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ABSTRACT: 

 

Understanding building semantics is crucial for comprehending their structure, components, and functions. This study investigates 

the utilization of Graph Neural Networks (GNN) to semantically label 3D building models, aiming to optimize these labels' output 

within Geographic Information Systems (GIS). The methodology leverages diverse datasets comprising 3D building models, 

utilizing BuildingGNN algorithms to iteratively refine the labeling process. The resultant labeled components, after thorough 

validation, are translated into the CityGML format. The generated CityGML dataset holds promise for a wide array of 3D city model 

applications, heightening the utility of labeled components within GIS analyses. While exploring GNN's capabilities may reduce 

manual effort and time and provide standardized data representation, this study also addresses challenges in ensuring output 

reliability. While automation remains a goal, future research endeavors may focus on refining automatic labeling techniques and 

semantic translation processes to further improve accuracy and applicability. 

 

 

1. INTRODUCTION 

Understanding the architectural structures of buildings holds 

significant value within Geographic Information Systems (GIS). 

Incorporating 3D building models into GIS emphasizes the 

importance of accurately comprehending and annotating 

building components within a spatial context. Semantic 

modeling, crucial in this integration, involves assigning 

meaning or labels to components within datasets, such as 3D 

models. This process enhances the spatial representation of 

building elements, aiding in representing architectural features 

like walls, doors, and windows. Moreover, it enhances the 

analytical capabilities of GIS applications, providing insights 

beneficial for urban planning, infrastructure development, and 

environmental analysis. 

 

Semantic modeling promotes a structured approach to data 

representation, ensuring consistency and interoperability across 

diverse datasets (Uceda-Sosa et al., 2011). Utilizing semantic 

modeling could involve creating models that not only represent 

the physical characteristics of buildings but also incorporate 

meaningful information about their components, functionalities, 

and relationships. This structured representation facilitates 

better data management and supports efficient data integration 

and collaboration in various applications. Thus, the integration 

of semantic modeling within GIS enriches spatial information, 

enabling comprehensive spatial analysis and informed decision-

making (Stoter et al., 2020). 

 

Current methods rely on manual annotation of building 

components within 3D models, which is labor-intensive and 

time-consuming (Selvaraju et al., 2021). Additionally, human 

subjectivity in this process can introduce inconsistencies, 

challenging the maintenance of accuracy and standardization 

across datasets. As datasets grow larger and the need for more 

detailed spatial information increases, the limitations of manual 

annotation may become more apparent. 

 

To tackle these challenges, integrating automated 

methodologies into GIS for annotating building components 

may present better solutions. Technological advancements, 

especially in machine learning and deep learning, offer 

opportunities to develop algorithms capable of automatically 

identifying and labeling building elements within 3D models. 

Leveraging these advancements can significantly improve the 

efficiency of annotating building components, reducing analysis 

time and effort while enhancing accuracy and consistency. 

 

This study aims to explore labeling of building semantics within 

3D building models, employing a deep learning framework and 

translating the output into GIS data formats for wider 

applicability and benefit. The subsequent sections of the paper 

are organized as follows: Section 2 presents a literature review 

of previous works on semantic labeling of 3D building data. 

Section 3 outlines the proposed methodology, encompassing 

data preprocessing and technique implementation. Finally, 

Section 4 discusses preliminary results and findings, while 

Section 5 concludes the paper by highlighting potential 

contributions and discussing future research directions. 

 

2. RELATED WORKS 

2.1 Techniques and Algorithms 

Research into the segmentation and labeling of building 

components has utilized various methodologies and 

technological approaches. Noteworthy studies (Alexander and 

Ben, 2010; Alexander and Ben, 2015) emphasized shallow 

pipelines employing hand-engineered point descriptors and 

predefined rules. Similarly, Demir et al., (2015a) developed a 

combinatorial algorithm focusing on grouping faces into non-
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labeled components across meshes, exhibiting considerable 

repetition. Additionally, Demir et al., (2015b) proposed a user-

assisted segmentation algorithm, while other works, such as 

Kobyshev et al. (2016) and Kundu et al. (2020), explored using 

symmetry cues to group architectural components. Recent 

efforts by Selvaraju et al. (2021) introduced a learning-based 

approach utilizing modern deep backbones for point descriptor 

extraction, often integrating deep learning techniques for 

automating the annotation process. 

 

Moreover, Rook et al. (2016) established a workflow for 

semantically labeling 3D city models conforming to the 

CityGML standard. Khan et al. (2020) proposed an end-to-end 

architecture that effectively classifies raw 3D point clouds from 

indoor and outdoor scenes, displaying promising outcomes. 

