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ABSTRACT:

Effectively navigating the intricacies of extensive 3D point cloud data in urban environments poses a series of formidable compu-
tational challenges. These challenges are primarily attributed to the substantial data volume and density inherent in urban settings,
the presence of noise and inconsistencies within the collected data, and the constraints imposed by limited transmission bandwidth,
which consequently impact storage requirements. This paper introduces an innovative methodology for handling large point cloud
datasets, based on concepts from Sparse Signal Processing (SSP), also known as compressive sensing. The proposed approach
integrates well known geometric data manipulation such as the Octree to work hand in hand with SSP, as unified method. Through
experimental validation using the Santiago Urban Dataset (SUD), we demonstrate the effectiveness of our method in achieving high
data fidelity, as measured by Peak Signal-to-Noise Ratio (PSNR) values reaching approximately 60 dB even at substantial compres-
sion ratios. Comparative analysis against traditional methods, including those implemented in the widely used Point Cloud Library
(PCL), reveals the superior performance of our proposed methodology. The results underscore the robustness and efficiency of our
approach, positioning it as a compelling alternative for compressing extensive 3D point cloud data. This has crucial implications
for diverse applications, ranging from city planning to rapid and effective disaster response.

1. INTRODUCTION

Advanced 3D data acquisition methods, such as Light Detection
and Ranging (LiDAR), have become increasingly important in
various fields (Qiu et al., 2023), including but not limited to, 3D
modeling, city planning, and geospatial analysis (Otepka et al.,
2013). These technologies generate point cloud data, a special-
ized form of spatial data structure that has increasingly become
a foundational element in decision-making across a wide array
of applications. As the demand for higher spatial coverage and
resolution grows, the resulting datasets are becoming increas-
ingly large and complex (Biljecki et al., 2014). This expan-
sion in data size presents significant challenges in data storage,
transmission, and real-time processing (Biljecki et al., 2015).
These challenges are particularly significant in urban settings
where high-resolution point cloud data is essential for activities
like infrastructure monitoring and city planning (Pu and Vossel-
man, 2009).

The traditional methods of data compression for point clouds,
such as Run-Length Encoding (RLE) (Golomb, 1966) and Huff-
man coding (Knuth, 1985), although pioneering in the field,
have shown significant limitations when applied to large-scale
3D datasets (Cao et al., 2019). These early methods, primarily
designed for simpler data formats, often struggle to maintain
the integrity of complex point cloud data, leading to the loss
of essential details critical for accurate scene interpretation and
analysis (Peng and Kuo, 2005). This loss is particularly det-
rimental in applications where precision is paramount, such as
in geospatial analysis, autonomous vehicle navigation, and 3D
modelling.
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To overcome these challenges, researchers have been motiv-
ated to explore more advanced techniques. Octree encoding,
a method that spatially organises data for hierarchical compres-
sion, emerged as a significant advancement. This technique, by
partitioning the space into octants, allows for an efficient rep-
resentation and compression of 3D point clouds, which is par-
ticularly beneficial in handling large datasets with high spatial
complexity (Schnabel and Klein, 2006).

The introduction of geometry-based compression techniques ex-
plored another leap forward. These methods focus on efficiently
encoding the geometric structure of point clouds, often employ-
ing sophisticated mathematical models to achieve higher com-
pression ratios without substantial loss of quality (Graziosi et
al., 2020).

Deep learning has been made significant advancements to ad-
dress a range of technological challenges (Hooda et al., 2022).
In point cloud compression, Convolutional Neural Networks
(CNNs) have emerged as effective tools, which exploit higher-
dimensional data correlations to improve compression perform-
ance (Guarda et al., 2020). Additionally, other neural network
architectures like Recurrent Neural Networks (RNNs) (Tu et al.,
2019) and Fully Connected Neural Networks (Yan et al., 2019)
are also being utilised in point cloud compression applications.

