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ABSTRACT:

Water quality monitoring is vital in ensuring the suitability of Lake Buhi for aquaculture and recreational activities. However, with
the limitations of traditional monitoring methods, the Bureau of Fisheries and Aquatic Resources (BFAR) cannot comprehensively
characterize the spatial and temporal water quality patterns in the lake. With the development of remote sensing methods, this study
aimed to describe the spatial and temporal variability of turbidity in Lake Buhi in 2020 using Geographically Weighted Regression
(GWR) and the Normalized Difference Turbidity Index (NDTI) applied to Sentinel-2 images. GWR provided accurate estimates of
turbidity, with the results achieving an value of 0.98 for the February image and 0.93 for October. GWR-derived turbidity was𝑅2

used as an alternative to in situ data and then regressed with NDTI values to acquire turbidity models for dry and wet seasons. Upon
validation, the best turbidity model for the dry ( = 0.59, RMSE=0.60, MAE=0.15) and wet ( = 0.49, RMSE = 1.22, MAE =𝑅2 𝑅2

0.25) seasons produced acceptable results, hence, used to assess the spatial and temporal variability of turbidity in the lake
throughout 2020. The analysis revealed that Lake Buhi is more turbid during the dry season than the wet season. Turbidity during the
dry season is governed by its natural water flow, while it is heavily influenced by precipitation during the wet season.

1. INTRODUCTION

Water quality monitoring is an essential part of water resource
management as it allows for the early detection of existing and
emerging problems, the identification of trends in water quality,
and the provision of information for developing management
strategies and regulations. It is mostly employed through
conventional methods, which continue to face the challenges of
being an intensive and costly procedure (Zainurin et al., 2022).

The Bureau of Fisheries and Aquatic Resources (BFAR) Region
V implements the conventional method of acquiring water
quality data in Lake Buhi, which is located in Buhi, Camarines
Sur, Philippines. In 2020, the lake was only sampled for three
months because of the constraints brought about by the
COVID-19 pandemic and poor weather conditions.
Furthermore, only seven sampling points were monitored for
each of these months. The number of in-situ measurements
from these field surveys would not be sufficient to describe and
understand the overall conditions of the lake.

With the limitations of the traditional methods, the study aimed
to introduce a method that would complement the existing data
for turbidity. Turbidity is an important water quality parameter
because it tells us about the amount of dissolved oxygen (EPA,
2021) and the primary productivity of water as it limits light
penetration (Baughman et al., 2015).

This study aimed to characterize the spatial and temporal
variability of turbidity in Lake Buhi in 2020 using Sentinel-2
images and NDTI. Specifically, the study estimated the true
turbidity in the lake using GWR. Then, the GWR-estimated

turbidity was regressed against NDTI values to develop
turbidity models for the dry and wet seasons. The models’
performance was assessed using the coefficient of
determination, , Root Mean Square Error (RMSE), and Mean𝑅2

Absolute Error (MAE). Turbidity maps were generated and
used to describe the spatial and temporal turbidity distribution
in the lake.

The results of this study can provide useful information for
understanding the spatial and temporal variability of turbidity in
the lake that cannot be fully provided by the limited in-situ data
available from BFAR for 2020. The assessment of the spatial
and temporal variation of turbidity in 2020 could aid the
governing body of Water Quality Management Area (WQMA),
Department of Environment and Natural Resources -
Environmental Management Bureau (DENR-EMB), and BFAR
in understanding the conditions of the lake.

2. METHODOLOGY

2.1 Study Area

Lake Buhi (Figure 1), located in Buhi, Camarines Sur,
Philippines, covers an area of approximately 1335 ha (EMB
Region V, 2022). It is primarily used for fish farming and as a
sanctuary for Sinarapan. It has 14 tributaries (Binoya et al.,
2008), including the Iraya River and Sta. Cruz River, that feeds
water, nutrients, and sediments into the lake. The Tabao River,
located in the southwestern part of the lake, is the only river that
flows outward. Thus, the general flow of the water in the lake is
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from the eastern part, where the major inlets are located,
towards the southwestern part.

Lake Buhi watershed was designated as a WQMA in 2013. As
such, concerned agencies are mandated to closely monitor the
lake to prevent its degradation.

Figure 1. Distribution map of sampling stations of BFAR
Region V, some of the tributaries, and the only distributary in

Lake Buhi.

2.2 Data Requirements

2.2.1 In situ data

In-situ turbidity data were obtained from BFAR Region V. They
measure turbidity and other water quality parameters in 15
stations that are used for aquaculture purposes (see Figure 1).
Each station harbors fish cages, thus, when Buhi Local
Government Unit (LGU) reduced the fish cages, the number of
stations also decreased, leading to a minimum of seven
sampling stations observed starting September 5, 2019.

They measure turbidity at three depths: surface, middle, and
bottom. Turbidity values are in the Nephelometric Turbidity
unit (NTU), where higher values signify higher turbidity. In this
study, only the surface measurements were used.