Neural networks have emerged as robust tools for analyzing 

structured data like 3D models. PointNet++ by Qi et al. (2017) 

introduced a hierarchical feature learning framework, 

successfully applied to semantic segmentation tasks. 

Meanwhile, Wu et al. (2020) conducted a comprehensive survey 

on graph neural networks (GNNs), illustrating their ability to 

capture spatial dependencies and propagate information through 

graph structures. GNNs enable context-aware predictions by 

considering spatial relationships among building elements, 

leading to more accurate semantic labeling. 

 

Despite advancements, challenges persist within these 

methodologies, particularly regarding accuracy in handling 

complex architectural details, computational resource demands, 

and standardization across datasets. Studies have highlighted 

difficulties in addressing diverse architectural styles, variations 

in data quality, and the need for real-time processing in dynamic 

urban landscapes. An ongoing challenge involves the 

generalization of labeling models across diverse datasets and 

urban contexts. Previous studies (Chen et al., 2009) and 

(Kalogerakis et al., 2010) mainly concentrated on 3D shape 

semantic segmentation datasets consisting of objects with 

relatively simple structures and a limited number of 

components. However, buildings exhibit much richer structures, 

varying in sizes, part geometry, and styles (Lun et al., 2015). 

Consequently, the semantic labeling of buildings poses a more 

intricate and demanding task. 

3. METHODOLOGY 

This section outlines the proposed methodology for semantic 

labeling of 3D building data, utilizing graph neural networks 

and exporting data into 3D GIS standards. The workflow 

consists of several steps: data collection and processing, training 

of the GNN model, prediction of semantic labels, validation and 

correction of the output semantic data, and exporting the results 

to GIS data format, as depicted in Figure 1 below.  

 

 
 

Figure 1. The workflow of the semantic labeling of 3D building 

data. 

 

The following sections describe various processes related to the 

workflow of the semantic labeling of 3D building data to GIS 

data format (CityGML).  

 

3.1 Data Collection 

The primary data source for this study was BuildingNet, serving 

as a comprehensive repository of 3D building models available 

at https://buildingnet.org. These models have uniform exterior 

labeling, containing detailed annotations for various 

architectural components essential for developing the semantic 

labeling technique. The dataset offers a diverse collection of 

building structures, encompassing variability in architectural 

styles, sizes, and complexities crucial for training models 

capable of handling real-world scenarios. 

 

In the data preparation phase, two distinct methodologies were 

employed: random sampling and manual selection. Initially, a 

random sampling approach encompassed 100 residential 

building models to capture a broad spectrum of architectural 

diversity within the dataset. This approach aimed to ensure 

exposure to various building styles and complexities, 

contributing to the model's adaptability to different architectural 

structures. 

 

Simultaneously, recognizing the variance in annotation quality 

within the datasets, a manual selection process was initiated. An 

additional set of 100 residential building models was chosen 

from the same repository, emphasizing quality annotations. This 

intentional curation aimed to enrich the training set with 

accurately labeled models, ensuring a higher standard of 

annotated data for model learning and validation. Figure 2 

provides a visual representation of the sample residential 

building modes in their 3D form. 

 

 

 
(a) 

 
(b) 

 
(c) 

Figure 2. Visual representation of different styles and structures 

in 3D building models. (a) a single-story regular house. (b) and 

(c) illustrate double-story houses with increased geometric data 

and additional details. 

 

3.2 Technique and Mechanism 

In the selection of algorithms or techniques for labeling, several 

critical considerations were paramount in effectively addressing 
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the research problem. The primary criterion involved assessing 

the chosen approach's ability to comprehensively analyze spatial 

and structural relations within 3D building meshes. 

Additionally, the method's capacity to handle diverse geometric 

primitives and accurately identify various building components 

played a crucial role in the selection process. 

 

For labeling semantics in this study, the selected approach 

involved the utilization of a graph neural network (GNN) 

known as BuildingGNN (Selvaraju et al., 2021). This GNN 

methodology excels in labeling building meshes by intricately 

analyzing spatial and structural relations among geometric 

primitives. Within the graph, each subgroup functions as a node, 

leveraging relationships such as adjacency and containment 

between pairs of nodes. The neural message-passing mechanism 

within the graph facilitates the final mesh labeling, 

demonstrating enhanced performance compared to previous 

methodologies. 

