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ABSTRACT: 

 

Signal strength maps are of great importance for cellular system providers in network planning and operation. Accurate prediction of 

signal strength is important for solving problems such as link quality. In this study, Received Signal Strength (RSS) prediction 

model is proposed for the 900 MHz band in the Van Yüzüncü Yıl University campus environment by using machine learning 

regression methods such as K- Nearest Neıghbours (KNN) and Support Vector Regression (SVR) together with Geographic 

Information Systems. For the training of this model, signal strength values taken from the RF Spectrum Analyser at different 

locations and distances were used. In addition, spatial data sets such as the digital elevation model, location of base stations and 

measurement stations, building heights and location, and land use/cover were used in the model. The effect of these data sets on RSS 

power is included in the model. The model aims to predict RSS accurately, visualize the estimated signal strength, and analyze the 

signal field strength coverage. Different kernels from the SVR model such as Polynomial, , and Sigmoid were tested. To increase the 

success of the model, appropriate parameter values were selected and configured according to SVR and KNN methods. For 900 

MHz, the performances of SVR and KNN models were compared and the results of the models were verified using root mean 

squares (RMSE). Among the measured data, the lowest prediction is found in KNN Manhattan. According to the results of the 

simulation was observed that the SVR model created with spatial data performs better for Signal Strength. Finally, the lowest RMSE 

value (1.71 dB) was obtained from the Sigmoid kernel in the best signal strength estimation SVR model. The SVR model is 

recommended for Campus Area signal strength estimation. 

 

 

1. INTRODUCTION 

Cellular planning and optimization have become essential in 

wireless communication because of their importance in signal 

characterization. The solution to many decisions and planning 

issues in modern communication networks depends on accurate 

coverage estimates (Ojo et al., 2022). According to several 

studies, predicting network coverage areas is challenging in 

theory (Amaldi et al., 2008; Y. Wang et al., 2010). Mobile 

network coverage prediction, on the other hand, can be solved 

mathematically by utilizing computer algorithms and beginning 

assumptions for the planning of communication networks 

(Erunkulu et al., 2020). In cellular propagation models used for 

coverage estimation, obstacles in the signal path between the 

transmitter and receiver significantly affect the received signal 

strength (Anderson et al., 2008). Radio waves cannot reach the 

receiver directly along the Line of Sight (LoS) path due to 

obstacles such as buildings, trees, hills, and mountains. This 

situation that occurs between the base stations, as well as the 

receiver, is known as signal strength loss (Anusha et al., 2017). 

 

In recent years, machine learning methods have been considered 

to play an important role in cellular communication. Machine 

learning-based models have started to be used more for 

coverage estimation problem than experimental and 

deterministic signal path loss models due to the extensive data 

used to train the model (Moraitis et al., 2021a) and (Nuñez et 

al., 2023). 

 

Signal strength estimation based on SVR and KNN methods in 

the literature, 1800 and 2100 MHz  (Gideon et al., 2017), 853 

MHz (A Timoteo et al., 2014) in urban areas as well as for 

indoor environments (Ault et al., 2005) and (Polak et al., 2021). 

On the basis of the current literature, a few research studies 

integrate spatial data into different machine-learning techniques 

for predicting signal strength in the campus area. 

Geographic Information System (GIS) is a suitable tool to 

address the requirements of cellular systems and assess precise 

signal strength coverage areas. Furthermore, GIS is effective in 

solving complex issues that cellular network planning engineers 

deal with, such as optimal frequency planning by the terrain 

environment (Wagen and Rizk, 2003). Among the reviewed 

scientific literature, there are many studies on signal strength 

applied for coverage analysis in cellular network 

communication. In the literature, many researchers have used 

geostatistical interpolation techniques, especially the Kriging 

method (Braham et al., 2017) and (Mezhoud et al., 2020) and 

(Ponce-Rojas et al., 2011), for coverage estimation. In studies in 

the literature, GIS has been used to visualize the propagation 

and coverage of signals and to perform spatial analyses in the 

planning of networks (Q. Wang et al., 2020).  Moreover, in the 

literature, some studies develop solutions to the problem of 

signal weakness caused by the unequal distribution of base 

stations (Chen et al., 2012) and show the spatial pattern of 

telecommunication signal quality and speed (Septian et al., 

2021). 