2.2.2 Sentinel-2 images

Sentinel-2 L1C images have 13 spectral bands from VNIR to
SWIR in 10 to 60 m spatial resolutions. It has a swath width of
290 km and a revisit frequency of 5 days. Sentinel-2 L1C
images with a similar sensing date as the field survey of BFAR
in 2020 were downloaded from the Copernicus Open Access
Hub.

In 2020, field surveys were conducted on the following dates:
February 18, May 28, and October 8. This study only focused
on 2020 as it provided the most usable and with the lowest
cloud cover images. An allowance of ±5 days between the
satellite overpass and in-situ sampling is desired to minimize
the possible errors due to the temporal variation of turbidity in
the lake. However, the available usable Sentinel-2 images for
the lake do not permit the strict employment of such restriction.
Only the image for February follows this restriction.

To acquire images for May and October, all images within these
months were inspected for suitability (i.e., lowest cloud cover).
The date with the lowest cloud cover was chosen. The
downloaded satellite image in May differs by 19 days from the

date of the in-situ sampling. Such a time difference may already
have an adverse effect on the accuracy of the results.
Meanwhile, the satellite image acquired for October has an
8-day difference from the date of in-situ sampling. Despite the
relatively shorter time difference, it should be noted that the
Philippine Atmospheric, Geophysical, and Astronomical
Services Administration (PAGASA) reported a tropical
depression named Ofel on October 13, 2020, that caused
tropical cyclone wind signal (TCWS) No. 1 to be hoisted in
Camarines Sur and other provinces. Thus, the occurrence of
tropical depression Ofel was noted in assessing the accuracy of
the results.

To characterize the turbidity of Lake Buhi in 2020, the satellite
image with the lowest cloud cover for the other months was
downloaded. No restriction on the date was implemented as the
result of these months will not be compared to any in-situ
measurements. No image was acquired in September 2020 due
to high cloud coverage for all available satellite images. The
peak typhoon season in the Philippines is from July until
October when at least two typhoons enter the Philippine Area of
Responsibility (PAR). Particularly, three tropical cyclones
entered the PAR during September 2020 (PAGASA, 2023),
which can be the reason why there is high cloud coverage for
all available images in this month.

2.3 Data Processing

Figure 2 shows the overview of the entire methodology of
estimating turbidity, assessing the methods’ accuracy, and
mapping the results.

Figure 2. Methodological workflow for mapping turbidity in
Lake Buhi using Sentinel-2 data.
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2.3.1 Pre-processing of Sentinel-2 images

ACOLITE is an algorithm processor tailored by the Royal
Belgian Institute of Natural Sciences (RBINS) for marine,
coastal, and inland waters and does not require in-situ
atmospheric data to conduct atmospheric correction
(Vanhellemont & Ruddick, 2016). Furthermore, ACOLITE
performs atmospheric correction using the Dark Spectrum
Fitting (DSF) algorithm that is specifically developed for
satellites used in water applications, such as Landsat-8 and S2
satellites. DSF has been proven to perform well in turbid and
productive waters and clear waters (Vanhellemont & Ruddick,
2018).

Eleven Sentinel-2 L1C images from 2020 were pre-processed
using ACOLITE. Processes such as resampling, image
subsetting, land and cloud masking, sunglint correction, and
atmospheric correction were conducted through the ACOLITE
software. Default settings of ACOLITE were used except for
sunglint correction.

Images were resampled to 10 m and subset according to the
geographic coordinates that cover the study area. The
“dsf_residual_glint_correction” was manually set to true in the
settings file. We used the default settings for all related settings
for masking and sun glint correction. Along with the rhot files
from the top of atmosphere reflectance and rhos files from earth
surface reflectance, we also obtained the remote sensing
reflectance (sr−1) for water pixels by specifying “Rrs_*” in the
“L2W parameter” option of the ACOLITE interface. Using
SNAP, all outputs were reprojected to WGS 84/ UTM zone 51N
to accurately facilitate distance components of the GWR
function.

2.3.2 Deriving NDTI values

The Normalized Difference Turbidity Index (NDTI) uses the
green (B3) and red (B4) bands. This index works under the
assumption that if the turbidity level increases, it is expected
that the reflectance of the red band will be greater than that of
the green band. Using the derived remote sensing reflectance
(Rrs), NDTI maps were generated through SNAP’s Band Math
Tool using the equation established by Lacaux et al. (2007):

(1)𝑁𝐷𝑇𝐼 =
𝑅𝑟𝑠

𝑟𝑒𝑑
−𝑅𝑟𝑠

𝑔𝑟𝑒𝑒𝑛

𝑅𝑟𝑠
𝑟𝑒𝑑

+𝑅𝑟𝑠
𝑔𝑟𝑒𝑒𝑛

where = remote sensing reflectance for Band 4𝑅𝑟𝑠
𝑟𝑒𝑑

= remote sensing reflectance for Band 3𝑅𝑟𝑠
𝑔𝑟𝑒𝑒𝑛

2.3.3 GWR Turbidity Estimation

With inadequate in situ data, the study explored the
applicability of GWR-derived turbidity as the alternative for
in-situ turbidity. We used GWR for estimating the true turbidity
because it can provide reliable and accurate estimates even with
only a few points (Chu et al., 2018).

