
SPATIALLY AWARE LANDSLIDE SUSCEPTIBILITY PREDICTION USING A 

GEOGRAPHICAL RANDOM FOREST APPROACH 
 

 

A. Teke1*, T. Kavzoglu1 

 
1GTU, Department of Geomatics Engineering, 41400 Gebze Kocaeli, Turkey - (a.teke2020, kavzoglu)@gtu.edu.tr 

 

 

 

 

KEY WORDS: Landslide Susceptibility, Geographical Random Forest, Machine Learning, Mapping Unit, Spatial Autocorrelation.  

 

 

ABSTRACT: 

 

Landslide susceptibility prediction practices have been increasingly reliant on non-geographically-oriented (i.e., aspatial) machine 

learning algorithms. While these approaches have exhibited increasing success, they have often faced criticism for their limited 

consideration of spatial autocorrelations and local variations across geographical space, thereby neglecting the concept of spatial 

non-stationarity. To fulfill the research gap, this work applies a geographical random forest (GRF) approach, contrasting it with the 

conventional random forest (RF) algorithm. To this end, the study area, encompassing the Lake Sapanca Basin and its surroundings, 

was subdivided into 4,452 slope-based mapping units. The effectiveness of both predictive models was then measured by using 

overall accuracy (OA) and area under the curve (AUC). The results revealed that the GRF (OA = 80.82% and AUC = 85.22%) 

outperformed the RF algorithm (OA = 75.34% and AUC = 82.50%) by approximately 5% in OA, and demonstrated a 3% 

improvement in AUC score. The Wilcoxon signed-rank test confirmed significant differences (95% level) between the predictions of 

both models. The slope parameter emerged as the globally most influential factor, but local interpretations disclosed notable 

variations in the importance of causative factors contingent upon location. For instance, the curvature parameter was the most 

important geospatial covariate in around one-third (34.23%) of the slope units, mostly concentrated in the northernmost zones of the 

study area. On the other hand, elevation was the most important factor for 14.67% of the slope units primarily located in the southern 

region.  

 

 

1. INTRODUCTION 

Landslide occurrences are complex natural events characterized 

by non-linear behaviours and multifaceted mechanisms, making 

it challenging to pinpoint their exact triggers (Kavzoglu et al., 

2021). They result in severe material damage, substantial 

financial losses, loss of human lives, and disrupt the Earth’s 

natural equilibrium by altering its surface (Kutlug Sahin et al., 

2017). To mitigate these impacts, crafting landslide 

susceptibility maps emerges as a crucial strategy. These maps 

can depict the spatial arrangement of landslide and non-

landslide areas and are widely acknowledged as a crucial tool 

and cornerstone in contemporary literature. 

 

A plethora of approaches has been introduced to predict 

landslide susceptibility since the 1970s with expert-based notes 

taken on paper (Brabb et al., 1972). Then, the potent 

alternatives emerged as heuristic or knowledge-driven models 

based on the subjective judgment of the assessor. Subsequently, 

the spotlights firmly turn to the data-driven models, initially in a 

bivariate context and later evolving into multivariate 

approaches. Presently, the literature is heavily populated by 

machine learning algorithms, such as support vector machines 

(Kavzoglu et al., 2014), decision trees (Arabameri et al., 2021), 

random forest (Yilmaz et al., 2022), LightGBM (Sun et al., 

2023), CatBoost (Ye et al., 2022) and XGBoost (Kavzoglu and 

Teke, 2022a), offering more flexible alternatives to multivariate 

statistical tools and significantly improving predictive 

capabilities. 

 

The current landscape of the literature has been increasingly 

reliant on non-geographically oriented (i.e., aspatial) machine 

learning algorithms, indicating a virtual monopoly in the field. 

