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ABSTRACT:

Automatic update of 3D city models has become a crucial operation in the context of urban digital twins. It commonly relies on
a reconstruction from ALS point clouds. However, frequent reconstructions due to a dynamic urban environment are resource-
intensive and lack change information about the scene. In this paper, we present a novel framework which aims to combine an
instance change detection approach based on a distance-computing algorithm, geometric features and thresholding with a building
reconstruction algorithm to ensure an efficient geometric, semantic and thematic (change labeling) update of an existing 3D city
model. This approach comprises three stages spanning from data preparation to the integration of change results in the updated
model. First, we prepare our input data. Next, we assess the changes between the two epochs. This process involves two stages.
New and lost buildings are extracted in the first, and the changed and unchanged in the other. The results of the change detection
are evaluated using standard evaluation metrics. The evaluation results are encouraging considering the various sources of errors.
Finally, unchanged buildings are kept in the model, while the changed and new ones are reconstructed using Geoflow3D. The final
model is semantically augmented using a change attribute. Since the 3D city model undergoes an update rather than complete
reconstruction, the tracking of both geometric and semantic changes of some buildings can be made possible through a versioning
system. The change information can be leveraged in multiple applications like 3D cadastre, urban inventory, urban planning . . .

1. INTRODUCTION

Three-dimensional (3D) city models are digital representations
of our world, enabling a wide range of intelligent applications in
the domain of geospatial sciences (Biljecki et al., 2015). These
models not only store geometric information but also incorpor-
ate the semantic labels and attributes of the urban objects. The
creation process of these models is often referred to as 3D re-
construction. Point Clouds (PC) acquired from Airborne Laser
Scanners (ALS) have proved to be the most used and efficient
data source for the reconstruction of large-scale 3D city models.
In light of the current increasing availability of point cloud data
in the built environment, information encompassed within the
models quickly become outdated with each new acquisition. A
generic solution for updating 3D city models would be to recon-
struct a new model with each point cloud acquisition. However,
this solution does not consider the history of changes within the
urban scene, nor it is computationally optimized. Reconstruct-
ing highly detailed building models remains challenging given
the current level of automation in this field (Arroyo Ohori et al.,
2022). Furthermore, a significant number of buildings do not
undergo any considerable changes between short time acquis-
itions. To completely reconstruct them is time consuming and
computationally demanding.

Recent advancements in the automatic registration, denoising
and semantic segmentation of point clouds, have provided the
research community with benchmark of semantically segmen-
ted multitemporal point cloud open data of large-scale urban
environments. This has played a crucial role in the increasing
tendency of the number of scientific papers addressing the 3D
change detection (CD) topic and its applications (Kharroubi et

al., 2022). Most of the state-of-the-art point cloud based change
detection methods that operate on buildings embed the change
information on the pixel level, patch-level or point-level, but
rarely on the building instance level. These results are usually
binary (changed/unchanged) (Stilla and Xu, 2023). Further-
more, methods that tackle multi-class (e.g., changed, new, de-
molished) change detection on buildings often confuse building
instances (i.e., continuous rows of buildings are sometimes con-
sidered as a single building instance). Another example would
be when a part of a building is demolished, it is often labeled
as a whole building that was lost. This is often the case when
using traditional methods (methods which are based on differ-
ence of distance or height), where no a priori labeling has been
done to individualize each building instance.

Learning-based change detection methods provide the best state-
of-the-art results but are not well suited for an end-to-end al-
gorithmic approach that can be up-scaled to wider urban ex-
tents. They require a substantial amount of labeled training
data, they’re context-bound (i.e., they adapt to the training data
and sometimes over-fit) and computationally demanding. Fur-
thermore, multi-class public change detection datasets are not
very common (de Gélis et al., 2023). Conversely, distance-
based methods are computationally efficient (fast and less re-
source consuming) (de Gélis et al., 2021). Moreover, they have
not yet been adequately tested on urban environments, espe-
cially with a provided instance segmentation information. The
latter paves the way for an automatic end-to-end algorithmic
fast-computing change detection method, which efficiently op-
timizes the reconstruction process.

To the best of our knowledge, there is no method (standard or
learning-based) that transfers a change information extracted

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W9-2024 
GeoAdvances 2024 – 8th International Conference on GeoInformation Advances, 11–12 January 2024, Istanbul, Türkiye

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W9-2024-349-2024 | © Author(s) 2024. CC BY 4.0 License.

 
349



from point clouds to an existing city model, or leverages it to
optimize its geometric and semantic update.