GWR is a regression technique that extends global regression
into local relationships between the independent variable and
dependent variables at different locations. The idea of GWR is
represented by the model (Sulekan & Syed Jamaludin, 2020):

𝑦𝑖 = 𝛽0(𝑢𝑖, 𝑣𝑖) + ∑k 𝛽𝑘(𝑢𝑖 , 𝑣𝑖)𝑥𝑖𝑘 + 𝜀i (2)

where (𝑢𝑖, 𝑣𝑖) = coordinates of 𝑖𝑡ℎ point in space

𝛽𝑘(𝑢𝑖, 𝑣𝑖) = realization 𝛽𝑘(𝑢, 𝑣) at point i

Observations nearby i were weighted more than those further
away, that is:

(𝑢𝑖, 𝑣𝑖) = (𝑿𝑇𝑾(𝑢𝑖, 𝑣𝑖)𝑿)−1𝑿𝑇𝑾(𝑢𝑖, 𝑣𝑖)𝒚 (3)β�
^

where = estimate of 𝛽β�
^

𝑾(𝑢𝒊, 𝑣𝒊) = matrix of 𝑛 by 𝑛 with zero as off-diagonal
elements and the geographically weighted of observed
data for point 𝑖 as diagonal elements

In this study, GWR spatial-analysis regression was
implemented through MATLAB using the 2021 version of the
Econometrics Toolbox of Dr. James P. LeSage. Three weighting
methods can be employed from this toolbox: gaussian,
exponential, and tri-cube. Gaussian and exponential methods
use user-specified or function-computed distance-based
measures in determining the neighboring pixels that will be
used in establishing the local regression equation. In contrast,
the tri-cube weighting method employs the nearest-neighbor
measure (LeSage, 1999). In LeSage’s toolbox, a distance-based
measure for Gaussian and exponential methods is called
bandwidth. In this study, the default Gaussian weighting
method was employed because it has the least processing time
among the three methods. To account for the varying spatial
density of each satellite image, the computed optimal
bandwidth from the GWR function was used in the turbidity
estimation for each image.

In performing the regression, in-situ turbidity was the
dependent variable, while all S2 bands, ratio bands, and their
combinations adopted from various studies, as shown in Table
1, were used as the independent variables. The study also
assessed the use of two explanatory variables, specifically B4 in
combination with the bands in Table 1. B4 was used in several
studies and showed satisfactory results using this band in
estimating turbidity. GWR results with a high , low RMSE,𝑅2

and MAE, and no negative turbidity values were considered in
the model calibration.

2.3.4 Model Calibration and Accuracy Assessment

GWR-derived turbidity values were used as the true turbidity in
establishing a model that relates NDTI to the in-situ turbidity.
Thus, the NDTI values and GWR-derived turbidity were used
as the independent and dependent variables, respectively.

In the regression analysis, 100 distributed and randomly
selected points across Lake Buhi were used. The points were
divided into a 7:3 ratio, 70% for calibration and 30% for
validation. For the calibration of the mathematical model, the
study also evaluated linear and non-linear regression
(exponential) models and different pixel aggregation methods
(no aggregation, median, and mean). The accuracy of the
models was evaluated using RMSE, MAE, and .𝑅2

The calibrated models that provided the highest and lowest𝑅2

RMSE and MAE for each dry and wet season determine the
equation in estimating turbidity from NDTI values. A turbidity
model was generated for the dry and wet seasons since it was
established in several studies that seasonal changes affect
turbidity.
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Ratios/
Combinations Reference Result

B1/B3 Orlandi et al. (2018) = 0.96𝑅2

B8a/B3 Hussein et al. (2022) = 0.78𝑅2

B2/B3

Assegide et al.
(2023)

= 0.86𝑅2

B4/B3 = 0.92𝑅2

B2/B4 = 0.89𝑅2

B3+B5

Ma et al. (2021)

r = 0.83

B3*B5 r = 0.83

(B3*B5)/(B4+B12) r = 0.86

(B3+B5)/(B2/B3) r = 0.80

Table 1. Band ratios and combinations used for turbidity
estimation using GWR.

2.3.5 Spatial and Temporal Analysis

The turbidity models for the dry season and the wet season were
applied to pre-processed Sentinel-2 images. We then normalized
the data using Equation 4 to facilitate the comparison of
turbidity throughout 2020. Maps were created for the spatial
analysis using QGIS v3.16.13. Meanwhile, a line chart showing
the turbidity values throughout 2020 was generated for the
temporal analysis of turbidity.