Diverging from the deep learning methods, our approach integ-
rates principles of Sparse Signal Processing, with a focus on
Compressive Sensing (CS) (Candès et al., 2006). CS operates
on the concept that a sparse signal in a certain domain can be
effectively reconstructed using a limited number of linear, non-
adaptive measurements. This technique is aptly suited for point
cloud data, which typically displays sparsity in either spatial
or frequency domains. The proposed method aims to integrate
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the core principles of CS with the foundational concepts of es-
tablished data compression methodologies. It leverages the be-
nefits of randomised projections, a technique that has shown
promise in efficiently encoding high-dimensional data into a
lower-dimensional space without significant loss of information
(Nagesh et al., 2022). This integration aims to preserve the pre-
cision in scene interpretation, a critical aspect often comprom-
ised in traditional methods, while optimising computational ef-
ficiency. This efficiency is crucial for real-time applications like
autonomous driving and augmented reality, where rapid data
processing and transmission are essential. Furthermore, this ap-
proach opens up new possibilities in handling vast datasets with
limited storage and bandwidth resources, a common challenge
in the era of big data.

In summary, the evolution from basic to advanced point cloud
data compression techniques reflects a growing need to handle
more complex datasets efficiently without sacrificing data fidel-
ity. The proposed method stands at the forefront of this evolu-
tion, promising a balance between computational efficiency and
the preservation of crucial data details for accurate 3D scene in-
terpretation.

2. METHOD

Our strategy for compressing extensive point cloud datasets com-
bines geometric data manipulation with the principles of com-
pressive sensing. As can be seen from Figure 1, the entire pro-
cess can be divided into the four essential phases: Data Pre-
processing, Compression Framework, Reconstruction and As-
sessment, and Quality Check.

2.1 Data Pre-processing

The Data Pre-processing phase is the initial step in our pipeline
and is crucial for ensuring the quality and reliability of the sub-
sequent compression and reconstruction processes. This phase
consists of two main steps: Data Cleaning and Coordinates
Conversion.

2.1.1 Data Cleaning This step focuses on cleaning the raw
point cloud data by removing inconsistent and duplicate points.
Inconsistent points, often outliers or anomalies, can distort the
true geometry of the scene and introduce errors in later stages
of compression and reconstruction (Rusu and Cousins, 2011).
To minimize computational burden, duplicate points are also
removed.User The cleaning process employs K-Nearest Neigh-
bours (KNN) noise filtering, to produce a refined point cloud
dataset (See Algorithm 1).

2.1.2 Coordinates Conversion The second step focuses on
transitioning the point cloud data from a global to a local co-
ordinate system. This adjustment is crucial for two main reas-
ons: it simplifies computational tasks and makes data manip-
ulation more straightforward. Affine transformations are em-
ployed for this conversion, ensuring that the geometric proper-
ties of the point cloud remain intact while preparing the data for
subsequent processing stages (Hartley and Zisserman, 2004).

These pre-processing steps are not only essential for improv-
ing the efficiency of the compression algorithm but also crucial
for maintaining the integrity of the data, ensuring an accurate
representation in the compressed point cloud.

Reconstruction and Assessment

Compression Framework

Start

Data Pre-processing

End

Data Cleaning

Coordinates Conversion

Randomised Compression

Sparsification

Signal Model

Data Reconstruction

Quality Check

Figure 1. The pipeline of our methodology.

2.2 Compression Framework

The core of our method lies in the Compression Framework,
which is designed to efficiently compress point cloud data while
preserving its essential features.

For this we adapt the concepts of Sparse Randomised Projec-
tions (SRP) which stands as forefront of advanced techniques
within the domain of CS, presenting notable advantages for ef-
ficient signal acquisition and restoration. In principle, SRP in-
volves the stochastic projection of a high-dimensional signal
onto a lower-dimensional subspace.

This framework integrates two primary stages: Sparsification
and Randomised Compression. These techniques are sequen-
tially applied to the point cloud data, ensuring both computa-
tional efficiency and data integrity.