To efficiently update 3D city models, we have implemented a
change detection process that utilizes semantically segmented
point clouds and two-dimensional (2D) vector files (i.e., build-
ing footprints). These building footprints are deployed as in-
stance segmentation to individualize each building. Our aim
is to alleviate the computational cost of the reconstruction al-
gorithm (especially when dealing with an urban scene of con-
siderable extent) by focusing only on buildings that are new or
those that have undergone a significant change. The demolished
buildings will simply be deleted from the existing model and the
unchanged ones will be kept. Each building object in the final
model will see a change label automatically added to its attrib-
utes, providing a history of change between the two epochs and
a visual interpretation of change when using a 3D city model
viewer.

In order to update an existing 3D city model in the CityJSON
encoding (Ledoux et al., 2019), we first provide a semi-automatic
point-based instance change detection method . Then, the new
and changed buildings are reconstructed, and the updated model
is parsed to add the change type as an attribute to each Building
or BuildingPart object (2). Next, we present the pipeline’s res-
ults and we assess the change detection process (3). We finally
provide several perspectives for future work (4).

2. METHOD

In this section, we first present the input datasets specificities
(2.1). Then we showcase how we prepared the input data (2.2).
Next, we enumerate the change types we defined (2.3). After-
wards, we present our semi-automatic building instance change
detection workflow (2.4) & (2.5). Finally, we showcase how the
model is updated using the change information we just extrac-
ted (2.6) & (2.7).

2.1 Input data specificities

To apply our distance computation change detection process,
we must have two point clouds, one of each epoch. Epoch1
point cloud must represent exactly the same urban objects as
the existing 3D model (i.e., both refer to the same date). In
most cases, the same point cloud that served to reconstruct the
existing model is available. Epoch2 point cloud is the newer
acquisition. The point clouds should satisfy the following con-
ditions :

• A prior denoising and outlier removal

• A prior semantic segmentation that efficiently discrimin-
ates the building class from the other classes

• Both aligned to the same reference frame

The AHN (Actueel Hoogtebestand Nederland, 2023) dataset
was chosen due to it being multi-epoch (different acquisitions
over time), semantically segmented and having the same spatial
partitions in all the acquisitions (e.g., the same tiling schema for
AHN3 and AHN4).

The 3DBAG (Peters et al., 2021) is an up-to-date dataset com-
prising detailed 3D building models across the Netherlands. It
is openly accessible data containing 3D models at various levels

of detail, produced through automated integration of two open
datasets: building data from the BAG (Kadaster, 2023) (stands
for “Register of Buildings and Addresses”, which is an open
dataset of building footprints provided by the Dutch cadastre)
and elevation data from the AHN.

We chose to apply our updating methodology on the 21.09.8
version of the 3DBAG for the following reasons:

• It covers the same extent as the AHN datasets

• It was reconstructed using AHN3, which means that they
both contain the same building instances (same epoch)

• It was reconstructed using the same algorithm as the one
we use in our methodology

• The instance segmentation to individualize each building
was also done using precise footprints provided by the ca-
dastre

To separate our buildings into instances to assess the change
and to reconstruct on the individual building level, footprints of
each epoch must be provided as vector files. Epoch1 footprints
are up-to-date with the 3D model, since they can be directly
extracted from it using a tool like CityJSON Loader (Vitalis,
2022) which can be found in QGIS (QGIS Development Team,
2009).

Epoch2 footprints need to be up-to-date with their point cloud
counterpart, and provided from the same source as Epoch1 ones.
Thus, we are guaranteed to have the same building identifica-
tion system, and the same logic for defining building extents.

The BAG is used to provide reliable building footprints that
were generated following the same logic as the ones present in
the existing 3D model. This would ensure that if buildings re-
main untouched in between the two epochs, they ought to have
the same footprints.

2.2 Data preparation

We prepare our raw data in order to limit their extent to that of
the existing model, while focusing on the building objects and
alleviating the sources of errors. The following figure summar-
izes the data preparation process:

Figure 1. Data preparation diagram.
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2.3 Change types

We defined 4 change types to serve our methodology. For each
one, we have put in place some assumptions to which it has to
adhere:

• New building: All the points/footprints labeled as “new
building” are supposed to refer to building instances that
are absent from epoch1, and present in epoch2. These are
buildings that were constructed between the two epochs.

• Lost building: Points/footprints designated as “lost build-
ing” should represent instances of buildings that are present
in epoch1 but absent in epoch2. These are the buildings
that were demolished between the two epochs.