 

The GNN-based approach has showcased state-of-the-art 

performance in labeling 3D building data, as substantiated by 

prior experiments and research literature. Its ability to yield 

improved results triggers more research work. The 

BuildingGNN approach operates by segmenting distinct 

"subgroups" within a building, treating each subgroup as a 

foundational component. Initially, the GNN generates detailed 

representations for individual building components like walls or 

windows, similar to creating intricate profiles. This process 

enriches the GNN's understanding of each component, 

facilitating a more comprehensive comprehension. 

Subsequently, employing an edge-based approach, the GNN 

establishes connections between these components, where, these 

edges, featuring different types, serve to illustrate various 

relationships between components. Figure 3 presents a summary 

of the key steps of the BuildingGNN approach according to 

Selvaraju et al. (2021). 

 

 

BuildingGNN 

Input: 3D building mesh with subgroup 

Output: Labels per subgroup 

Step 1: Node Initialization 

- Create nodes representing each subgroup in the 

mesh. 

- Initialize node representations based on subgroup 

attributes. 

Step 2: Establish edges to capture relationships 

- Proximity (based on spatial distance). 

- Supportive relations (upright axis correlation). 

- Similarity (detecting symmetric arrangements). 

- Containment (subgroup enclosure). 

Step 3: GNN Processing 

- Update node and edge representations. 

- Employ neural message passing and MLPs. 

- Decode node to assign labels through softmax. 

End 

 

Figure 3. Key steps of the BuildingGNN for labeling 3D 

building mesh. 

 

3.3 Development and Training 

The development and training of the BuildingGNN prediction 

model encompassed several sequential steps aimed at ensuring 

its efficacy in processing and labeling building components 

within 3D models. Prior to training, the data underwent 

preprocessing to ensure compatibility and readiness. This phase 

focused on formatting the 3D building data to suit the chosen 

approach, ensuring consistency and uniformity across the 

dataset. Subsequently, a subset comprising 100 residential 

building models was divided into training and validation sets, 

maintaining an 80:20 ratio. Furthermore, the model underwent a 

comprehensive training process using the prepared dataset. This 

iterative process involved presenting the dataset to the model, 

enabling it to recognize patterns and relationships among 

various building elements. Default hyperparameters were 

employed in this phase and validation techniques were utilized 

to assess the model's performance and verify its adaptability to 

the new data. 

 

3.4 Translation of Semantic Label to CityGML 

This study not only focuses on semantic labeling of building 

components within 3D models but also involves translating 

these labels into a GIS-compatible format. The output from the 

BuildingGNN, responsible for semantic labeling, undergoes 

further processing and exported into the CityGML format. 

CityGML stands as a standardized data format specifically 

crafted for representing and exchanging 3D city models in a 

GIS environment. 

 

The choice of CityGML as the export format is due to its 

extensive schema, purpose-built for encapsulating semantic 

information in 3D urban and architectural models. Its 

hierarchical structure and semantic depth offer an optimal 

framework for encoding detailed information about building 

components and their interrelationships. This facilitates 

interoperability and seamless integration within GIS systems. 

Figure 4 illustrates the CityGML class modules representing 3D 

city objects, which are thematically decomposed into a Core 

module and 16 extension modules (Kutzner et al., 2020). 

 

 
Figure 4. CityGML conceptual model. 

 

The process of translating semantic labels into the CityGML 

format, as illustrated in Figure 5, involves several key steps that 

leverage FME software for efficient data processing. Initially, 

the geometry of the 3D models undergoes validation to ensure 

compliance with CityGML geometry standards. This validation 

process checks for geometric integrity, identifying missing 

overlaps, holes, or irregularities to ensure the creation of a 

seamless, watertight 3D model. Any identified issues are 

addressed and rectified to ensure the 3D models' suitability and 

reliability for integration into the CityGML framework. 
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Following this, the 3D models undergo a georeferencing 

procedure aimed at aligning them with real-world geographic 

coordinates. This alignment process utilizes embedded 

reference or ground control points (GCPs) within the 3D 

models, matched to their actual geographical locations through 

geospatial transformation algorithms. This transformation 

ensures precise spatial positioning and orientation of the 3D 

models within the GIS environment. Subsequently, the related 

semantic labels are integrated and mapped to correspond with 

CityGML classes and attributes, ensuring coherence and 

alignment with CityGML's structured data model. 

 

 

Figure 5. Workflow for translating semantic labels into 

CityGML format, depicting the sequential steps involving 

geometry validation, georeferencing, and semantic label 

integration. 