(4)𝑋
𝑛𝑒𝑤

=
𝑋− 𝑋

𝑚𝑖𝑛

𝑋
𝑚𝑎𝑥

− 𝑋
𝑚𝑖𝑛

where = estimated turbidity value𝑋
= lowest turbidity value𝑋

𝑚𝑖𝑛
= highest turbidity value𝑋

𝑚𝑎𝑥

3. RESULTS

3.1 In-situ turbidity of Lake Buhi

The average turbidity recorded in Lake Buhi from 2018 to 2021
is presented in Figure 3. The lake’s average turbidity ranges
from 1.83 to 4.52 NTU, with the maximum and minimum
average turbidity occurring on September 05, 2019, and
October 8, 2020, respectively.

We downloaded the satellite images with a 5-day difference
from the sampling dates of BFAR from 2018 to 2021. Due to
the presence of clouds, only 15, 14, and 8 points were acquired
for 2018, 2019, and 2020. No usable image was acquired for the
year 2021. Using these available points, values of 0.0280,𝑅2

0.0866, and 0.0003 were acquired for 2018, 2019, and 2020 by
linearly regressing the NDTI values with in-situ turbidity
measurements.

The points from BFAR alone could not provide reliable and
acceptable models for estimating turbidity. Due to this, we

conducted a water sampling field survey on March 25, 2023, to
supplement the available in-situ data from BFAR. However,
because of a technical problem with the SD card of the CLW
instrument, we failed to retrieve the in-situ measurements. The
lack of sufficient data compelled us to employ GWR to estimate
the true turbidity as it allows accurate and reliable estimation
even with the use of a few points (Chu et al., 2018). The
GWR-derived turbidity was used as the true turbidity for the
succeeding processes.

Figure 3. The average turbidity of Lake Buhi from 2018 to
2021 based on the field data from BFAR Region V.

3.2 GWR-derived turbidity models

Out of the seven available in-situ turbidity points for each
month, only five for February, three for May, and four for
October have matched points in the pre-processed satellite
image. Due to the lack of data points, illogical results were
acquired for May, specifically an extremely high value of or𝑅2

mostly a value of 1, indicating a perfect prediction. It is only
fitting to not use the image for May because of the large
difference between the sampling and satellite overpass dates.
Hence, the study focused on acquiring GWR estimates for
February and October, respectively, representing dry and wet
months.

For February, five data points were enough to estimate turbidity
using one and two explanatory variables. However, the four
points for October can only be used in estimating turbidity
using one explanatory variable. To allow the estimation using
two explanatory variables for October, a pixel closest to Sta.
Elena’s location was considered. A pixel closest to Sta. Elena’s
location was added for October and bore its turbidity value. The
distribution of these points ensures that all parts of the lake are
well-represented in GWR processing.

By using one explanatory variable, an up to 0.632 was𝑅2

achieved for February. For October, 10 variables obtained an 𝑅2

greater than 0.8, and up to 0.973 was achieved. Meanwhile,
when two explanatory variables were used, five variables for
February and two for October achieved an greater than 0.8.𝑅2

The highest achieved using two explanatory variables for𝑅2

February and October were 0.986 and 0.979, respectively.

Among all the examined GWR models, only those with 𝑅2

greater than 0.8, low RMSE and MAE, and non-negative
turbidity values were selected for calibration (See Table 2).

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W9-2024 
GeoAdvances 2024 – 8th International Conference on GeoInformation Advances, 11–12 January 2024, Istanbul, Türkiye

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W9-2024-29-2024 | © Author(s) 2024. CC BY 4.0 License.

 
32



Explanatory
variables 𝑅2 RMSE MAE

February

B4, B8a/B3 0.986 1.758 1.480

B4, B2/B4 0.814 2.998 2.474

B4,
(B3*B5)/
(B4+B12)

0.815 0.888 0.697

B4,
(B4+B5)/
(B2/B3)

0.934 8.479 6.976

October
B1/B3 0.894 4.013 2.147

B4, B4/B3 0.934 1.886 1.352

Table 2. GWR models with greater than 0.8 and were used𝑅2

for calibration.

We explored the linear and exponential regression of the
non-aggregated, median, and mean NDTI and GWR-derived
turbidity for calibration. The result showed that the combination
of B4 and (B4+B5)/(B2/B3) consistently achieved the highest

for February (0.45 for non-aggregated, 0.58 for mean, and𝑅2

0.57 for median values). For October, the combination of B4
and B4/B3 attained the highest (0.08 for non-aggregated,𝑅2

0.22 for mean, and 0.19 for median values).

3.3 Regression Modeling of NDTI and GWR-derived
Turbidity

The calibrated models that achieved the highest were𝑅2

validated. The result showed that Equation 5 achieved the
highest RMSE, and MAE for February ( =0.55,𝑅2 𝑅2

RMSE=0.60, and MAE=0.15). On the other hand, the highest
and RMSE were achieved using Equation 6 for October (𝑅2 𝑅2

=0.49, RMSE=1.22, and MAE=0.25).