2.2.1 Sparsification To obtain Sparse Data Representations
suited for the CS frame we employ two intermediate stages:

• Data Dimensionality Reduction via Octree Segmentation:
Octree segmentation is the first step in our compression
framework. The point cloud data is partitioned into hier-
archical octree structures, which allows for a more man-
ageable and computationally efficient representation of the
3D space (Samet, 1990). This hierarchical segmentation
enables us to apply different levels of compression to dif-
ferent regions, thereby optimising the trade-off between
data size and feature preservation (Elseberg et al., 2013).
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Algorithm 1 K-Nearest Neighbours Noise Filtering for
Point Clouds

1: Input: Point cloud P = {p1, p2, . . . , pn}, Number of
neighbours K

2: Output: Refined point cloud P̂
3: procedure KNNNOISEFILTERING(P,K)
4: for each point pi in P do
5: Find K nearest neighbors NK(pi) =
{n1, n2, . . . , nK} of pi

6: Initialise p̂i = 0
7: for each neighbor nj in NK(pi) do
8: Calculate distance d(pi, nj)
9: p̂i = p̂i + nj

10: end for
11: p̂i =

1
K
p̂i ▷ Averaging the positions

12: end for
13: P̂ = {p̂1, p̂2, . . . , p̂n}
14: return P̂
15: end procedure

In traditional octree segmentation, the criteria for estab-
lishing an octree are typically based on the level or the area
an octant occupies. However, in our approach (Algorithm
2), we utilise ”binCapability” as the limiting factor. This is
due to the fact that subsequent operations target each leaf
individually, necessitating such a restriction. The ”binCap-
ability” represents the number of points contained within
each leaf.

Algorithm 2 Octree Segmentation for Point Cloud
1: procedure CREATEOCTREE(node, points, binCapacity)
2: if length(points) ≤ binCapacity then
3: node.points← points
4: node.isLeaf ← True return
5: end if
6: node.isLeaf ← False
7: node.children← Subdivide(node)
8: for child ∈ node.children do
9: childPoints ←

FilterPointsToOctant(points, child)
10: CreateOctree(child, childPoints, binCapacity)
11: end for
12: end procedure
13:
14: procedure SUBDIVIDE(node)
15: children← Initialize 8 empty nodes for each octant
16: Set the boundaries for each child based on node re-

turn children
17: end procedure
18:
19: procedure FILTERPOINTSTOOCTANT(points, octant)
20: filteredPoints← Empty list
21: for point ∈ points do
22: if point is inside octant then
23: Append point to filteredPoints
24: end if
25: end forreturn filteredPoints
26: end procedure

• Sparse Representation via Basis Transformation:
Wavelets are mathematical functions that can transform
data into different frequency components (Mallat, 1989).
By employing wavelet basis transformation, we can rep-
resent the point cloud data in a form that is more amen-
able to compression. This transformation not only reduces
the data size but also allows for the preservation of es-
sential features in both low and high-frequency domains
(Donoho, 1995). The wavelet coefficients generated in this
phase are then quantised and encoded, forming the com-

pressed data representation.

Typically, the outcomes of a wavelet transform are influ-
enced by the selection of the wavelet basis. The choice of
wavelet basis is commonly based on some general criteria
(Luisa, 2012):

– Compact Support: The wavelet must possess com-
pact support, implying it is zero beyond a specific
finite range. This characteristic guarantees computa-
tional efficiency in the wavelet transform. A longer
support length typically demands more computation
and produces higher amplitude wavelet coefficients.

– Orthogonality: Orthogonal wavelets streamline both
the analysis and the reconstruction phases. The or-
thogonality of wavelets guarantees the absence of
superfluous information in the transformed data. How-
ever, typically, enhanced regularity is associated with
extended support length, leading to increased com-
putational time. Thus, a balance between regularity
and support length is essential.

– Vanishing Moments: Vanishing moments constrain
a wavelet’s capacity to depict polynomial character-
istics in a signal. Wavelets with increased vanish-
ing moments can more efficiently represent higher-
degree polynomials.

– Regularity: Intuitively, regularity can be considered
a measure of smoothness, which can affect the abil-
ity to capture signal details (Han and Han, 2017).

– Adaptability: The ability to adjust or tune the wave-
let according to the specific characteristics of the
data can be beneficial.

