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ABSTRACT:

A large portion of Morocco’s forest ecosystem is being damaged by human activity and climate change, which makes it crucial for the
country to monitor forest dynamics and develop measures to counter these effects. The objective of this study was to determine how
the forest cover has changed over the past four decades in Bouskoura forest, Morocco. Based on Remote Sensing (RS), Geographic
Information System (GIS) and machine learning algorithms. Throughout the process, Spatial data such as Landsat 5 TM, Sentinel-2B,
and spectral indices, including NDVI, NDWI, NDBI, and MSAVI2 were used to train/validate Random forest (RF), support vector
machine (SVM), and K-nearest neighbor (KNN) classifiers. By comparing the performance of the three classifiers for all four periods,
the RF method was the most effective with an overall accuracy of 0.99 and kappa coefficient of 0.99 for 1991, 2001 and 2011, and
an overall accuracy of 0.99 and kappa coefficient of 0.98 for 2021 . Therefore, the RF was selected as a method of examining time
variations. The results indicated that forests covered an area of 20,41 km2 in 1991 which has decreased to 18,96 km2 in 2021, a loss
of 1,45 km2 (7.10%) in four decades. The highest forest loss was 2,69 km2 during 1991-2001, 2,12 km2 during 2001-2011, 1,40 km2

during 2011-2021. And the highest forest gain was found to be 3,75 km2 during 2011-2021, 0,61 km2 during 2001-2011, 0,43 km2

during 1991-2001. Recent declines in forest degradation attest to the benefits of initiatives to conserve the environment taken by the
country.

1. INTRODUCTION

Geographically, Morocco sits between the Atlantic Ocean and the
Mediterranean Sea on the west and the Sahara on the east, which
together provide a wealth of diverse forest ecosystems with a
total area of 9 million hectares, including 5,8 million forested,
or 8% of the country (Said et al., 2010). In addition to protect-
ing the environment and fighting desertification, forest manage-
ment in Morocco contributes to rural socio economic develop-
ment (Said et al., 2010). While sustained efforts are made to
conserve and develop forests resources, forest ecosystems face a
variety of restrictions related to socioeconomic conditions typi-
cal of rural poor economic order and climate related to aridity
and climate change (Said et al., 2010). Consequently, negative
consequences result (loss of water resources, soil erosion, deser-
tification, etc.) at local, regional and national levels (Said et al.,
2010).

Forest degradation refers to a long-term reduction in trees due
to natural or anthropogenic causes (Geist and Lambin, 2001).
World-wide, it is caused by a complex combination of socio-
economic factors, such as population and population growth, agri-
cultural expansion, and wood extraction in developing countries
(Allen and Barnes, 1985). Furthermore, economic, political, tech-
nological, and cultural factors are responsible for forest degra-
dation (Geist and Lambin, 2001). Many severe problems are
caused by forest degradation, including biodiversity loss, soil ero-
sion, water cycle changes, and potential global effects (Fearn-
side, 1995). With less forest cover, less water will be returned
to the soil, and the inland areas could be more prone to drought
(D’Almeida et al., 2007). When tropical forests are destroyed,
an enormous amount of carbon dioxide stored by the vegetation
is released to the atmosphere which accelerates global warming
(Fearnside and Laurance, 2004).Forest degradation is the second
largest source of carbon emissions after fossil fuels, making it a
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major concern today (Le Quéré et al., 2009).

Remote sensing can be used to monitor forest change, This method
can provide an accurate and practical way to determine the num-
ber of trees lost, the correlation between human disturbance and
forest clearing, and the effectiveness of forest policy regulation
(Fuller, 2006), Which can be addressed through earth observation
satellite data and decisions support tools such as Geographic In-
formation System (Yeh, 2002). Furthermore, rapid global change
requires understanding of temporal ecosystem dynamics, which
in conjunction with remote sensing techniques can help control
and prevent further forest degradation (Manning et al., 2009).

Remote sensing-based approaches for classification are commonly
used to monitor changes, and many algorithms have been devel-
oped for solving complex classification problems (Meyer et al.,
2018). This includes random forest (RF), support vector ma-
chine (SVM), K-nearest neighbor (KNN), artificial neural net-
works (ANNs), and decision trees (DTs), These algorithms are
also known as machine learning algorithms, A data-driven ap-
proach that examines the relationships between predictors and
responses (Breiman, 2001).There have been many studies investi-
gating the use of machine learning for monitoring tasks and map-
ping land cover (Yu et al., 2018).