• Changed building: A building instance is regarded as
“changed” when a considerable vertical distance has been
computed between the epoch1 building and its epoch2 coun-
terpart. The chosen distance is a combination of the ver-
tical accuracies of each of the point clouds, and an addi-
tional empirical threshold to eliminate some false changes
(e.g., windows that are open/closed in sloping roofs, small
temporary objects on the roof etc. . . ). The chosen point
candidates are subject to the following conditions:

– They need to have a high degree of normality along
the +Z axis. This is done in order to eliminate the
façade points since a considerable number respects
the vertical distance criteria. We tend to eliminate
building façade points simply because in ALS point
clouds they are usually occluded. The same details
of the façade might exist in the two epochs, but the
point cloud does not necessarily represent this in-
formation

– They need to have a moderate to high level of planar-
ity and a low to moderate level of linearity (to elim-
inate the remaining façade points)

– They need to fit into a relatively big cluster of points
(to avoid small insignificant objects and noisy points)

• Unchanged building: All the building instances that do
not fit any of the aforementioned criteria are considered
“unchanged”.

2.4 Extraction of New and Lost buildings

We apply vector intersections between the epoch1 footprints
and the epoch2 ones. If a polygon (building instance) from
epoch1 does not intersect with any polygon from epoch2, it is
added to a new vector file called “lost buildings”, if the oppos-
ite is true it is added to a new vector file called “epoch1 rest”.
Conversely, if a polygon from epoch2 does not intersect with
any polygon from epoch1, it is added to “new buildings” while
the rest is added to “epoch2 rest”.

Subsequently, the “new buildings” vector file is used to clip
the pre-processed epoch2 point cloud, to create a point cloud
containing the points encompassed within the new building in-
stances. The latter will serve as an input in the reconstruction
step. In the same way, the “lost buildings” vector file is utilized
to clip the pre-processed epoch1 point cloud, to generate a point
cloud comprising the points enclosed within the lost building
instances. Conversely, the lost building point cloud will not
serve in the reconstruction process. It will only be used to ex-
tract samples for the validation step.

The clipping and vector intersections were applied using py-
thon scripts that we developed, which leverage the Geopandas,
Shapely and Laspy modules.

2.5 Extraction of Changed and Unchanged buildings

Using the “epoch1 rest” and “epoch2 rest” vector files, we clip
the pre-processed “epoch1” and “epoch2” point clouds respect-
ively, to generate two new point clouds where no building in-
stance has been completely demolished or constructed.

The newly generated point clouds are compared using a distance-
based change detection tool named Cloud-to-Cloud distance
(C2C) (Girardeau-Montaut et al., 2005). This method is the
simplest and fastest direct 3D comparison method of point clouds
as it does not require gridding or meshing of the data, nor calcu-
lation of surface normals. Its simplest version is called “nearest
neighbor distance”, it identifies the nearest point in the refer-
ence cloud for every point in the compared cloud, and then cal-
culates the Euclidean distance using a Hausdorff distance com-
putation algorithm. It is relevant to point that before computing
the distance, the point clouds are divided into cells using an
octree data structure.

Figure 2. Nearest neighbor distance principle
(Girardeau-Montaut et al., 2015)

Results of C2C are displayed as scalar fields on the compared
point cloud which refers in this case to the “epoch2 rest” one.

We also compute the normality along the +Z axis. Normal com-
putation is the process of calculating the normal vector for each
point in a point cloud. The normal vector is a vector that points
in the direction of the local surface at that point.

Our particular focus lies on the C2C positive distance along
the Z axis, which means that buildings that have undergone a
reduction in height are not considered. This assumption is made
to facilitate the process, since buildings are usually changed by
adding floors or parts, by complete demolition and rarely by
individual floor demolition.

A threshold is applied to extract changed candidate points. The
latter comprises the vertical accuracies of each of the point clouds,
along with an empirical threshold to remove false changes. Then
we eliminate points having a low value of the Nz scalar field
(normality along the +Z axis). It is done in order to keep the
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roof points (in theory having a high value of Nz) and eliminate
the façade points that lead to false changes.

Geometric features like planarity and linearity are computed on
the remaining candidate points. Linearity is a geometric feature
that measures how linear a surface is at a given point. A value
of 1 indicates that the surface is perfectly linear, while a value
of 0 indicates that the surface is not linear at all. Planarity is
defined as the degree to which the normal vectors of a local
neighborhood of points are aligned. In other words, a point is
considered planar if the variance of the normal vectors in its
neighborhood is low. A combination of high degree of linearity
and low degree of planarity is used to filter out the remaining
façade points.