In this study, we employed two distinct wavelet bases: the
Haar wavelet (Haar, 1909) and the Biorthogonal wavelet
(Mallat, 1999). The Haar wavelet, known for its simpli-
city and compact support, offers efficient computational
properties. On the other hand, the Biorthogonal wavelet
is renowned for its ability to maintain both reconstruction
and decomposition filters, allowing for perfect reconstruc-
tion of signals and images, which is crucial in preserving
the integrity of the original data. The choice of these wave-
lets was driven by their complementary characteristics, en-
abling a comprehensive analysis of the data from different
wavelet perspectives.

Octree segmentation ensures a judicious handling of the meas-
urement data, while the Basis transformation efficiently cap-
tures the sparsity patterns in the scene coefficients. Presenting
the possibilities to approach the problem as an undetermined set
of equations, best solved using CS based algorithms.

2.2.2 Randomised Compression To further enhance the fi-
delity of data recovery, the employment of an incoherent meas-
urement matrix is preferred. Achieving this involves introdu-
cing a randomly generated component into the underlying sig-
nal model. This intentional introduction of randomness en-
sures that the resulting measurement matrix is well conditioned,
thereby satisfying the restricted isometric property for a defined
sparsity order, as outlined in the work by Donoho et al. (Donoho,
2006).

The introduction of the randomised component happens simul-
taneously with the former stage through randomised compres-
sion of the obtained Octree segmentation, by considering radom
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Gaussian matrix of similar size multiplied in combination. This
ensure the mutual coherence of the overall sensing matrix is
lowered , making each column well discernible and thus mak-
ing the matrix more well conditioned.

2.3 Signal Model

The signal model used in the study is presented in the following
equation:

y = PABx+ n (1)

where: y is the measurement vector containing the segmented
point cloud of size CM×1. P is the projection matrix which
inducing the randomised projections of size CM×P . S is the
measurement matrix of size CP×N and B is the sparse basis
transformation matrix of size CN×N . x is the vector of un-
known coefficients to be estimated of size CN×1. We consider,
the combination of the matrices P, S and B as Ψ of size CM×N ,
as the sensing matrix. The presented frame work is suited for
CS algorithms, we consider the Basis Pursuit Denoising Al-
gorithm, as given in Algorithm 3 as the solver of choice.

Algorithm 3 Basis Pursuit Denoising (BPDN)
1: Input: Measurement matrix Ψ, observations y, regularisa-

tion parameter λ
2: Output: Sparse solution vector x
3:
4: Initialise: Choose an initial guess for x
5:
6: while Not converged do
7: x← minx

(
1
2
∥y −Ψx∥22 + λ∥x∥1

)
▷ Use a BPDN

solver
8: Convergence check: Check if the solution has con-

verged
9: end while

10:
11: Output: Sparse solution vector x

Basis Pursuit (BP) is a crucial technique in CS for the sparse
approximation of a vector x from observations y (Equation 2).

x̂ = argmin
x
∥x∥1 subject to y = Ψx (2)

Formulated as a convex optimization problem, BP effectively
recovers x only under the condition of noise-free measurements
in y (Chen et al., 2001). The presence of noise significantly af-
fects its accuracy in signal reconstruction. When measurements
are corrupted by noise, exact reconstruction of the original sig-
nal is not the primary goal. Instead, the focus shifts to denois-
ing. This is achieved by relaxing the equality constraint in the
optimization problem.

x̂ = argmin
x
∥x∥1 subject to

1

2
∥y −Ψx∥22 ≤ ϵ (3)

In Equation 3, ∥y − Ψx∥22 is accounting for the noise in the
measurements, and ∥x∥1 is promoting the sparsity in the solu-
tion. The constraint 1

2
∥y−Ψx∥22 ≤ ϵ, where ∥ ·∥2, also known

as the Euclidean norm, represents the length or size of a vec-
tor (Golub and Van Loan, 2013). This norm ensures that the
solution remains within an acceptable error bound ϵ. The inclu-
sion of the Euclidean norm is crucial for effectively handling

the noise present in the measurements, as it quantifies the de-
viation of the reconstructed signal from the noisy observations
(Rani et al., 2018).

