complex and diverse city, and the second-

largest city in South Africa, with a population of over four 

million people (Smit, 2020). The sites for this study are selected 

from urban/industrial districts in Cape Town (Figures 1 – 2). 

2.2  Datasets 

2.2.1 Digital elevation models: Two 30 m global digital 

elevation models (DEMs) are considered in this study, the 

Copernicus GLO-30 DEM and ALOS World 3D DEM 

(AW3D30). Copernicus GLO-30 is derived from the 

WorldDEM data. The WorldDEM data product is based on the 

radar satellite data which was acquired during the TanDEM-X 

Mission (ESA, 2020). AW3D30 was released by the Japan 

Aerospace Exploration Agency (JAXA). It was generated from 

the earlier ALOS DEM which was produced at a spatial 

resolution of 5 m with an accuracy of 5 m (standard deviation) 

(JAXA 2017).  

Copernicus GLO-30 and AW3D v3.2 were adopted in this 

study. The City of Cape Town (CCT) airborne LiDAR-derived 

DEM is used as the reference dataset. It was acquired from the 

Information and Knowledge Management Department of the 

City of Cape Town. The height accuracy of the point cloud used 

for generating the DEM is 0.15 m. The LiDAR DEM is 

spatially referenced to the Hartebeesthoek94 horizontal co-

ordinate system and vertically referenced to the South Africa 

(SA) Land Levelling Datum (SAGEOID2010). 

2.2.2 Global urban footprint: The Global Urban Footprint 

(GUF) is a human settlement layer that was created from the 

global synthetic aperture radar (SAR) dataset that was acquired 

during the TanDEM-X (TDM) mission. The methodology for 

deriving the GUF is presented in Esch et al. (2010, 2013). The 

Figure 2. Satellite image close-up view showing buildings 

in the urban area of Cape Town 

Figure 1. A typical urban/industrial setting in Cape Town (Source: 1:50,000 South Africa topographic map series, published by 

the Chief Directorate: National Geo-spatial Information, © 2015) 
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high-resolution 0.4 arc-second (~12 m) GUF 2012 product was 

adopted for this study. 

2.2.3 Terrain parameters and land cover data: To 

characterise the influence of the terrain on the elevation error, 

the following additional input variables which are known 

influencers of DEM error were selected: elevation, slope, 

aspect, surface roughness, topographic position index (TPI), 

terrain ruggedness index (TRI), terrain surface texture (TST), 

vector ruggedness measure (VRM), percentage forest cover and 

percentage bare ground cover. The elevation errors or 

differences ( ) between the DEMs and reference LIDAR 

were calculated as follows: 

  

      (1) 

Where, 

 = elevations from LiDAR DEM. 

 = individual elevations from the global DEMs 

(i.e., Copernicus and AW3D) 

2.3   Extreme Gradient Boosting 

Extreme Gradient Boosting (XGBoost) is a “scalable end-to-end 

tree boosting system” (Chen and Guestrin, 2016). It 

“sequentially builds short and simple decision trees as each tree 

tries to improve the performance of the previous one” (Safaei  et 

al., 2022).  

Gradient boosting combines weak learners into strong learners 

in an iterative fashion (Friedman, 2001; Hastie et al., 2009; 

Deng et al., 2019; Can et al., 2021). The core algorithm of 

XGBoost is its optimisation of the objective function, , 

which consists of the training loss and regularisation (Deng et 

al., 2019; Can et al., 2021): 

    (2) 

Where: 

 – training loss function 

 – regularisation term 

The training loss enables the evaluation of model performance 

on training samples, while the regularisation term helps in 

addressing the model complexity. The regularisation term for  a 

decision tree can be defined as (Deng et al., 2019): 

 

    (3) 

Where, 

 T - the number of leaves in a decision tree 

w - the vector of scores on leaves 

 γ - the complexity of each leaf 

λ - a parameter to scale the penalty 

The objective function for calculating the structure score of 

XGBoost is derived as (Deng et al., 2019): 

   (4) 

where  are independent with each other. The form 

 is quadratic and the best  for a given 

structure is q(x). 

 

2.4  Data Preparation  

To harmonise the horizontal datums, the global DEMs were 

transformed from the geographic to the Universal Transverse 

Mercator (UTM) projection in WGS84. Similarly, the LiDAR 

DEM was transformed from Hartebeesthoek94 to UTM 

WGS84. The vertical datum of the global DEMs and airborne 

LiDAR were harmonised to EGM2008.  

To derive the elevation errors (ΔH), the LiDAR elevations were 

subtracted from the corresponding elevations of the global 

DEMs at specific points. The elevation values, along with the 

values of the elevation error and terrain/land cover parameters 

were extracted from the rasters to csv files, and sorted. This 

resulted in the final set of points used for model training, 

validation and testing split into 80% for training and validation, 

and 20% for testing. After training and testing, the models were 

independently evaluated at external sites referred to as model 

implementation sites A and B respectively. The model 

implementation provides an opportunity for evaluation of the 

prediction capability and accuracy of the trained models. Table 

1 shows the data distribution. 