These equations were used as final models to estimate turbidity
from NDTI values for the dry and wet seasons, respectively:

(5)𝑇𝑢𝑟𝑏𝑖𝑑𝑖𝑡𝑦 =− 4. 2232×𝑁𝐷𝑇𝐼 − 0. 0626

(6)𝑇𝑢𝑟𝑏𝑖𝑑𝑖𝑡𝑦 = 4. 2787×𝑒1.4014×𝑁𝐷𝑇𝐼

where is measured in NTU.𝑇𝑢𝑟𝑏𝑖𝑑𝑖𝑡𝑦

3.4 Spatial and Temporal Analysis of Turbidity in
Lake Buhi

Turbidity maps (Figure 4) show the spatial distribution of
turbidity throughout Lake Buhi. The low-to-high scale is a
relative scale that allows easy inspection of areas that have
lower or higher turbidity values compared to other areas. Only
eight images provided good coverage of the lake that will allow
for proper analysis of the spatial distribution of turbidity.

PAGASA divided the climate of the country into two seasons:
dry and rainy seasons. The dry season occurs from December to
May, while the rainy season is from June to November. This
division was adopted in describing the temporal variation of
turbidity in the lake.

Figure 4. Turbidity maps for Lake Buhi in 2020. No usable
satellite image was downloaded for September. The black areas

represent the masked clouds and cloud shadows.

The turbidity values in the lake range from 0.98 to 4.18 NTU
during the dry season. In December, the turbidity ranges from
1.08 to 2.94 NTU, where the turbidity generally increases from
the northern to the southern area. In January, the turbidity
ranges from 1.05 to 3.26 NTU, with the western lake generally
having relatively higher values compared to the east. In
February, the turbidity values became more varied, with values
ranging from 0.98 to 4.18 NTU. The inlet of the lake from the
Iraya River (north-eastern river) showed lower turbidity
compared to the southern part with higher turbidity values.
Turbidity in March ranges from 1.49 to 3.74, where it can be
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observed that the northernmost and eastern parts of the lake
have lower turbidity, while the southern and western parts of the
lake have higher turbidity. Meanwhile, turbidity ranges from
1.60 to 4.09 NTU in April and 1.59 to 4.17 NTU in May.

During the wet season, the turbidity ranges from 1.05 to 2.84
NTU. In June, the turbidity ranges from 1.05 to 2.17 NTU with
relatively higher turbidity values observed in areas near the
shore and in the southwest area where the fish sanctuary is
located. The turbidity in July ranges from 1.05 to 2.28 NTU and
1.05 to 2.83 NTU in August. Higher turbidity in August can be
observed in the northeastern and southeastern areas of the lake
where the major inlets are located. In October, the turbidity
ranges from 1.62 to 2.67 NTU, with relatively high turbidity
values observed throughout the lake. Lastly, the turbidity in
November ranges from 1.62 to 2.67 NTU, with turbidity
gradually decreasing from the north to the south area of the
lake.

To examine the temporal variation of turbidity, the mean,
median, and P90 threshold values per image were plotted in a
line chart (Figure 5). Generally, we observed that the turbidity
is higher during the dry season. Peaks were observed during
February and May, while troughs during March and June.

Figure 5. Mean, median, and P90 threshold of the turbidity in
Lake Buhi in 2020, estimated from the established turbidity

models.

4. DISCUSSION & CONCLUSION

Acquiring cloud-free images over water bodies has been a
challenge for us, as well as for other water quality studies
including Li et al. (2021). Despite this issue, we were able to
study the turbidity of Lake Buhi with the help of more advanced
remote sensing and mathematical techniques.

ACOLITE proved its suitability in pre-processing Sentinel-2
images even without data about the lake, as shown in this study
and other water quality studies (Caballero et al., 2020). This
atmospheric correction method successfully removed clouds
and sunglints but failed to remove cloud shadows and unwanted
streaks. Cloud shadows should be identified and removed, if
possible, as this can negatively affect the succeeding processes,
such as estimating water quality parameters. The streaks
observed in the images were attributed to systematic or internal
errors in the sensors. The Data Quality Report-L1C MSI of the
S2 MSI ESL Team in 2022 identified several product anomalies
on Sentinel-2 L1C images. Corrections for such errors are not
within the capabilities of ACOLITE.

GWR showed its capability to estimate turbidity even using
only five points. GWR achieved an as high as 0.98 using two𝑅2

explanatory variables for February, while it achieved an as𝑅2

high as 0.97 using one and two explanatory variables for
October. Most variables that achieved an greater than 0.8𝑅2

include the bands B3, B4, and B5. This result is consistent with
several studies. The findings of Maimouni (2022) indicate that
B3 and B4 have a highly significant relationship with in-situ
turbidity, with B4 obtaining the strongest correlation coefficient
of 95% and an =0.89. Pisanti (2022) further demonstrated the𝑅2

potential of B3 and B4, and B2 as well, as they showed a good
correlation with the in-situ data. Meanwhile, Sebastiá-Frasquet
(2019) found B5 suitable for identifying turbidity patterns in
inland waters.