In Algorithm 3, we address the solution of the BPDN prob-
lem by adopting its Lagrangian form. This approach transforms
BPDN into an unconstrained optimization problem, as detailed
in Equation 4.

x̂ = argmin
x

(
1

2
∥y −Ψx∥22 + λ∥x∥1

)
(4)

where ∥y −Ψx∥22 accounts for the noise in the measurements,
and λ∥x∥1 promotes sparsity in the solution.

The BPDN solver applied in Algorithm 3 is Fixed-Point Con-
tinuation (FPC) (Hale et al., 2007).

2.4 Recovery Guarantees

When considering the reliability of recovery with CS-based meth-
ods, such as Basis Pursuit, satisfying the Restricted Isometric
Property (RIP) for the underlying sensing matrix plays a cru-
cial part in ensuring stable and uniform recovery for a con-
sidered level of sparsity. The RIP leverages the property of
the Restricted Isometry Constant (RIC) to establish the most
stringent performance guarantees presently known in the field.
For a given sparsity level S, the Restricted Isometry Constant,
denoted as δS , is defined as the smallest positive constant that
satisfies certain mathematical criteria, which is shown in the
following equation:

(1− δS)∥x∥22 ≤ ∥Ψx∥2
2
≤ (1 + δS)∥x∥22 (5)

holds for all vectors with ∥x∥0 ≤ S, i. e., the RIC establishes
bounds for the singular values of the sub-matrices obtained by
selecting any S columns from the complete Ψ.

The randomised projection matrix P considered in this study
ensures, the columns the sensing matrix is highly incoherent,
thereby satisfying the RIP metric (for a given sparsity value)
and thus ensuring reliability in performance of reconstruction.

2.5 Quality Check

To ensure the reliability of the compressed data, we compared
the reconstructed dataset against the original dataset. This com-
parison was primarily facilitated using the Peak Signal-to-Noise
Ratio (PSNR), a widely accepted metric for evaluating the qual-
ity of compressed data, especially in the context of point clouds
compression. The PSNR is computed using the following equa-
tion:

PSNR = 10× log10

(
MAX2

MSE

)
(6)

Where: MAX represents the maximum possible point intensity
value in the point cloud. MSE denotes the Mean Squared Error
between the original and the reconstructed point cloud data.

Higher PSNR values suggest a closer resemblance to the ori-
ginal, indicating minimal compression loss. In contrast, lower
PSNR values may indicate more significant data loss or quality
degradation. Detailed PSNR results and their implications will
be elaborated in the next section.
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3. RESULTS

3.1 Dataset

In our research, we predominantly rely on the Santiago Urban
Dataset (SUD) (González Collazo et al., 2022). This dataset,
originating from Santiago de Compostela, Spain, amalgamates
data sourced from two distinct laser scanning techniques: Mo-
bile Laser Scanning (MLS) and Handheld Mobile Laser Scan-
ning (HMLS). Together, they cover an expansive area of ap-
proximately 2 km of urban thoroughfares.

3.2 Experiments and Results

To comprehensively evaluate the potential of our compression
method in urban data analysis, we conducted a series of experi-
ments. These experiments were designed to assess the interplay
and impact of various factors on the compression outcomes.
Specifically, we varied the wavelet basis type, the measurement
matrix employed, the chosen sparsity basis, and the sampling
ratio. This methodological diversity ensured a broad spectrum
of results, allowing us to gauge the efficacy and versatility of
our approach. By systematically altering these parameters, we
were able to derive a multitude of compression outcomes, each
accompanied by its unique set of performance metrics. This
rigorous approach not only underscores the robustness of our
methodology but also provides valuable insights into the op-
timal configurations for different urban data scenarios.

3.2.1 Haar and Biorthogonal Wavelets

Figure 2 portrays the results obtained using different wavelets.
In our analysis, both the Biorthogonal and Haar wavelets demon-
strated comparable Peak Signal-to-Noise Ratio (PSNR) values
across a range of compression ratios. This similarity in per-
formance suggests that both wavelets are equally effective in
maintaining the quality of the reconstructed data relative to the
original, despite their inherent differences in structure and design.