In this project the main focus is to show the change of Bousk-
oura forest over the last 4 decades to help prevent forest degrada-
tion using GIS and RS coupled with machine learning methods
which are Random forest (RF), support vector machine (SVM),
and K-nearest neighbor (KNN) classifiers.

The central objective of this project is to comprehensively an-
alyze and illustrate the transformation of the Bouskoura forest
over the course of the past four decades. This is driven by the
goal of forest conservation and the prevention of forest degrada-
tion. To achieve this, the project use a multidisciplinary approach
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that combines Geographic Information Systems (GIS) and Re-
mote Sensing (RS) technologies, coupled with machine learning
methods, namely the Random Forest (RF), Support Vector Ma-
chine (SVM), and K-Nearest Neighbor (KNN) classifiers.

2. METHOD

2.1 Study Area

Bouskoura forest is Located about twenty kilometers south of
Casablanca in the central-western part of Morocco, between
33° 26 56 latitude north, 7° 38 55 longitude west, the forest of
Bouskoura is spread on a surface area of 2992 acres. There are
mainly eucalyptus trees growing here, making it one of Casablanca’s
green lungs (Figure 1).
On the weekend and bank holidays, locals flock to Bouskoura
forest to have lunch with friends or workout with their colleagues
in the forest. When visiting Bouskoura during the week, intro-
verts are almost guaranteed to find it calm and peaceful (Yasmine,
2017).

Figure 1: Study area location

2.2 Methodology

In order to monitor forest degradation over the last four decades
the study follows four main steps (Figure 2):
The process started with collecting data Spatial data were col-
lected from USGS such as Landsat 5 TM, Sentinel-2B.
Secondly, In data preparation spatial data was utilized to cal-
culate the spectral indices including NDVI, NDWI, NDBI, and
MSAVI2, and extracted the ground truth data of four decades.
Thirdly, Random forest (RF), support vector machine (SVM), and
K-nearest neighbor (KNN) classifiers were used to create a super-
vised classification of 1991, 2001, 2011 and 2021 periods.
Lastly, based on the difference between two time periods, the gain
and loss of forest cover has been calculated and displayed.

2.3 Collecting data

From NASA’s Landsat and the ESA’s Sentinel satellites, the mul-
tispectral bands R, G, B, Nir, and Swir1 and Swir2 were collected

Figure 2: The study’s methodology

for the purpose of determining forest cover change.
Sentinel-2B data were used in the analysis of the year 2021, and
Landsat 5 TM were used for three periods (1991, 2001 and 2011)
(Table 1).

No Type Date Resolution
1 Landsat 5 TM 1991-08-13 30 m
2 Landsat 5 TM 2001-08-24 30 m
3 Landsat 5 TM 2011-08-04 30 m
4 Sentinel-2B 2021-07-15 10 m

Table 1: Spatial data used in the study

2.4 Preparing data

2.4.1 Spectral Indices Landsat and Sentinel multispectral data
were used to calculate spectral indices using equations, spectral
indices such:

NDVI Normalized Difference Vegetation Index is one of the
most commonly used vegetation indices for ecological research
(Pettorelli, 2013). (Rouse et al., 1973) developed this method to
estimate biomass. Taking into account the red and near infrared
bands (RED and NIR) (Equation 1) (Pettorelli, 2013).

NIR−Red

NIR+Red
(1)

NDWI Normalized Difference Water Index developed by (McFeeters,
1996) this satellite-derived system uses short wave infrared (SWIR)
and NIR channels to derive an index that reflects changes in both
water content (absorbing SWIR radiation) and spongy mesophyll
content of vegetation canopies (Gao, 1996) (Equation 2) (Gao,
1996).

Green−NIR

Green+NIR
(2)

NDBI Normalized Difference Built-Up Index was used to ex-
tract Built-up from remote sensing imagery, which exploits the
unique spectral characteristic of built-up areas and other land
cover types (Zha et al., 2003). Through the integration of Otsu’s
method, the NDBI was used to automate the process of mapping
built-up areas (Zha et al., 2003). Based on the near-infrared band
(NIR) and shortwave infrared band 1 (SWIR1), the NDBI was
calculated as follows (Zha et al., 2003) (Equation 3) (Zha et al.,
2003).