In the absence of sufficient in-situ turbidity data, GWR-derived
turbidity can be used as an alternative. Due to its satisfactory
results, GWR can be used to estimate turbidity instead of linear
regression, especially if in-situ data is available. Chu et al.
(2018) showed the superiority of GWR over linear regression in
estimating turbidity because it takes into consideration the
spatial variability of turbidity throughout the water body.

Estimating turbidity from Sentinel-2 using NDTI can provide
relatively good estimates, achieving =0.57 for the dry season𝑅2

and =0.22 for the wet season. Relatively lower can be𝑅2 𝑅2

attributed to the 8-day difference between the satellite overpass
and field survey dates and the occurrence of a tropical
depression within that timeline. Perrone et al. (2021) found no
negative effect on the accuracy of their predictive models using
such a time window, however, only under stable weather
conditions.

Using the established turbidity models, this study confirmed
that the turbidity in Lake Buhi is low and within acceptable
standards based on the criteria of the Alaska Department of
Environmental Conservation (2016) of less than 5 NTU. This
criterion is being adopted by BFAR Region V in assessing the
acceptability of the turbidity concentration in the lake. The
standard deviation (SD) for the data in Figure 3 is 0.846.
Generally, data with SD values less than 1 are considered to
have low variation. Thus, the turbidity in the lake can be
considered low and invariable across time.

With the use of the turbidity maps, we found that the turbidity
in the lake is higher during the dry season than in the wet
season. Lower turbidity during the wet season can be explained
by the higher water level (Li & Xia, 2023) and enhanced water
exchange (Liu et al., 2023) which decreases the sediment
settlement and resuspension.

During the dry season, the spatial distribution of turbidity in
Lake Buhi is governed by the general flow of the water. The
turbidity is relatively low in the inlets (northeast and southwest
areas), while it is higher near the outlet (southwest part of the
lake). Lower turbidity near the inlets can be explained by the
low river flow rate during the dry season which does not cause
the suspended materials to be stirred up from the lake bed
(Swenson et al., 2018). Relatively high turbidity near the mouth
of the Tabao River can be attributed to the natural flow of the
water that causes the sediments to build up near this area.
Another possible factor for the higher turbidity in the southern
area is the land use/land cover of the area. Vegetation reduces
the occurrence of soil erosion, which causes higher
concentrations of suspended solids in the water and thus,
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decreases turbidity. Meanwhile, urban areas increase pollution
due to industrial and domestic waste which contributes to the
increase of water turbidity (Li & Xia, 2023).

The distribution of turbidity during the wet season is highly
influenced by the increased precipitation that increases the
water exchange, transport, and consequently, turbidity (Liu et
al., 2023). High water exchange and transportation explain the
reduced turbidity variation during this season. We also
consistently observed higher turbidity values in the northeastern
area of the lake, where the confluence of the Iraya River and the
lake can be found. This can be attributed to an increased flow
rate during the wet season, which can cause suspended
materials to be stirred up from the lake or river bed.

Fish cages are located in the northern area of the lake and a fish
sanctuary for Sinarapan repopulation is found in the
southeastern part. We did not observe any particular pattern of
turbidity distribution in these areas. A similar observation was
shown in the study of Osei et al. (2019) where there was no
significant difference between the turbidity in areas with or
without fish cages. This led us to conclude that the effect of fish
cages and sanctuaries on the turbidity in the lake may be
insignificant.

Overall, the use of GWR and NDTI in estimating turbidity from
Sentinel-2 images achieved relatively good results that can be
used to complement the presently available data and to further
improve our understanding of the spatial and temporal variation
of turbidity and other water quality parameters in Lake Buhi.

The spatial and temporal observations could be further
enhanced if the available images provided good coverage of the
lake and covered all months of the year. The suitability of
Landsat-8 or the fusion of Landsat-8 and Sentinel-2 for
providing such images can be explored in future studies.

Turbidity estimates could also be improved if enough in-situ
turbidity data was available and satellite images were
synchronized with the field survey dates. With this, we
recommend that the monitoring of the lake be conducted on or
close to the day of the Sentinel-2 or other sensor’s overpass. If
possible, the study also recommends that the lake be monitored
at least once a month or more, especially in the occurrence of
extreme weather disturbances and fish kills, to capture the
variation in water quality brought about by these events. The
Manual on Ambient Water Quality Monitoring issued through
EMB Memorandum Circular 2008-008 already requires a
sampling frequency of 10 months in a year for primary
parameters, such as Total Suspended Solids, for trend
monitoring. Additional and adjusted monitoring would be a
great help in improving the reliability of studies exploring
trends in water quality.

Supplemental information about the hydrodynamics and
bathymetry of the lake can further improve the reliability of the
assessment. Also, the effect of rainfall on the turbidity patterns
of the lake can be better understood with the use of precipitation
data.