Figure 2. The Compression Ratios and PSNR for different
wavelet types. Both Biorthogonal and Haar wavelets showcase

similar PSNR values at varying compression ratios.

3.2.2 Measurement Matrices

From Figure 3 we can see that the primary variations in PSNR
are due to the matrices themselves. In our study, we consist-
ently used bior1.1 wavelets and FFT, which highlighted that
the primary differences in Peak Signal-to-Noise Ratio (PSNR)
were due to the measurement matrices used. The Bernoulli
Matrix and Gaussian Random Matrix both showed high PSNR
values across different compression ratios, indicating they main-
tain data integrity effectively during compression. Conversely,
the Part Fourier Matrix and Toeplitz Matrix displayed lower

PSNR, particularly at higher compression ratios, suggesting they
are less effective in preserving data quality under compression.
This underscores the importance of matrix selection in data
compression processes.

Figure 3. The graphical representation illustrates Compression
Ratios and PSNR values for various measurement matrices.

Bernoulli Matrix and Gaussian Random Matrix exhibit closely
aligned, high PSNR values across compression ratios, reflecting
superior data integrity in compression. In contrast, Part Fourier

Matrix and Toeplitz Matrix consistently show lower PSNR,
particularly at higher compression ratios, indicating reduced

efficiency in maintaining data quality.

3.2.3 Sparsity Basis

Analysing Figure 4 which compares the results of Discrete Co-
sine Transform Basis (DCT) and Fast Fourier Transform Basis
(FFT). In our study, the Fast Fourier Transform (FFT) consist-
ently achieved higher Peak Signal-to-Noise Ratio (PSNR) than
the Discrete Cosine Transform (DCT) across all compression
ratios and with both Bernoulli and Gaussian Random Matrices.
This advantage of FFT was more evident at higher compression
ratios, though the difference diminished at lower ratios. Addi-
tionally, while the type of matrix (Bernoulli or Gaussian) had a
minor impact, the choice between FFT and DCT was the more
significant factor in determining PSNR performance.

4. DISCUSSION & CONCLUSION

4.1 Discussion

Our experimental design incorporated variations in wavelet se-
lection, measurement matrix, sparsity basis, and sampling ratio,
resulting in a comprehensive exploration of compression out-
comes and performance metrics. In the conducted experiments,
the precision of the points was set to millimeters, aligning with
the accuracy level of the Santiago Urban Dataset (SUD), which
is up to 5 mm.

Compression Ratio BPP Bernoulli Matrix Gaussian Random Matrix PCL
29.67 5.38 50.16 49.85 -
22.86 6.98 - - 34.15
17.38 9.18 58.82 59.09 -
12.28 12.99 59.98 60.02 -
9.5 16.79 59.90 59.91 -
7.73 20.64 59.98 60.38 -
4.90 32.55 - - 79.54

Table 1. The comparison of Compression Ratio, bpp and PSNR
(dB) for different matrices and PCL library

Table 1 compares the Peak Signal-to-Noise Ratio (PSNR) in
decibels (dB) of our methods using Bernoulli and Gaussian
Random Matrices against the Point Cloud Library (PCL) (Rusu
and Cousins, 2011) across different compression ratios. Addi-
tionally, it includes Bits Per Point (BPP) for each method. The
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Figure 4. The Compression Ratios and PSNR for different
measurement matrices and sparsity basis. FFT consistently
outperforms DCT in terms of PSNR across all compression

ratios and both matrix types. The superiority of FFT becomes
more pronounced at higher compression ratios, though the

difference narrows as the ratio decreases. While both Bernoulli
and Gaussian Random Matrices exhibit similar trends, the
choice of matrix slightly influences the resultant PSNR.