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W9-2024 
GeoAdvances 2024 – 8th International Conference on GeoInformation Advances, 11–12 January 2024, Istanbul, Türkiye

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W9-2024-337-2024 | © Author(s) 2024. CC BY 4.0 License.

 
338



SWIR−NIR

SWIR+NIR
(3)

MSAVI2 Modified Soil Adjusted Vegetation Index 2 means the
soil-adjusted vegetation index tries to overcome some of the NDVI
limitations in areas where soil is exposed (Qi et al., 1994). The
MSAVI algorithm has been used in numerous range land studies,
often as a complement to field data on vegetation cover (Qi et al.,
1994) (Equation 4) (Qi et al., 1994).

2NIR+ 1−
√

(2NIR+ 1)2 − 8(NIR−Red)

2
(4)

2.4.2 Ground truth data Ground truth samples were created
with the help QGIS and multispectral bands Nir, R and G (Figure
3).

Figure 3: Color Infrared of the study area

2.5 Machine learning algorithms

2.5.1 Preprocessing Data The data was transformed to a CSV
file where each period have features which are the Spatial data
and the Spectral Indices and a target which is called Class which
have 5 classes (1: Forest, 2: Water, 3: Built-Up, 4: Bareland, 5:
Cultivated land). The data will serve as training material for ma-
chine learning algorithms such as Random Forest, Support Vector
Machine (SVM), and K-Nearest Neighbors (KNN).

B1 B2 B3 B4 B5 B7 NDVI NDWI NDBI MSAVI2 Class
0 0.0407 0.0382 0.0478 0.0691 0.0747 0.0574 0.182207 -0.287978 0.038943 0.038747 4.0
1 0.0420 0.0399 0.0519 0.0712 0.0840 0.0622 0.156783 -0.281728 0.082474 0.034852 4.0
... ... ... ... ... ... ... ... ... ... ... ...
103818 0.0440 0.0453 0.0585 0.0732 0.0826 0.0631 0.111617 -0.235443 0.060334 0.026246 4.0
103819 0.0432 0.0417 0.0544 0.0691 0.0806 0.0603 0.119028 -0.247292 0.076820 0.026445 4.0

Table 2: (A) 1991 Dataset

B1 B2 B3 B4 B5 B7 NDVI NDWI NDBI MSAVI2 Class
0 0.0386 0.0352 0.0473 0.0623 0.0883 0.0738 0.136861 -0.277949 0.027341 0.027341 4.0
1 0.0381 0.0343 0.0490 0.0613 0.0877 0.0756 0.111514 -0.282427 0.177181 0.022359 4.0
... ... ... ... ... ... ... ... ... ... ... ...
103818 0.0353 0.0304 0.0351 0.0481 0.0733 0.0587 0.156250 -0.225478 0.207578 0.207578 4.0
103819 0.0413 0.0381 0.0457 0.0603 0.0752 0.0615 0.137736 -0.225610 0.109963 0.026693 4.0

Table 2: (B) 2001 Dataset

B1 B2 B3 B4 B5 B7 NDVI NDWI NDBI MSAVI2 Class
0 0.0400 0.0370 0.0464 0.0705 0.0787 0.0547 0.206159 -0.311628 0.054960 0.043935 4.0
1 0.0400 0.0388 0.0494 0.0676 0.0899 0.0698 0.155556 -0.270677 0.141587 0.033026 4.0
... ... ... ... ... ... ... ... ... ... ... ...
103818 0.0426 0.0415 0.0533 0.0696 0.0880 0.0627 0.132628 -0.252925 0.116751 0.029374 4.0
103819 0.0422 0.0425 0.0525 0.0705 0.0886 0.0636 0.146341 -0.247788 0.113765 0.032476 4.0

Table 2: (C) 2011 Dataset

B2 B3 B4 B8 B11 B12 NDVI NDWI NDBI MSAVI2 Class
0 0.1450 0.1362 0.2016 0.2712 0.2712 0.2759 0.201426 -0.303220 0.162446 0.096256 4.0
1 0.1418 0.1376 0.1962 0.2631 0.3934 0.2949 0.229833 -0.299580 0.198477 0.093382 4.0
... ... ... ... ... ... ... ... ... ... ... ...
933508 0.2023 0.1792 0.2835 0.3484 0.4168 0.2944 0.158379 -0.265299 0.089388 0.080297 4.0
933509 0.1932 0.1715 0.2724 0.3477 0.4168 0.2944 0.177784 -0.285635 0.090386 0.094045 4.0