Finally, a clustering algorithm such as ”Label Connected Com-
ponents” (Girardeau-Montaut, 2015) is used to keep only the
compact clusters that contain a considerable number of points.
The chosen points are added to a point cloud labeled as “changed
buildings”. These points are intersected with the “epoch2 rest”
vector file. For each polygon, we count the number of points
that are encompassed within it (points are projected to the XY
2D plane) and apply the same threshold as in the clustering step.
Polygons that respect this condition are added to a new vector
file labeled “changed buildings”. The others are generated as
“unchanged buildings” vector file. Both resulting vector files
are used to clip the “epoch2 rest” point cloud and produce two
new point clouds. The “changed buildings” point cloud is used
in the reconstruction and validation step while the “unchanged
buildings” one is only used in validation.

The distance computation, the thresholding, the scalar fields
creation (normality and geometric features) and the clustering
are executed using CloudCompare (Girardeau-Montaut et al.,
2015).

The figure 3 sums up the change detection process.

2.6 Reconstruction and building matching

For optimization purposes, we must differentiate between what
must be kept in the existing city model and what must be recon-
structed. A significant proportion of the buildings in the urban
landscape remain unchanged over short periods of time. One
of the main reasons of our change detection step is to point out
these instances to leave them untouched in the existing model.
When dealing with the update of 3D city models on a country-
scale for instance, this filtering step (i.e., pinpointing unchanged
buildings) can greatly optimize the reconstruction process in
both time and resource consumption.

In order to achieve this, we match the identification number
“ID” of building instances in the “unchanged buildings” vec-
tor with the “ID” of the Building and BuildingPart objects in
the existing CityJSON. The matched objects are kept in the
model while all the other objects are deleted. Lost buildings
are also extracted via matching between model and vector file.
However, we need to extract only their LoD0 footprint as a
CityJSON file. The matching is done using a python script that
we developed, while the LoD0 extraction is made possible us-
ing cjio (Ledoux, 2021).

Next, we reconstruct the new buildings and changed buildings
using Geoflow3D. The latter is a framework that performs an
automatic reconstruction of 3D building models by leveraging
2D building polygons and an ALS point cloud. The process

Figure 3. Change detection process diagram

generates models at various LoDs, all derived from a unified
data source. A key focus of the workflow is to ensure robust-
ness, allowing for easy iteration in response to algorithmic en-
hancements or the availability of new input data. The qual-
ity of the reconstructed data is closely monitored at multiple
stages throughout the process, acknowledging that the outcome
is heavily influenced by the quality of the input data.

For each of these two models, we enter the required footprints
and point cloud to run the tool. The output is two CityJSON 3D
city models named “New” and “Changed” respectively.

2.7 Semantic augmentation

Now that we have a CityJSON model for each building change
type, we use python scripts that we developed, which leverage
the straightforward and easy parsing of the CityJSON format,
to add the change type as an attribute to each Building or Build-
ingPart object in each of the aforementioned models. Finally,
we merge the models using cjio.

Figure 4 summarizes the update step.

3. RESULTS

For visualisation purposes, we inspect the original model in
LoD2.2 using ninja (Vitalis et al., 2020) (Figure 5).

When inspecting the updated model, we apply conditional format-
ting, which consists in attributing to each Building or Building-
Part a distinct colour based on the values of an attribute. We
choose the attribute “change type”, and we define a color for
each value (Figure 6).

In order to validate the proposed methodology and the frame-
work implemented in this paper, we used some standard classi-
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Figure 4. Summary of the update process

Figure 5. Top-view of the original model.

fication evaluation metrics present in the scikit-learn (Pedregosa
et al., 2011) python library :

• Overall Accuracy (OA)

• Precision

• Recall

• F1 score

• Intersection over Union (IoU)

We manually prepared our validation dataset using orthoimages
available in geotiles. We identified some buildings within the
extent of our scene, then carefully and scrupulously annotated
their points with their corresponding change type. Thus, for the
chosen validation set, each point has two scalar fields:

• “prediction”: which is the scalar field containing the de-
tected changes using our pipeline. It contains 4 values:

Figure 6. Final updated model

– 1: New

– 2: Lost

– 3: Changed

– 4: Unchanged

• “ground truth”: which contains the change types that we
manually annotated. The same codification as “prediction”
is used.

We regrouped the evaluation metrics results in table 1.

Evaluation metric Accuracy Precision Recall F1 score IoU
Value 0.866 0.911 0.866 0.868 0.777

Table 1. Values of the evaluation metrics

The resulting normalized confusion matrix is illustrated in fig-
ure 7.