In this study, signal strengths were calculated using K- Nearest 

Neıghbours (KNN) and Support Vector Regression (SVR) 
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machine learning methods. Signal strength estimation is a 

supervised regression problem therefore it can be solved by 

supervised machine learning algorithms such as K- Nearest 

Neıghbours (KNN) and Support Vector Regression 

(SVR)(Zhang et al., 2019). Selecting the input data 

appropriately while setting up the model makes the model more 

efficient and flexible as well as helping to reduce the 

complexity of the solution. The first step is to create preliminary 

features based on knowledge of electromagnetic wave 

propagation. Given the influence of the base station, 

geographical location, survey stations, environment, and other 

factors on the received signal strength, a large number of 

characteristics are needed to characterize these factors. This 

study aims to support the planning of base stations in the 

campus area and to automatically calculate the signal strength 

with SVR and KNN regression methods by integrating spatial 

data such as signal measurements, land use, and building 

heights into the model. Van Yüzüncü Yıl University Campus 

area has been selected as the study area. In this study, 

Geographic Information Systems (GIS) and machine learning 

methods such as SVR and KNN are integrated. A comparison of 

the 900 MHz frequency band received signal strength estimates 

of the proposed models is presented. The contributions of this 

study are summarised as follows: 

Support vector regression (SVR) and K- Nearest Neıghbours 

(KNN) models have been developed with comprehensive data 

sets to accurately predict signal strength in cellular systems. The 

tuning of various hyperparameters of the models is discussed to 

optimize the SVR and KNN machine learning algorithms for 

accurate system design. The performances of SVR and KNN 

machine learning are compared using RMSE and R-squared. It 

was observed that spatial results were obtained by including the 

spatial data created using Geographic Information Systems 

(GIS) in the model. In addition, a signal strength map of the 

campus area has been created using spatial analysis and 

visualization approaches provided by GIS. The rest of this study 

is organised as follows. In Section II, the study area, the data 

used and the methods applied has been discussed. In section III, 

the model development process, including data processing, 

model training, and model hyperparameter tuning has been 

described. Discussion and results have been presented in 

Section IV. Section V has summarized the conclusion of the 

study. 

 

2. METHODOLOGY 

2.1 Study Area and Measurement Setup 

Van Yüzüncü Yıl University campus area has been selected as 

the study area. Signal measurements have been performed in the 

campus area to accurately train and test the machine learning 

model used in this study. Three different types of data sets were 

used as input data to the model in order to implement the 

simulation. Data set: Characteristics of base stations; location, 

height, antenna power, and gain and frequency, Geographic 

Information; Digital Elevation Model (DEM) and Land 

use/cover map, building height, Characteristics of mobile 

stations; location, height, distance from the base station and 

measured signal strength at the location.  

Van Yüzüncü Yıl University is located in the city of Van in the 

Eastern Anatolia region of Turkey. The elevation of the campus 

area varies between 1642-1725 metres. There are four existing 

base stations in the study area and test measurements have been 

taken at 250 locations within the campus. At each location, 10 

measurements have been taken for 900 MHz.  The total number 

of samples is 2500. Information about the study area is shown 

in Figure 1. The land use/cover data used in the study has been 

obtained using CORINE (Coordination of Information on The 

Environment) infrastructure. The data obtained has been 

simplified from the CORINE classification system and the study 

area has been divided into 4 classes. In this study, Python 

software has been used to implement analyses using Support 

Vector Regression (SVR) and K-Nearest Neıghbours (KNN) 

methods. Additionally, ArcGIS 10.8 Geographic Information 

System software has been employed to visualize signal strength 

maps and perform spatial analyses. 