Table 2: (D) 2021 Dataset

2.5.2 Random forest An independent random vector sample
is used to create each classifier in the random forest classifier,
to classify the input vector, each tree votes for the most popular
class (Breiman, 1999). Random forest classifiers consist of ran-
domly selecting features or combining features at each node to
build a tree. Using the bagging method, N random replacement
examples are drawn to generate the training dataset, where N is
the size of the original training set (Breiman, 1996), was used for
each feature/feature combination selected. In the forest, exam-
ples (pixels) are classified by taking the class that has received
the most votes from all trees (Breiman, 1999).

2.5.3 Support Vector Machines The purpose of SVMs is to
determine the location of decision boundaries that produce the
best separation of classes, based on statistical learning theory
(Vapnik et al., 1995). SVMs select the linear decision boundary
that leaves the greatest margin between two classes in a two-class
pattern recognition problem where classes are linearly separable.
Basically, margin is the sum of the distances from the nearest
points of the two classes to the hyperplane (Vapnik et al., 1995).
By using quadratic programming (QP) optimization techniques,
this problem of maximizing the margin can be solved. Calcula-
tion of the margin is based on data points that are closest to the
hyperplane. As a result, these data points are known as ’support
vectors’, and are always small in number (Vapnik et al., 1995).

2.5.4 K-Nearest Neighbours The KNN algorithm is based
on instance-based learning, and all the training samples need to
be kept for classification purposes (Cover and Hart, 1967). Dur-
ing classification, each test sample is compared to its K neighbor-
ing training samples, To derive the class label prediction, neigh-
bors are generally defined according to the Euclidean distance
metric, and the decision is made by majority vote among neigh-
bor samples (Hastie et al., 2009).

3. RESULTS

3.1 Validation Results

The validation of the land cover classification was performed us-
ing two key metrics: Cohen’s Kappa and overall accuracy, as de-
tailed in Table 3. To provide a more comprehensive evaluation,
confusion matrices were generated for each of the four time pe-
riods (as displayed in Figures 4 (A, B, C, D)). These validation
results unequivocally establish the random forest (RF) algorithm
as the most accurate classifier, a conclusion supported by the as-
sociated confusion matrices. For all four time periods, the RF
algorithm consistently achieved the highest level of overall accu-
racy, registering an impressive 0.99 accuracy score for each pe-
riod.
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Periods Metrics RF SVM KNN Periods Metrics RF SVM KNN
1991 Overall accuracy 0.99 0.97 0.98 2011 Overall accuracy 0.99 0.94 0.98

Kappa 0.99 0.92 0.97 Kappa 0.99 0.89 0.96
Precision 1.00 0.94 0.98 Precision 1.00 0.91 0.96

Recall 1.00 0.99 0.99 Recall 1.00 0.97 0.97
F1-score 1.00 0.96 0.99 F1-score 1.00 0.94 0.97

2001 Overall accuracy 0.99 0.96 0.98 2021 Overall accuracy 0.99 0.94 0.98
Kappa 0.99 0.91 0.96 Kappa 0.98 0.90 0.96

Precision 1.00 0.93 0.97 Precision 1.00 0.96 0.98
Recall 1.00 0.99 0.99 Recall 1.00 0.98 0.99

F1-score 1.00 0.96 0.98 F1-score 1.00 0.97 0.99

Table 3: Classification report

Figure 4: (A) Confusion Matrix 1991

Figure 4: (B) Confusion Matrix 2001

Figure 4: (C) Confusion Matrix 2011

Figure 4: (D) Confusion Matrix 2021
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Moreover, Cohen’s Kappa coefficients were calculated and found
to range between 0.98 and 0.99 for all time periods.
In addition to Cohen’s Kappa, other important metrics were com-
puted to further assess the classification performance. These met-
rics include precision, recall, and the F1-score. These measures
are particularly valuable when dealing with problems involving
imbalanced binary classification. Precision, for instance, quan-
tifies the percentage of correctly classified forest instances, pro-
viding insight into the algorithm’s ability to accurately identify
forested areas.