 

2.5   Model Implementation 

The model was trained using the elevation, urban footprints, 

slope, aspect, surface roughness, topographic position index, 

terrain ruggedness index, terrain surface texture, vector 

ruggedness measure, percentage forest canopy and percentage 

bare ground cover as input parameters, and the elevation error 

as the target variable (or predictand).  

The training was carried out using the default hyperparameters 

and tuned hyperparameters. For the hyperparameter tuning, 

Bayesian optimisation was adopted. The theoretical background 

of Bayesian optimisation is already well documented in the 

extant literature. Essentially, it “provides a principled technique 

based on Bayes Theorem to direct a search of a global 

optimization problem that is efficient and effective” (Brownlee, 

2019). The explanations of the XGBoost hyperparameters are 

provided in the XGBoost library documentation (XGBoost, 

2022). Summarily, the adopted hyperparameters and the search 

space are shown in Table 2. After training and testing, the 

models were saved, loaded and implemented for predicting the 

height errors at implementation sites (A and B) with similar 

terrain characteristics. The predicted elevation errors were 

applied for deriving the corrected DEMs (i.e., 
). 

 

 

Global 

DEM 

No of points 

(Training, 

validation 

and testing) 

No of points  

(Implemen-

tation site A) 

No of points  

(Implemen-

tation site B) 

Copernicus 573377 23041 22988 

AW3D 572374 23041 22988 

Table 1. Distribution of model training, validation, test and 

implementation sites data 
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2.6 Model Performance and Accuracy Assessment 

Learning curves are used as a diagnostic tool for evaluating the 

performance of XGBoost on the training and validation 

datasets. In the following analysis, the learning curves are 

reviewed to assess the representativeness of the training and 

validation datasets, and any possible problems with underfitting 

or overfitting.  Two learning curves are analysed: (i) training 

curve: to give an idea of how well the model is learning, and (ii) 

validation curve which gives an idea of how well the model is 

generalising. Furthermore, the training and test error were 

compared using the root mean square error (RMSE) metric. 

Going further, the accuracy of the corrected DEMs at the 

implementation sites was also assessed using the RMSE. The 

RMSE is very common, and is considered an excellent general-

purpose error metric for assessing numerical predictions 

(Christie and Neill, 2022). The model explainability is 

addressed using feature importance plots. 

3. RESULTS 

3.1 Model Diagnostics 

In the learning curves for both comparisons (default vs. 

Bayesian; Figure 3), the plot of the training and validation error 

decreases with successive epochs. In the models with default 

hyperparameters, the gap between the training and validation 

curves is minimal within the 100 epochs shown. The Bayesian 

tuning of XGBoost increased the number of estimators 

(n_estimators) significantly, thus leading to a higher number of 

training epochs, that ranged from 500 – 800. Even with the 

Bayesian optimised model validation accuracy plateau-ing 

early, it is still better than the accuracy of the default model. 

Early stopping was implemented for both models to stop 

training at any point where there was no further improvement in 

the RMSE after 10 rounds. Expectedly, the training errors at 

both sites are lower than the validation error because the models 

are fit on the training data. The test errors (RMSEs) using 

Name of hyperparameter Name/alias Search space 

No of trees n_estimators (0, 2000) 

Max depth of tree max_depth (1, 10)  

Learning rate learning_rate (0.001, 1) 

Regularisation parameters 

  

reg_alpha (0.001, 10) 

reg_lambda (0.001, 10) 

Others 

  

  

  

subsample (0.001, 1.0) 

colsample_bytree (0.001, 1.0) 

min_child_weight (0.001, 10) 

gamma (0.001, 10) 

Table 2. The uniquely defined hyperparameter search space for Bayesian optimization of XGBoost 

 
Figure 3. Learning curves showing error loss at successive training epochs, (a) Copernicus, default (b) AW3D, default (c)  

Copernicus, Bayesian-optimised (d) AW3D, Bayesian-optimised 
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default hyperparameters are 0.95 m (Copernicus) and 1.27 m 

(AW3D). With Bayesian-optimised hyperparameters, the 

RMSEs reduced to 0.86 m (Copernicus) and 1.17 m (AW3D). 

3.2 Accuracy of Corrected DEMs 

Table 3 shows the accuracy metrics of the original DEMs versus 

corrected DEMs, with default and Bayesian-optimised 

hyperparameters. The corrections achieved more realistic terrain 

representations in both Copernicus and AW3D. The height error 

map (Figure 4) shows a significant reduction in the elevation 

error, after correction. Notable improvements in accuracy are 

observed in Copernicus and AW3D DEMs using both the 

default and optimised models. The optimised model 

outperformed the default model in some cases. At site A, the 

correction to Copernicus DEM achieved a reduction in RMSE 

from 1.859 m to 0.877 m and 0.888 m in the default and 

optimised models respectively.  

At site B, the correction reduced the RMSE of Copernicus DEM 

from 1.470 m to 0.788 m and 0.771 m in the default and 

optimised models respectively. Similarly, there were 

improvements in the accuracy of AW3D (RMSE reduction from 

4.783 m to 1.324 m and 1.316 m respectively at site A; and 

reduction from 3.628 m to 0.987 m and 1.005 m at site B, 

respectively). This represents an improvement factor of 46 – 

53% in Copernicus, and 72 – 73% in AW3D. Other positive 

changes in the corrected DEMs include: 

• Diminution of surface artefacts and discontinuities. 