 

Figure 1. Location map of Van YYU campus area. 

 

2.2 Model Developments 

This section introduces the methodology and model 

developments. Two machine learning-based models were 

introduced: Support Vector Regression and K-Nearest 

Neighbours. These models have been adapted to signal strength 

prediction, as in a supervised learning regression problem. Both 

models have been trained using the same datasets to conduct a 

justifiable comparison of their performances. 

 

2.2.1 Support Vector Regression (SVR) Model  

SVR is used successfully to address nonlinear regression issues 

for signal strength prediction. The fundamental concept 

involves transforming input data from a space with lower 

dimensions to a space with higher dimensions using non-linear 

functions. Subsequently, the objective is to identify an optimal 

hyperplane within this high-dimensional feature space, aiming 

to maximize the distance of the samples along this hyperplane. 

(Moraitis et al., 2021a). The following linear expression gives 

the specified hyperplane. 

                    
                                                                    (1) 

 

where    w = standard vector that controls the hyperplane's 

direction. 

  b = bias 

  x = input vector 

                φ(.)= function for non-linear mapping 

After that, using Lagrange multipliers (i.e. support vectors), the 

estimation function can be determined as follows: 

 

                                         (2)                                

 

Where     K(.,.) = Kernel function 
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               ai & ai
* = Support vectors 

 

The kernel function is the most important feature determining 

the model training effect in the Support Vector Regression 

(SVR) method. Therefore, the most appropriate kernel function 

should be selected according to the data set. This paper 

discusses the use of polynomial, sigmoid, and linear kernel 

types. The expressions for each kernel are presented below 

(3,4,5) 

 

                                                  (3) 

 

                                                                              (4) 

 

                                                       (5) 

 

where    d= polynomial degree 

            c= the free constant term (c>0), and both are 

changeable. 
              γ = the input data scaling parameter. 

 

2.2.2 K-Nearest Neighbours (KNN) 

The k-Nearest Neighbours (KNN) technique is a 

straightforward supervised machine learning method that can 

deal with regression and classification issues. The basic concept 

involves using distance measures to identify the K training 

samples that are nearest to the sample being predicted. 

Subsequently, predictions are made based on the outcomes of 

these K neighbors (Moraitis et al., 2020). For regression issues, 

the final estimated value is obtained by averaging the K-nearest 

neighbours. There are various methods to calculate this 

distance. The most widely known methods are Euclidian, 

Manhattan, and Chebyshev (Vu Thanh Quang et al., 2022). The 

Euclidean distance is the most typical application of distance. 

The Euclidean distance is described as in equation (6). 

 

                             (6)                                 

 

Manhattan distance, often known as city block distance is a 

highly popular distance. Manhattan distance distance is given 

by (7): 

 

                                   (7) 

                                                       

Between two vectors, the Chebyshev distance, minimax metric, 

or infinity norm is the maximum of their absolute magnitudes 

along the vector dimension. The Chebyshev distance 

(Moghtadaiee and Dempster, 2015) is defined as (8): 

 

                                          (8) 

 

Where       x, y = input vector 

 

3. TRAINING AND EVALUATION 

3.1 Data Preprocessing 

A geographical database has been created in the ArcGIS 

environment for signal strengths measured in the study area and 

other data. Spatial join analysis has been applied with ArcGIS 

software to determine which terrain class of the base stations in 

the measurement test areas. The distances of each measurement 

location to the base stations have been calculated according to 

the spatial proximity analysis. In addition, the elevation of the 

measurement stations has been obtained by overlapping them 

with the vectorised digital elevation model. The heights of the 

buildings within the campus area between the measurement 

station and the base station have been averaged for building 

height data. In the database, the data collected from the field 

and the data obtained from the results of spatial analyses spatial 

analyses have been combined also converted into Csv. format. 