BPP value is calculated using Equation 7. It is a crucial met-
ric as it provides insight into data efficiency, complementing
the compression ratio by showing how effectively each point is
represented in the compressed data. At higher compression ra-
tios (e.g., 29.67 and 17.38), both the Bernoulli and Gaussian
Random Matrix methods demonstrate superior PSNR values
compared to the PCL, indicating a higher quality of data re-
tention despite significant data size reduction. For instance, at
a compression ratio of 29.67, the Bernoulli Matrix achieves a
PSNR of 50.17 dB, and the Gaussian Random Matrix achieves
49.85 dB. In contrast, the PCL shows its strength at a much
lower compression ratio of 4.9, where it achieves a notably high
PSNR of 79.54 dB. This suggests that while the PCL may be
more efficient at lower compression levels (i.e., less data re-
duction), while our method excel in scenarios requiring higher
compression.

BPP =
Compressed Size (in bits)

Number of Points
(7)

Upon examining the visual representations presented in Figures
5(a) and 5(b), several observations arise regarding the efficacy
of our compression and reconstruction techniques. Using the
original dataset (Figure 5(a)) as a benchmark, the reconstruc-
ted dataset (Figure 5(b)), generated with a Gaussian Random
Matrix and a compression ratio of 17.38, achieved a PSNR of
59.0937 dB. This high PSNR value attests to the fidelity of the
reconstruction relative to the original data.

The cloud-to-cloud distance calculation, visualised in Figure
6, offers additional insights into spatial disparities between the
original and reconstructed datasets. The gradient, transition-
ing from blue to green, signifies increasing distances, with blue
areas indicating minimal deviation and green areas signifying
greater discrepancies. The mean distance between the two data-
sets was determined to be 0.141 m, with a standard deviation of

(a) The original dataset

(b) The reconstructed dataset

Figure 5. A comparison of the original and reconstructed point
cloud dataset (using Gaussian Random Matrix with compression

Ratio 17.38, PSNR is 59.0937 dB)

Figure 6. Cloud to cloud distance calculation. A gradient from
blue to green represents increasing distances.

0.522 m. The relatively low mean distance, coupled with the
high PSNR value, underscores the efficacy of our methodology
in preserving the integrity of the original dataset while achiev-
ing significant compression.

The reconstruction, as evidenced by the PSNR and mean dis-
tance metrics, demonstrates commendable accuracy. However,
deviations are evident in specific regions, particularly those marked
in green in Figure 6. A closer examination reveals that many of
these green-highlighted areas are located towards the peripher-
ies, away from the central region, and include isolated segments
detached from the primary structure. These observations sug-
gest that while our compression algorithm effectively retains
the integrity of the main regions, there is room for refinement
in preserving details in the peripheral and isolated areas. This
insight provides valuable guidance for future algorithmic itera-
tions to enhance overall performance and fidelity.
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4.2 Conclusion

The efficient management of large point cloud datasets, espe-
cially in urban environments, remains a formidable challenge in
the realm of 3D data acquisition and processing. This research
introduced a novel methodology that integrates principles of
geometric data manipulation, wavelet transformations, and sparse
signal processing to address this challenge. The demonstrated
compression of extensive point cloud datasets, as exemplified
by experiments on the Santiago Urban Dataset (SUD), yielded
promising results.

The achieved Peak Signal-to-Noise Ratio (PSNR) values, hov-
ering around 60 dB at high compression ratios, signify the method’s
capability to maintain high data fidelity. Notably, this perform-
ance surpasses traditional methods, such as those implemented
in the Point Cloud Library (PCL). Visual and quantitative com-
parisons between the original and reconstructed datasets fur-
ther affirm the efficacy of our methodology. While core dataset
regions were preserved with high fidelity, the findings also pin-
point areas for potential improvement, particularly in peripheral
and isolated regions.

The integration of techniques like Octree Segmentation, Wave-
let Basis Transformation, and Compressive Sensing into a uni-
fied framework has proven to be both innovative and effect-
ive. However, as with any pioneering approach, refinement
and optimization opportunities persist. Subsequent work can
delve deeper into enhancing the compression algorithm, ensur-
ing even greater fidelity across all dataset regions, and exploring
its applicability across diverse urban scenarios.

In conclusion, our research establishes a robust and efficient al-
ternative in the compression of extensive large 3D point cloud
datasets. The implications of this work are expansive, with
potential applications ranging from urban planning to disaster
response, emphasising the significance of continued advance-
ments in this scientific domain.
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