• Minimisation of building artefacts.  

 

Implementation 

Site 

DEM Original DEM 

RMSE (m) 

Corrected DEM RMSE (m) 

Default hyperparameters Bayesian Optimisation 

A Copernicus 1.859 0.877 0.888 

AW3D 4.783 1.324 1.316 

B Copernicus 1.470 0.788 0.771 

AW3D 3.628 0.987 1.005 

Table 3. Accuracy of original DEMs versus corrected DEMs, default hyperparameters vs Bayesian optimisation 

 
Figure 4. Height error maps of original vs corrected DEMs at site A, Copernicus (a – c) and AW3D (d – f) 
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• Significant improvement in the representation of terrain 

details. 

• Minimisation of elevation error dispersion. 

3.3    Analysis of Feature Importance 

The topographic position index (TPI) and elevation are some of 

the most important features influencing the prediction of 

elevation error by the default and Bayesian-optimised models, 

respectively (Figure 5). With the default model, the top three 

most influential parameters are the TPI, terrain surface texture 

(TST) and elevation, whereas with the Bayesian-optimised 

model the top three most influential features are the TST, VRM 

and elevation.  

Generally, the F-scores of the features in the Bayesian-

optimised version are orders of magnitude higher than the 

default mode, suggesting the capability of Bayesian 

optimisation to exploit more complex interaction between the 

variables for better predictions. However, it should be noted that 

the influence or relevance of features in the outcome of the 

machine learning predictions is also terrain dependent. 

 

 

4. DISCUSSION AND CONCLUSION 

For decades, the issue of positional errors in satellite remote 

sensing datasets has been a major concern of scientists and 

researchers, and remains a recurring theme in the remote 

sensing community all around the world. The presence of 

vertical errors in global DEMs has been a challenge and a 

source of concern to end-users of satellite remote sensing 

products, geomatics practitioners and the remote sensing 

community at large. It compromises the utility of global DEMs 

for diverse applications in the national, regional and global 

domain.  

This research proposes a machine learning approach for the 

enhancement of global DEMs in urban/industrial settings. The 

backbone of the framework is an XGBoost-based feature-level 

fusion of terrain and land cover parameters that incorporates 

Bayesian optimisation for DEM error prediction and correction.  

Generally, the corrected DEMs show several topographic 

improvements such as the diminution of terrain offsets. The 

elevation error dispersion has also been reduced in the corrected 

DEMs. There was a 46 – 53% reduction in the root mean square 

error (RMSE) of Copernicus DEM, and a 72 - 73% reduction in 

the RMSE of AW3D DEM. This reduction in the elevation bias 

is very significant and competitive, when compared with the 

achievements of previous studies focused on urban areas (e.g., 

Olajubu et al., 2021; Hawker et al., 2022). 

The results also show that hyperparameter tuning with Bayesian 

optimisation can yield appreciable gains in accuracy. Thus, 

tuning the hyperparameters of tree-based models is 

recommended as a measure to improve the accuracy of 

predictions. The topographic position index and elevation were 

some of the most influential features in the default and 

optimised models.  

The methodology presented in this study is simple, low-cost and 

easy-to-follow. Moreover, the ensemble framework can learn 

non-linear and multi-variate spatial patterns in urban 

environments. The corrections are implemented on a point-by-

point basis, in contrast to other techniques that only address the 

global bias. The introduced methodology based on the 

integration of  XGBoost, land cover and terrain parameters 

 
Figure 5. Feature importance plots of the input variables for height error prediction, (a) Copernicus, default (b) Copernicus, 

Bayesian-optimised (c) AW3D – default (d) AW3D, Bayesian-optimised 
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shows great potentials for improved hydrological modelling in 

urban catchments.  

Supervised machine learning regression is a powerful and 

effective approach for modelling complex and non-linear terrain 

parameters even in challenging, inaccessible and difficult 

landscapes. Tree-based ensemble machine learning and recent 

implementations of gradient boosting are very powerful for 

reducing the uncertainty in digital elevation datasets. Given the 

sheer amount of environmental, hydrological and geological 

applications that rely on free global DEMs, DEM correction 

will remain a strategic research mandate in the remote sensing 

community. 

The proposed enhancement scheme can be adopted by remote 

sensing research consortia for producing the next urban-

corrected global DEM. Since machine learning algorithms are 

likely to be biased to the landscape characteristics fed into them, 

future research can explore the performance of the proposed 

approach in different landscapes. 

 

While high resolution DEMs are available in many advanced 

countries, low and middle income (LMICs) continue to struggle 

with funding constraints to pursue such high-resolution 

mapping. Thus, the proposed enhancement scheme is  a low-

cost and viable alternative for national mapping agencies in 

LMICs to improve the vertical accuracy of readily available 

global DEMs for use in their national geospatial infrastructure. 
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