ACKNOWLEDGEMENTS

We would like to extend our gratitude to BFAR Region V for
providing us with their available in-situ turbidity data and
sharing with us the methods they employ to acquire water data
from Lake Buhi. Buhi LGU and CENRO Iriga City Buhi

Wildlife Sanctuary also provided their assistance for the
conduct of our field survey in the lake.

REFERENCES

Alaska Department of Environmental Conservation. (2016,
September 9). Listing Methodology for Determining Water
Quality Impairments from Turbidity GUIDANCE FINAL
September 9, 2016 Alaska Department. Alaska Department of
Environmental Conservation. Retrieved from
https://dec.alaska.gov/media/16352/turbidity-listing-methodolo
gy-final-09-09-2016.pdf

Assegide, E., Shiferaw, H., Tibebe, D., Peppa, M. V., Walsh, C.
L., Alamirew, T., & Zeleke, G. (2023). Spatiotemporal
Dynamics of Water Quality Indicators in Koka Reservoir,
Ethiopia. Remote Sensing, 15(4), 1155.
https://doi.org/10.3390/rs15041155

Baughman, C., Jones, B., Bartz, K., Young, D., & Zimmerman,
C. (2015). Reconstructing Turbidity in a Glacially Influenced
Lake Using the Landsat TM and ETM+ Surface Reflectance
Climate Data Record Archive, Lake Clark, Alaska. In Remote
Sensing (Vol. 7, Issue 10, pp. 13692–13710). MDPI AG.
https://doi.org/10.3390/rs71013692

Binoya, C. S., dela Trinidad, J. V., Estrella, A. B., Llesol, C. B.,
& Osea, G. B. (2008). Managing and Conserving Lake Buhi An
Agroecosystems Analysis for Sustainable Development.
SEARCA.

Caballero, I., Román, A., Tovar-Sánchez, A., & Navarro, G.
(2022). Water quality monitoring with Sentinel-2 and Landsat-8
satellites during the 2021 volcanic eruption in La Palma
(Canary Islands). Science of The Total Environment, 822,
153433. https://doi.org/10.1016/j.scitotenv.2022.153433

Chu, H. J., Kong, S. J., & Chang, C. H. (2018). Spatio-temporal
water quality mapping from satellite images using
geographically and temporally weighted regression.
International Journal of Applied Earth Observation and
Geoinformation, 65, 1–11.
https://doi.org/10.1016/J.JAG.2017.10.001

EMB V. (2022). 2021 Regional State of the Brown
Environment Report. Retrieved from
https://r5.emb.gov.ph/wp-content/uploads/2022/06/EMB-5-202
1-Regional-Annual-State-of-Brown-Environment-Report.pdf

EPA. (2021, July). Factsheet on Water Quality Parameters.
https://www.epa.gov/system/files/documents/2021-07/paramete
r-factsheet_turbidity.pdf

Hussein, N. M., Assaf, M. N., & Abohussein, S. S. (2023).
Sentinel 2 analysis of turbidity retrieval models in inland water
bodies: The case study of Jordanian dams. The Canadian
Journal of Chemical Engineering, 101(3), 1171–1184.
https://doi.org/10.1002/cjce.24526

Lacaux, J. P., Tourre, Y. M., Vignolles, C., Ndione, J. A., &
Lafaye, M. (2007). Classification of ponds from high-spatial
resolution remote sensing: Application to Rift Valley Fever
epidemics in Senegal. Remote Sensing of Environment, 106(1),
66–74. https://doi.org/10.1016/j.rse.2006.07.012

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W9-2024 
GeoAdvances 2024 – 8th International Conference on GeoInformation Advances, 11–12 January 2024, Istanbul, Türkiye

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W9-2024-29-2024 | © Author(s) 2024. CC BY 4.0 License.

 
35



Lesage, J. P. (1999). The Theory and Practice of Spatial
Econometrics.
https://www.spatial-econometrics.com/html/sbook.pdf

Li, X., Ling, F., Cai, X., Ge, Y., Li, X., Yin, Z., Shang, C., Jia,
X., & Du, Y. (2021). Mapping water bodies under cloud cover
using remotely sensed optical images and a spatiotemporal
dependence model. In International Journal of Applied Earth
Observation and Geoinformation (Vol. 103, p. 102470).
Elsevier BV. https://doi.org/10.1016/j.jag.2021.102470

Li, J., & Xia, C. (2023). Drivers of Spatial and Temporal
Dynamics in Water Turbidity of China Yangtze River Basin.
Water, 15(7), 1264. https://doi.org/10.3390/w15071264

Liu, X., Xia, J., Zu, J., Zeng, Z., Li, Y., Li, J., Wang, Q., Liu, Z.,
& Cai, W. (2023). Spatiotemporal variations and gradient
functions of water turbidity in shallow lakes. Ecological
Indicators, 147, 109928.
https://doi.org/10.1016/j.ecolind.2023.109928