While these approaches have exhibited increasing success, they 

have often faced criticism for their limited consideration of 

spatial autocorrelations and local variations across geographical 

space (Chalkias et al., 2020), thereby neglecting the concept of 

spatial non-stationarity. These problems can also result in 

generalized models that inadequately capture the nuances of 

different regions. When these spatial elements are ignored, 

models might make predictions that do not seamlessly align 

with real-world spatial constraints. Until now, a series of studies 

has used geographically weighted models, enabling the 

incorporation of spatial context into the analysis of landslide 

susceptibility, such as Geographically Weighted Regression 

(GWR) (Chalkias et al., 2020), Geographically Weighted 

Logistic Regression (GWLR) (Gu et al., 2022), Geographical 

Random Forest (GRF) (Quevedo et al., 2022), and 

Geographically Weighted Artificial Neural Networks 

(GWANN) (Zhao et al., 2024). However, these studies mostly 

used the grid cells (i.e., pixels) as the main mapping unit. Even 

though spatial resolution may be prioritized in these studies, the 

units of grid cells might prove too localized to effectively 

capture unstable conditions, particularly when predicting larger-

scale slide failures. Additionally, the landslide susceptibility 

maps generated through pixel-based methods often consist of 

cells at metric resolutions, each assigned a specific 

susceptibility value, lacking spatial coherence or connectivity 

constraints among neighbouring pixels within an individual 

slope (Martinello et al., 2021). Consequently, selecting a 

suitable method for the delineation of terrain surfaces has 

become another problematic topic especially when dealing with 

models accounting spatial heterogeneity. Even though 

researchers mostly use the pixels or grids as default mapping 

units to segment the landslide-prone zones, they may pose 

certain drawbacks in some cases. These include susceptibility to 
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spectral-mixing, where diverse surface characteristics within a 

single pixel can confound the interpretation of landslide-prone 

areas. Additionally, the computational intensity associated with 

these methods can significantly slow down analyses and 

increase resource requirements. Also, as spatial resolution 

increases, individual pixels may cease to adequately represent 

the defining traits of classification targets. 

 

Motivated by the research gaps mentioned above, this study 

employs a geographical random forest (GRF) approach using 

slope-based mapping units, aiming to address the constraints 

presented by traditional aspatial landslide susceptibility 

modeling methods and grid mapping units. This work also 

contrasts the GRF approach with the conventional random 

forest (RF) algorithm to compensate for these limitations 

effectively. 

 

2. STUDY AREA AND DATASET 

The study area, encompassing the Lake Sapanca Basin and its 

surroundings, is situated within a tectonic depression (Figure 1). 

Spanning approximately 16 kilometres in length and reaching a 

maximum width of 6 kilometres, the lake displays an elongated 

shape and is distinguished by its clear warm waters, exhibiting 

oligotrophic and monomictic properties (Duru, 2017; Temiz et 

al., 2022). The topography of the Lake Sapanca Basin is 

characterized by fault-controlled mountain ranges, forming a 

complex arrangement of horsts and grabens. Tectonic activity in 

the region has resulted in various faults and folds, notably the 

North Anatolian Fault situated north of the basin, a highly 

active fault responsible for significant earthquakes in the area’s 

history.  

 

 

Figure 1. Location map of the study area and landslide zones. 

The expansion of human settlements and population growth in 

the Lake Sapanca Basin has significantly changed the land, 

making it more prone to erosion (Ikiel, 2022). This increased 

urban and rural development has strained the basin’s capacity to 

support life, causing harm to the natural environment. Over the 

last thirty years, settlements have extended beyond their limits 

due to industrial growth, leading to higher population density. 

Consequently, this has resulted in the loss of vegetation in the 

study area, elevating the risk of erosion.  

 

In the literature, a guiding ideology integral to creating 

landslide susceptibility maps is that past landslide occurrences 

in specific regions are indicative of potential future events in 

similar areas. Consequently, landslide inventory maps hold 

significant importance in subsequent stages as they furnish vital 

details like the type, precise location, and extent of landslides. 