3.1.1 Setting up the models In the study, machine learning
models were optimized with specific settings: Random Forest
with 300 trees, a maximum depth of 20, and 30% feature selec-
tion; SVM using a radial basis function kernel, C=10, and a slack
variable of 0.5; and KNN with K=15, using Euclidean distance
and distance-based weighting. All models incorporated feature
scaling and class weight adjustments, with SMOTE applied in
KNN for class imbalance. These settings were carefully chosen
to suit the dataset’s characteristics and the study’s objectives, en-
suring an effective and robust analysis.

3.2 Classification Results & Forest Change

The classification of land cover using machine learning algo-
rithms was carried out in the years 1991, 2001, 2011, and 2021.
The outcomes of these analyses were subjected to metrics exam-
ination, and it was determined that the random forest algorithm
consistently delivered the highest accuracy in land cover classifi-
cation.
Forest changes over time can be assessed by examining the dif-
ferences in forest cover between two consecutive time intervals.
This analysis provides valuable insights into the dynamics of for-
est ecosystems.
In the context of our study, Figure 5 represent these changes, with
purple areas denoting forest loss and blue areas indicating forest
gain.
During the initial period from 1991 to 2001, the rate of forest
loss was notably high, measuring 2.69 square kilometers. This
amount equated to approximately 13.18% of the total forest cover
during that time frame.This significant loss underscores the chal-
lenges faced by the forested regions during this period.
In the subsequent decade, from 2001 to 2011, there was a no-
ticeable improvement in the forest’s condition, as the rate of for-
est loss decreased. The estimated forest loss during this period
amounted to 2.12 square kilometers, equivalent to 11.68% of the
total forest cover. This decline in forest degradation reflects pos-
itive conservation efforts and possibly changing land use prac-
tices.
Moving on to the third period, from 2011 to 2021, the forest
degradation rate continued to decrease. The forest loss during
this time was estimated to be 1.40 square kilometers, accounting
for 8.42% of the total forest cover. This downward trend in forest
loss highlights ongoing conservation efforts and potentially im-
proved forest management strategies.
Interestingly, over the course of these three periods, there was a
noticeable increase in forest gain. Specifically, between 2011 and
2021, the forest gain was estimated to be 3.75 square kilometers,
representing 19.78% of the total forest cover. This positive trend
in forest gain is a significant development, indicating potential
ecological restoration or afforestation initiatives that deserve fur-
ther exploration.
The analysis of forest changes over time reveals both challenges
and encouraging signs for forest ecosystems. While forest loss

has been a concern, particularly in the earlier periods, the de-
crease in degradation rates and the notable increase in forest gain,
especially in the most recent decade, demonstrate the potential
for positive conservation outcomes and the importance of ongo-
ing monitoring and sustainable forest management practices.

Figure 5: Forest change

4. DISCUSSION&CONCLUSION

4.1 Discussion

In this study, the forest degradation dynamics were mapped for
a specific area within the Bouskoura forest, located in the coun-
try of Morocco. Utilizing state-of-the-art machine learning al-
gorithms, particularly the random forest algorithm, the results
obtained were not only satisfactory but also deeply intriguing.
The methodology involved an analysis of multi-temporal satel-
lite datasets derived from renowned missions such as Landsat and
Sentinel. These invaluable datasets were thoughtfully categorized
into five land cover classes, allowing for a more comprehensive
examination of the landcover change. Consequently, the result-
ing land cover maps, which captured the period of the years 1991,
2001, 2011, and 2021, proved to be an absolute useful informa-
tion, offering profound insights into the dynamic shifts taking
place.
The effect of human growth is the main cause of forest degrada-
tion rate by observing the result it is obvious that when built-up
started increasing, the forest degradation started increasing too.
However, Using with the help of machine learning algorithms
monitoring changes of forests, urban planing, climate and more
would be efficient and highly accurate. Machine learning, remote
sensing and gis, can be play a big part into helping countries over-
come a lot of challenges.
The forest change identified from the results revealed that Mo-
rocco is overcoming the challenges of forest degradation in Bousk-
oura forest.

4.2 Conclusion

For the period 1991-2021, land cover analyses were conducted in
Bouskora forest to map the dynamics of forest degradation. Us-
ing machine learning to classify multispectral satellite imagery.
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Maps produced from the output classification were highly accu-
rate with the help of radom forest classifier for the forest cover,
Forest loss and gain trends were accurately computed, and results
were compared to other similar studies. Based on the experimen-
tal results, the implemented approach can provide high classifica-
tion accuracy for future works. Providing decision makers with
the necessary information to design and implement proper regu-
lations to protect forests can be very helpful.
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