We notice that a considerable number of points has been labeled
as “Changed” while the ground truth data shows that they should
belong to the “Unchanged” class. This is due to several reasons;
we enumerate the ones that are recurrent in our scene:

• Windows on slanted roofs are detected as change when
they are closed in one epoch and open in the other

• Large temporary objects on roof terraces (e.g., vehicles if
the building roof serves as a parking)

• Inconsistent point sampling. The same buildings are de-
tailedly sampled in epoch2 while they have a low density
of points in epoch1
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Figure 7. Resulting normalized confusion matrix

• Occlusions. Gaps in either point cloud might lead to a false
change when computing vertical distance

• Remaining façade points that could not be filtered out with
the assumptions we used

4. DISCUSSION

Our paper proposes a novel approach to deal with the updat-
ing of building objects in a 3D city model. With our proposed
methodology, we managed to apply a point-based distance com-
putation to assess the changes in building instances of a 3D city
model, while updating it with newly reconstructed building ob-
jects and thematic change information.

Optimizing the reconstruction process by only reconstructing
selected buildings from a prior change detection step, is not
a common research topic. In most of the current state-of-the-
art 3D change detection methods, the instance segmentation is
not an important step, since the objective is usually to display
inter-class change on the point-level. While in our case, the
change information on the point-level is not enough to update
the existing model, since no explicit affiliation information ex-
ists between each point and the building object to which it be-
longs. Geoflow3D makes use of the 2D vector building foot-
prints to establish this affiliation.

The only framework that we found which has similar object-
ives as our method is the third version (2023.08.09 – beta) of
the 3DBAG, in which a new attribute that serves as a change
information has been added. The said attribute is named
“b3 mutatie ahn3 ahn4”, it outputs the value “true” for each
building object for which the point cloud has undergone a sig-
nificant change between two epochs (AHN3 and AHN4). In
other words, it is a binary change attribute. The reconstruction
is also improved in a qualitative way. When it is detected that no
significant change has been observed, and that the AHN3 data
is denser and covers the roof surface better than the AHN4, the
building object is reconstructed using the AHN3 and not the
AHN4.

Based on our proposed methodology’s limitations and new ques-
tions raised during our experiments, we would like to explore
and recommend continuing this research in the following direc-
tions:

• Finding more rigid and robust assumptions to filter out
false changes, which automatically adapt to the specificit-
ies of each urban scene.

• Considering an ALS acquisition simulator like Helios++
(Winiwarter et al., 2022) to provide an epoch1 point cloud
having the same acquisition parameters as the epoch2, and
thus getting rid of occlusions.

• Coming up with a learning pipeline, which leverages the
local neighborhood of each point to assess the change at
the building instance level without the need to provide epoch2
building footprints. The pipeline should be able to learn to
define the same instances for the changed and unchanged
buildings as the ones found in the existing model, and
define new ones for the newly constructed buildings. It
should also be robust against differences in point density,
occlusions, noise and prior semantic segmentation discrep-
ancies between the two epochs.

• Explore the generalization process of the reconstruction al-
gorithm (the reconstructed model does not accurately rep-
resent the same geometrical aspect as the point cloud), to
pinpoint exactly what details are worth considering as a
change (since only those are going to be clearly visible
in the reconstructed model). Thus, making the “model to
cloud comparison” possible without having to work with
the underlying point cloud from epoch1.

• Generalize the pipeline to not only cover one tile of the
3D city model, but also scale it to the extent of a whole
region or country for instance. This is made possible using
indexing and tiling techniques. An example of this scaling
approach is detailed in (Yarroudh, 2023).

5. CONCLUSION

In this work, we proposed a comprehensive approach in which
we investigated the robustness of semi-automatic change detec-
tion using distance-based methods on urban ALS point clouds,
which have undergone instance segmentation using 2D build-
ing footprints. We also automatically detected the concerned
buildings in the model: we kept the unchanged ones, deleted
the lost ones and left their LoD0 footprints for inspection pur-
poses, and reconstructed the new and changed ones. Then each
building object received its respective change type as an attrib-
ute. Depending on factors like the input point clouds’ vertical
and horizontal accuracy, point density and thresholds of ver-
tical distance and geometric features, our methodology can be
applied to various applications. For the chosen values of these
parameters, our methodology can be applied, for instance, to
detect violations of urban planning laws. Buildings which have
undergone an illegal construction of floors or installations (huts
or walls on the rooftop) can be identified. By producing py-
thon scripts, we emphasize our commitment to the use of open-
source software. We aimed to ensure that our method can be
reproducible, verifiable and built-upon by students, researchers
and practitioners. The python scripts that were developed can
be accessed via github.
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