This research utilized a historical database of landslides sourced 

from the General Directorate of Mineral Research and 

Exploration (GDMRE) of Turkey, which is part of the “Turkey 

Landslide Inventory Map” project. The main aim was to 

identify where landslides occurred across the country and create 

a comprehensive digital database on a national level. To achieve 

this, areas prone to landslides were marked on a detailed map 

using remote sensing methods such as aerial imagery and on-

site surveys, at a scale of 1: 25,000. This resulting inventory is 

accessible through a dedicated web portal that complies with 

legal regulations (http://yerbilimleri.mta.gov.tr/home.aspx). The 

identified landslide zones were then transformed into a raster 

format, resulting in 9,181 pixels or grid cells. Approximately 

827 hectares of land within the basin experienced landslides, 

varying in size from 2363 m2 to 139,499 m2 per individual 

landslide area. Each pixel or sample in the inventory represents 

a ground surface area of 30x30 meters. 

 

Major Factors Covariates Source Scale/Resolution 

Topographical 

Aspect 

SRTM - DEM 30 m 

CI 

Curvature 

Elevation 

Plan 

Curvature 

Profile 

Curvature 

Slope 

TPI 

TRI 

Valley 

Depth 

Hydrological TWI SRTM - DEM 30 m 

Geology Lithology GDMRE 1:100,000 

Environmental LULC 

ESRI 

Sentinel-2 

LULC Time 

Series 

10 m 

 

Table 1. Data source and scale/resolution of geospatial 

covariates. 
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Expanding on the prior studies and analyzing the main features 

of the basin, 13 geospatial covariates (i.e., landslide-related 

parameters) were initially chosen (Table 1). Most of these 

factors, such as aspect, convergence index (CI), curvature, 

elevation, plan curvature, profile curvature, slope, topographic 

position index (TPI), topographic roughness index (TRI), 

topographic wetness index (TWI), and valley depth, were 

derived from the digital elevation model of the Shuttle Radar 

Topography Mission, with a spatial resolution of 30 meters. The 

lithology map at a scale of 1:100,000 was obtained from 

GDMRE. Additionally, the land use land cover (LULC) map 

was acquired from the ESRI Sentinel-2 10m Land Use/Land 

Cover Time Series, derived from ESA Sentinel-2 imagery at a 

resolution of 10 meters, available globally. 

 

Aside from collecting landslide samples, identifying non-

landslide instances is another crucial step in landslide 

susceptibility mapping practices. This study adopts the 

methodology proposed by Gómez and Kavzoglu (2005). The 

approach is based on selecting non-landslide samples 

exclusively from areas that are completely free of landslides, 

mirroring how landslide instances are gathered from high-risk 

regions. This method operates on the premise that terrains with 

slopes less than 5% and river channels are unlikely to 

experience landslides. To ensure a balanced dataset and avoid 

biases in the analysis, an equivalent number of non-landslide 

pixels were collected following the procedure, matching the 

total count of landslide cases. 

 

3. METHODOLOGY 

The methodological design of this work comprises six primary 

steps. Initially, the focus is on gathering landslide-related 

parameters and collecting samples from both landslide and non-

landslide areas. These factors are then amalgamated into a 

multi-layer image composite to distinguish between landslide 

and non-landslide regions. Subsequently, the slope units within 

the basin were computed with the LaGriSU toolpack. For the 

construction of predictive models, 70% of the samples were 

utilized to train both GRF and RF models, while the remaining 

data was reserved for accuracy evaluation. The third step 

involves analyzing potential correlations among geospatial 

covariates within the database through multicollinearity 

analysis. Following this, the GRF and RF algorithms were 

employed to generate landslide susceptibility maps, and a 

comprehensive examination of both the global and local 

interpretations of the GRF algorithm was conducted to ascertain 

the dominant influence governing landslide activities within the 

basin. The performance of the susceptibility maps was assessed 

using four widely recognized accuracy criteria. Finally, any 

potential disparities in accuracy were evaluated using the 

Wilcoxon sign-ranked test. 