The converted data has been transferred to the Python software. 

Since machine learning algorithms do not work directly on 

categorical data, One Hot Encoding has been performed to 

convert the land classes in the data set into numerical data. The 

terrain class of the study area consists of 4 classes as 

discontinuous urban structure, pasture, non-irrigated 

agricultural areas, and water bodies. According to this 

technique, urban structure has been assigned as 1 and other 

classes as 0. 

 

3.2 Model Training 

The samples obtained for the implementation of received signal 

strength modeling based on machine learning methods are 

divided into training samples and test samples. Each sample 

contains a record of the signal strength from a terrain and the 

corresponding input features. Depending on the training 

examples and the selected algorithms, the models are trained 

and their optimal hyperparameters are tuned.  

Differences in scales between input variables can increase the 

difficulty of the modeled problem. It is important to note that 

Support Vector Regression (SVR) and the  K Nearest 

Neighbours (KNN) are affected by the size of the input space. 

Standardization is necessary for machine learning algorithms 

such as KNN and SVR as the data have input values at different 

scales. Accordingly, the standardization should take place 

before the model training. The flow chart of the study is given 

in Figure 2. 

 
Figure 2. Procedure of SVR & KNN for regression-based    

Received Signal Strength (RSS) prediction. 
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Root Mean Square Error (RMSE) and R Square are common 

measurement metrics for evaluating the performance of 

regression-based algorithms (Moraitis et al., 2020) Root Mean 

Square Error (RMSE, R-squared and the Mean Absolute Error  

(MAE) have been selected from the model evaluation metrics to 

ensure that the signal strength values, which are the output of 

the model, are closest to the real values. In equations 9,10 and 

11 below, the expression of RMSE, R squared and MAE are 

given. 

 

                                (9)     

 

                              (10) 

 

                                     (11) 

 

 

Where   RSSsim= Simulated received signal strength values 

               

             RSSpred = Predicted received signal strength values 

 

              i = The index of the measured sample 

      

             N= Total number of the sample 

 

3.3 Hyperparameter Tuning of SVR and KNN 

Parameters that are not explicitly learned in predictive machine 

learning models can be tuned by searching a parameter space 

for the best cross-validation value. These types of parameters 

are known as hyperparameters. Techniques for tuning 

hyperparameters play an important role in the search for a 

suitable hyperparameter in machine learning techniques. 

Furthermore, machine learning methods are based on complex 

hyperparameters leading to optimization challenges. 

Furthermore, if we try for any possible combination of 

hyperparameters, it can be time-consuming to determine the 

values of the hyperparameters. In this study, the use of sigmoid, 

linear and polynomial kernels for the SVR model is considered. 

Tuning for this technique involves optimizing the 

hyperparameters: C represents the regularisation parameter. It 

must be entirely positive. γ> 0 indicating that the kernel 

coefficient. Epsilon (ε) controls the complexity of the regression 

functions. The data to be included in the regression should be at 

a certain epsilon distance and this epsilon value should not be 

negative. 

KNN is an algorithm that works by assuming that similar things 

are close to each other.  The approach known as KNN works by 

measuring the distances between a query and all points in the 

data, then selecting the nearest neighbours (k) and averaging the 

most common ones. Choosing the proper number of neighbours 

(k) can result in the best fit in the regression issue, which can be 

accomplished by experimenting with different k's and selecting 

the one that produces optimal outcomes. In other words, the 

number k for KNN is necessary for optimal performance. If the 

value of k is set too low, the model becomes more complex, 

which in turn raises the risk of overfitting, particularly when the 

nearest neighbour exhibit noise-like behaviour. In contrast, 

large values of k simplify the form of the model but influence 

the prediction accuracy between neighbouring samples(Moraitis 

et al., 2021b). 