Ma, Y., Song, K., Wen, Z., Liu, G., Shang, Y., Lyu, L., Du, J.,
Yang, Q., Li, S., Tao, H., & Hou, J. (2021). Remote Sensing of
Turbidity for Lakes in Northeast China Using Sentinel-2 Images
With Machine Learning Algorithms. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 14,
9132–9146. https://doi.org/10.1109/JSTARS.2021.3109292

Maimouni, S., Moufkari, A. A., Daghor, L., Fekri, A., Oubraim,
S., & Lhissou, R. (2022). Spatiotemporal monitoring of low
water turbidity in Moroccan coastal lagoon using Sentinel-2
data. Remote Sensing Applications: Society and Environment,
26, 100772. https://doi.org/10.1016/J.RSASE.2022.100772

Nieves, P. M., Mendoza, A. B., Rey, S., & Bradecina, B. (2020).
Occurrence and recurrence: the fish kill story in Lake Buhi,
Philippines (Vol. 13, Issue 1). http://www.bioflux.com.ro/aacl

Olaño, V. L., & Montojo, U. (2005). Investigation of massive
fish kill in Lake Buhi, Camarines Sur, Philippines.
SEAFDEC/AQD Institutional Repository Home.
https://repository.seafdec.org.ph/handle/10862/6151

Orlandi, M., Silvio Marzano, F., & Cimini, D. (2018). Remote
sensing of water quality indexes from Sentinel-2 imagery:
development and validation around Italian river estuaries. In
Geophysical Research Abstracts (Vol. 20).

Osei, L. K., Asmah, R., Aikins, S., & Karikari, A. Y. (2019).
Effects of Fish Cage Culture on Water and Sediment Quality in
the Gorge Area of Lake Volta in Ghana: A Case Study of Lee
Fish Cage Farm. Ghana Journal of Science, 60(1), 1–16.
https://doi.org/10.4314/gjs.v60i1.1

PAGASA (2023, February). ANNUAL REPORT ON
PHILIPPINE TROPICAL CYCLONES 2020. PAGASA Public
Files. Retrieved from
https://pubfiles.pagasa.dost.gov.ph/pagasaweb/files/tamss/weath
er/tcsummary/PAGASA_ARTC_2020.pdf

Perrone, M., Scalici, M., Conti, L., Moravec, D., Kropáček, J.,
Sighicelli, M., Lecce, F., & Malavasi, M. (2021). Water Mixing
Conditions Influence Sentinel-2 Monitoring of Chlorophyll
Content in Monomictic Lakes. Remote Sensing, 13(14), 2699.
https://doi.org/10.3390/rs13142699

Pisanti, A., Magrì, S., Ferrando, I., & Federici, B. (2022). SEA
WATER TURBIDITY ANALYSIS FROM SENTINEL-2
IMAGES: ATMOSPHERIC CORRECTION AND BANDS
CORRELATION. The International Archives of the
Photogrammetry, Remote Sensing and Spatial Information
Sciences, XLVIII-4/W1-2022, 371–378.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-371-
2022

Sebastiá-Frasquet, M.-T., Aguilar-Maldonado, J. A.,
Santamaría-Del-Ángel, E., & Estornell, J. (2019). Sentinel 2
Analysis of Turbidity Patterns in a Coastal Lagoon. Remote
Sensing, 11(24), 2926. https://doi.org/10.3390/rs11242926

Sulekan, A., & Syed Jamaludin, S.S. (2020). Review on
Geographically Weighted Regression (GWR) approach in
spatial analysis. Malaysian Journal of Fundamental and
Applied Sciences. 16. 173-177.
https://doi.org/10.11113/mjfas.v16n2.1387.

Swenson, H., Baldwin, H., & Cordy, G. (2018, June 6).
Turbidity and Water | U.S. Geological Survey. USGS.gov.
Retrieved from
https://www.usgs.gov/special-topics/water-science-school/scien
ce/turbidity-and-water#overview

Vanhellemont, Q., & Ruddick, K. (2016). ACOLITE processing
for Sentinel-2 and Landsat-8: atmospheric correction and
aquatic applications.

Vanhellemont, Q., & Ruddick, K. (2018). Atmospheric
correction of metre-scale optical satellite data for inland and
coastal water applications. Remote Sensing of Environment,
216, 586–597. https://doi.org/10.1016/j.rse.2018.07.015

Zainurin, S. N., Wan Ismail, W. Z., Mahamud, S. N. I., Ismail,
I., Jamaludin, J., Ariffin, K. N. Z., & Wan Ahmad Kamil, W. M.
(2022). Advancements in Monitoring Water Quality Based on
Various Sensing Methods: A Systematic Review. International
journal of environmental research and public health, 19(21),
14080. https://doi.org/10.3390/ijerph192114080

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W9-2024 
GeoAdvances 2024 – 8th International Conference on GeoInformation Advances, 11–12 January 2024, Istanbul, Türkiye

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W9-2024-29-2024 | © Author(s) 2024. CC BY 4.0 License.

 
36