4. RESULTS AND DISCUSSION 

The training process employed for the BuildingGNN technique 

yielded acceptable results. Through iterative training using 

diverse datasets, the model showcased an improved ability to 

identify and label building components with a considerable 

level of accuracy. Table 1 illustrates an overview of the model's 

performance metrics across both datasets, allowing a 

comparative analysis of its efficacy within varied datasets. The 

results in Table 1 reveal interesting insights into the accuracy 

variation among different building components. For instance, 

the roof components achieved notably high accuracy, surpassing 

92%. This might be attributed to the distinct and identifiable 

patterns associated with roof structures, facilitating their 

recognition by the model. Conversely, the model yielded 

comparatively lower accuracy, falling below 57%, in 

identifying door components. This lower value could come 

from several factors such as complexity and variability in door 

designs across different building types might present challenges 

for the model, impacting its ability to recognize and label doors 

accurately. 

 

Furthermore, the utilization of diverse datasets, incorporating 

both randomly sampled and manually selected 3D building 

models, played a role in capturing the variability in annotation 

quality, building styles, and complexities. Consequently, the 

model developed an ample understanding of the building 

components, enhancing its capability to process and label 

several building elements within complex 3D models. 

 

Class Percentage (%) 

 Dataset 1 Dataset 2 

Roof 92.7 94.3 

Wall 80.3 83.2 

Window 79.8 80.1 

Door 54.2 56.4 

Floor 74.2 81.2 

 

Table 1. Evaluation metrics for each class. 

 

Moreover, a collection of 3D building models is utilized in the 

labeling procedure, employing the trained GNN model to assign 

semantic classes. Subsequently, the outcomes produced through 

this labeling procedure undergo validation and refinement, 

encompassing both their semantic labeling and geometry, before 

their conversion into the CityGML format. This translation 

process aims to embed semantic information into GIS systems, 

enabling the integration of labeled 3D building components. 

Such integration could facilitate comprehensive spatial analysis 

and visualization capabilities. Figure 6 provides a visual 

representation of the final output displaying the CityGML 

building models, ensuring compliance with the CityGML 

schema classes. This schema contains information, including 

geometry type, level of detail (LOD), the number of parts, 

coordinate systems, and other essential attributes. 

 

 
Figure 6. 3D models of CityGML with embedded semantic 

information. 

 

The created CityGML 3D building models, which contain 

detailed information about the buildings' characteristics, can 

also be expanded to include terrain data which opens ways for a 

more comprehensive and enriched spatial representation. The 

presence of terrain data alongside 3D models enables a more 

realistic portrayal of cityscapes, facilitating a deeper 

understanding of the interaction between urban structures and 

the surrounding environment. However, challenges arise in 

aligning and processing these datasets, demanding precision in 

placing the 3D models on top of diverse terrain conditions and 

incorporating sub-surface components. Despite these 

challenges, the potential benefits, including enhanced urban 

analysis, and improved visualization, emphasize the benefit of 

exploring this integration in future research endeavors.  

5. CONCLUSION 

 

In summary, the iterative training of the BuildingGNN model 

exhibited acceptable outcomes, improving its accuracy in 

identifying building components within intricate 3D models. 

Notably, the utilization of diverse datasets allowed the model to 

comprehend various architectural styles and complexities, 

contributing to more precise labeling of architectural elements. 

Achieving better labeling may also depend on utilizing quality 

training datasets.  

 

Furthermore, the output from the GNN segmentation process 

requires thorough validation before translation into GIS data to 

ensure accuracy and reliability. The direct conversion of the 

GNN output into CityGML format may not be straightforward 

due to various complexities. More focused effort is needed to 

process the GNN output into CityGML compliance. In several 

cases, the original input building models may exhibit geometry 

issues such as holes, missing faces, or overlapping structures, 

necessitating the use of additional algorithms to rectify these 

problems. Moreover, the semantic labels generated by the GNN 

might lack instance-level granularity, requiring further work to 
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identify and merge labels belonging to the same building 

instance and assign unique identifiers. Currently, manual 

intervention is necessary for these tasks. Establishing a robust 

workflow for seamless integration between GNN output and 

CityGML would greatly enhance the efficiency and accuracy of 

the process. Despite these challenges, the resulting CityGML 

dataset holds substantial potential for various 3D city model 

applications and spatial analysis within GIS systems. 

 

Nevertheless, while this study showcases potential application, 

future research should prioritize refining the labeling technique 

and semantic translation processes to adhere to spatial data 

standards, aiming for an automated end-to-end labeling process. 

Addressing challenges related to handling uncommon and 

complex architectural details could further improve the 

applicability of semantic labeling. It's important to note that the 

trained model may have limited applicability for different types 

of building structures and styles if not appropriately trained and 

fine-tuned in the given direction.  
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