Cross-validation serves as a statistical resampling technique 

employed to assess a machine learning model's performance on 

distinct data sets in a manner that is both objective and precise 

The k-fold cross-validation method is a typical type of cross-

validation that is commonly used to assess model accuracy. The 

k-fold cross-validation procedure is important in determining 

the stability of a machine learning model. Using k-fold cross-

validation, the dataset is divided into k subsets, and the model is 

trained and evaluated k times. During each iteration, a different 

subset serves as the test set, while the remaining k-1 subsets are 

used for training (A Timoteo et al., 2014). This process 

generates k distinct performance metrics, typically averaged for 

a more robust estimate of the model's performance. The 

technique mitigates variability associated with a single train-test 

split, offering a comprehensive evaluation of the model's likely 

performance on unseen data. In this study, k is set to 10 for the 

k fold Cross Validation (k-fold CV) method. 

Finally, Table 1 summarises the hyperparameters applied during 

the training process for SVR, KNN methods. 

 

Model Hyperparameters 

  

SVR   Linear γ =1 , ε =0.01 , c =2 

SVR   Polynomial γ = 0.1, ε = 0.1, c = 3 

SVR Sigmoid γ = 0.1 , ε =0.01 , c =1 

KNN metric = Euclidean, k = 6  

KNN metric = Manhattan, k = 6 

KNN metric = Chebyshev, k = 6 

Table 1. Selected hyperparameters for SVR and KNN 

 

 

4. RESULTS AND DISCUSSIONS 

This section evaluates the performance of proposed machine 

learning regression algorithms based on a simulation conducted 

in a campus area located in the city of Van, Turkey. The 

evaluation is carried out using real signal strength 

measurements at 900 MHz frequency and spatial data. The data 

set used in this study consists of signal strength data, carrier  

frequency, land use data, information about base stations, 

terrain elevation, altitude, and building height data collected on 

the Van Yüzüncü Yıl University campus. In the study, Python 

JupyterLab has been used as the programming language for 

model development and analysis, and ArcGIS software was 

used for spatial analysis and mapping. The data set includes 

categorical and numerical data types. The terrain classes of the 

study area are; discontinuous urban structure, pasture, non-

irrigated arable land, and water bodies, and the trained model 

was tested over these classes. The categorical data in the study 

area consists of land classes such as discontinuous urban 

structure, pasture, non-irrigated arable land, and water bodies. 

Categorical data were converted to numerical form using One 

Hot Encoding transformation, and the effect of this data was 

incorporated into the signal strength estimation model. For the 

K-Nearest Neighbours (KNN) and Support Vector Regression 

(SVR) methods used in the study, 80% of the data set is divided 

into 80% for training and 20% for prediction. 

For each machine learning method analyzed in the study, all 

statistical error measures are calculated, and the results are 

presented. The Python JupyterLab software Scikit Learn library 

has been used, providing an integrated environment for all 
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training and testing procedures, data preparation, machine 

learning, and visualization of results. Root Mean Square Error 

(RMSE), R Square (R2) and the mean absolute error (MAE) 

performance metrics have been used to select the most 

appropriate parameters for KNN and SVR algorithms in the 

data set. 

The performance of SVR and KNN algorithms is evaluated by 

computer simulations for the hyperparameters mentioned in 

Table 1. The GridsearchCV method available in the scikit learn 

library was applied for this hyperparameter optimization.  The 

performance of SVR and KNN algorithms, which are machine 

learning methods, is evaluated in the testing phase. The 

numerical results of the corresponding statistical metrics for the 

adopted methods are listed in Table 2. 

 

 

Model 

 

RMSE (dB) 

 

R2  (dB) 

 

MAE(dB) 

    

SVR   Linear 3.16 0.81 2.66 

SVR   Polynomial 2.91 0.84 2.27 

SVR   Sigmoid 1.71 0.94 1.38 

KNN  Euclidean 3.13 0.81 2.31 

KNN  Manhattan 3.60 0.75 2.69 

KNN  Chebyshev 3.50 0.77 2.43 

Table 2. Performance metrics of the examined machine learning 

methods in the campus environment 

The performance of the SVR algorithms was evaluated for the 

three kernels mentioned in Table 1. Table II provides a 

statistical analysis of the SVR algorithms, where the RMSE, R 

square, and MAE. Table I shows the best configuration settings 

of the SVR algorithms (C, ε, and γ) as well as the parameters of 

each kernel. According to what is explained about SVR for 

nonlinear learning problems in Section III and the results in 

Table 2, the Sigmoid kernel is the most appropriate for our data 

set. Figure 3 illustrates a comparison of the measurements 

corresponding to the sample set obtained from the driving test 

and the predictions using the SVR algorithms for Polynomial, 

Linear, and Sigmoid kernels. It can be seen that the sigmoid 

kernel is the best choice among the three kernels. 

 

Figure 3. Comparison of Received Signal Strength (RSS) 

prediction versus distance using SVR algorithms. 

We can see that Linear SVR shows an RMSE of 3.16 dB, MAE 

of 2.66 dB, and R-squared of 0.81 dB. Polynomial and Sigmoid 

SVR offer an RMSE of 2.91 dB, MAE of 2.27 dB and R-

squared of 0.84 dB, and RMSE of 1.71 dB, MAE of 1.38 dB 

and R-squared of 0.94 dB, respectively. SVR with Sigmoid 

kernel has higher performance compared to the other evaluated 

kernel SVR models. 

The SVR results mentioned above can be compared with those 

presented in (A Timoteo et al., 2014); Here, Polynomial, 

Gaussian, and Laplace kernels are compared using signal 

strength, height, as well as distance data at 853 MHz in the 

urban environment. In the study, an RMSE value of 3.47 dB 

was obtained using Polynomial SVR. In addition, in similar 

studies in urban areas, an R-squared score of 0.874 dB (Gideon 

et al., 2017) was obtained by adjusting the optimal kernel and 

hyperparameters using the SVR method. On the other hand, 

signal path loss studies (Moraitis et al., 2021a) reported MAE 

5.1, RMSE 6.5, and R square 0. 74 with polynomial SVR. 

Figure 4 shows the signal strength predictions of KNN methods 

according to different distance measurements. According to 

comparable error metrics, the three models perform similarly, as 

can be observed in Table 2. Figure 4 presents a comparison 

between the measurements from the sample set obtained during 

the driving test and the predictions made using different 

distance metrics such as Euclidean, Manhattan, and Chebyshev. 

When Table 2 and Figure 4 are analyzed, it is seen that the 

signal strength estimated with the KNN method using the 

Euclidean distance shows the best performance among the three 

different distance measurements. 

More specifically, we can see that the KNN Euclidean shows 

RMSE of 3.13 dB, MAE of 2.31 dB, and R-square of 0.81 dB. 

The KNN method using Manhattan and Chebyshev distance 

metrics yields an RMSE of 3.60 dB, MAE of 2.69 dB, an R-

square of 0.75 dB, and an RMSE of 3.50 dB, MAE of 2.43 dB 

as well as R-square of 0.77 dB, respectively. Considering the 

KNN methods calculated according to these three distance 

metrics, although the values are statistically close to each other, 

KNN Euclidean shows the best 

performance.

 

Figure 4. Comparison of Received Signal Strength (RSS) 

prediction versus distance using KNN algorithms. 

The KNN results mentioned above can be compared with 

findings from other studies in the literature. Among the studies 

in the literature, for 3.7 GHz (Moraitis et al., 2021b) 4.2 dB 

RMSE, 3.2 dB MAE, and 0.92 R-squared value were obtained 

according to the KNN method based on k = 5 and Euclidean 

distance (as in this study). In addition, considering the 

measurements in a mixed urban environment (including LOS 

and NLOS conditions) at frequencies between 2120 and 2160 

MHz, an RMSE value of 2.1 dB for LOS and 3.4 dB for NLOS 
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was observed (Moraitis et al., 2020). On the other hand, it has 

been reported that the best performance is Manhattan distance 

when the KNN method is applied according to Euclidean, 

Manhattan, and Chebyshev distance metrics (Moghtadaiee and 

Dempster, 2015) (the metrics used in this study) for indoor 

signal strength estimation. Finally, in the air-to-air UAV 

scenario, when applying KNN with k=5 and using the 

Euclidean distance metric, the results based on simulated data at 

2.4 GHz in urban locations show an 8.90 dB RMSE and a 4.56 

dB MAE (Zhang et al., 2018). 

 

 

Figure 5. Comparison of the Received Signal Strength (RSS) 

map with the Signal Strength map using the SVR sigmoid 

kernel model for 900 MHz. 

Figures 5 and 6 show the signal strength maps based on spatial 

covering the entire area of the dataset according to the Kriging 

method of the signal strength values estimated by the Support 

vector regression (SVR) and K Nearest Neighbour (KNN) 

algorithms and the actual signal strength values measured from 

the field. Figure 5 shows the coverage map of the SVR model 

according to the values obtained from the Sigmoid kernel.  

Figure 6 shows the coverage map according to the values 

obtained from the KNN Euclidean distance metric. 

 

 

Figure 6.  Comparison of the Received Signal Strength (RSS) 

map with the Signal Strength map using the KNN Euclidean 

distance model for 900 MHz. 

When looking at the maps in Figures 5 and 6, it is observed that 

the signal strength is higher in areas close to the base station, 

indicated by green regions. However, in locations associated 

with the discrete urban structure characterized by building 

density, the signal strength decreases. In addition, the signal 

strength decreases as you distance far from the base stations 

(north of the study area, yellow and red regions). 

According to Figures 3, 4, 5, and 6, the SVR sigmoid model 

exhibits lower performance than the KNN Euclidean model as 

the distance from the base stations increases. In addition, there 

is a decrease in signal strength due to the high number of 

buildings and the height of the buildings in the red regions close 

to the base station but where the signal strength decreases. 

 

 

5. CONCLUSIONS 

This study proposes a Support Vector and K Nearest 

Neighbour-based model based on Geographic Information 

Systems and machine regression algorithm to predict the signal 

strength in a campus environment. For this purpose, SVR and 

KNN models were applied and evaluated. The signal strength 

data measured in the field has been used to create a database 

through a geographic information system, and the spatial 

merging process of which base station is located within which 

land class. 

SVR and KNN models were generated according to the 

modelled data set signal strengths at 900 MHz in the Van 

Yüzüncü Yıl Campus area were taken and used in the training 

phase of the model. Features with a strong correlation have 

been selected to estimate the signal strength, aiming to increase 

the efficiency of the model. Sigmoid, Linear, and Polynomial 

kernels in the SVR algorithm and Euclidean, Manhattan, and 

Chebyshev distance metrics for KNN have been tested for the 

performance of the models. Then, according to this problem, 

appropriate model parameters have been selected to improve the 

capability of the model. The results confirmed that the Sigmoid 

kernel is the best option among the analyzed kernels in the case 

of SVR. The poorest performance has been seen at KNN 

Manhattan. The prediction values obtained from the models 

with high-performance values from SVR and KNN methods 

have been used to create a signal-strength surface for the 

campus environment. For this purpose, the Kriging 

interpolation method has been used by utilizing the 

Geographical Information System. This method can be 

recommended and practically used for signal strength 

estimation in cellular planning tools. In this sense, GIS can be 

used to generate the necessary spatial parameters for cellular 

coverage prediction models and is also an important tool for the 

assessment of cellular network propagation quality. Finally, 

future work will utilize GIS and different machine learning 

models by incorporating spatial data in urban areas and will be 

able to further improve predictability using these hybrid 

methods. 
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