 

3.1 Slope-based Mapping Units 

Segmentation of landscape into terrain units is an important 

concern for discussion in the literature. Until now, a series of 

mapping units, such as grid cells, aspect units, unique-condition 

units, small watershed units, topographic units, and 

administrative divisions, has been used to subdivide the 

landslide-susceptible area under investigation. Ideally, the goal 

is to maximize homogeneity within each mapping unit or among 

the identities forming a mapping unit while permitting 

maximum heterogeneity among different units. In line with this 

aim, slope units delineated by drainage and divide lines align 

well with these expectations. Unlike their counterparts such as 

unique-condition units or pixels, slope units are closely 

associated with the geomorphological and hydrological 

processes by reflecting the physical features and characteristics 

of the terrain (Alvioli et al., 2016).  

 

The study area initially consisted of 771x493 grid cells. The 

slope units were delineated using LaGriSU (Landslide Grid and 

Slope Units) QGIS toolpack v 0.2 embedded within the QGIS 

platform (Althuwaynee, 2021). Through the integration of 

SAGA and GDAL libraries within QGIS’s hydrological analysis 

module, this tool creates catchment basins in positive relief, 

based on the original DEM data. The toolpack requires only 

landslide locations with either point or polygon features and 

DEM. Once applied the framework, a total of 4452 slope units 

were extracted. 

 

3.2 Random Forest (RF) 

Random Forest (RF) (Breiman, 2001), a member of the 

ensemble machine learning family, stands as a well-established 

model rooted in individual decision trees (DTs). One of the 

central problems encountered when applying DTs is the 

propensity for overfitting—wherein the model excessively 

intricacies itself to fit the training data, resulting in a 

compromise in generalization when confronted with test data. 

The RF method adeptly addresses this concern by embracing an 

ensemble learning framework, crafting a forest of decision trees 

via bootstrap aggregation, widely recognized as the bagging 

approach.  

 

The advantage of RF lies in its ability to curtail overfitting by 

constructing multiple decision trees and amalgamating their 

outputs. Each tree, generated using the DT algorithm, embarks 

on a recursive process. It segments the data into subsets based 

on selected features, striving at every step to maximize 

information gain or minimize impurity. This recursive 

partitioning process forms a multitude of diverse decision trees, 

each capturing unique aspects of the dataset. When predictions 

are to be made using the RF algorithm, the collective wisdom of 

all trees within the forest is harnessed. For classification tasks, 

the final prediction is determined by the majority vote among 

the constituent trees. Conversely, in regression tasks, the 

amalgamation of predictions yields the mean value, ensuring a 

comprehensive and balanced outcome. 

 

3.3 Geographical Random Forest (GRF) 

The RF algorithm has long been used across various domains 

(Colkesen et al., 2023; Kavzoglu and Teke, 2022b; Tonbul et 

al., 2022). However, its conventional application lacks spatial 

awareness, potentially neglecting the complex spatially 

heterogeneous nature of phenomena such as landslides and the 

variability present in remotely sensed data. To tackle this 

limitation, Georganos et al., (2021) introduced the GRF as an 

extension of RF encompassing the spatial considerations. The 

working principle of GRF is analogous to the GWR. 

Specifically, it creates localized RF models in which a number 

of nearby observations are grouped for each geographic 

location. Hence, this can enhance the RF models by calibrating 

them locally, and boost their adaptability to diverse spatial 

contexts. Every data point is linked to a submodel focusing 

solely on neighbouring observations within a defined 

geographic area termed the ‘neighborhood’ or ‘core’. The 

bandwidth, representing the distance between a data point and 

its kernel, dictates the scope of these subpatterns. Typically, two 

kinds of kernels are employed: ‘adaptive’ and ‘hard’. While the 
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former is determined by the n nearest neighbours, the latter 

utilizes a circular radius as its bandwidth. 

 

3.4 Accuracy Assessment Metrics 

To accurately assess the effectiveness of predictive models in 

identifying landslide-prone areas, evaluating the generated maps 

is crucial. In our study, four important accuracy assessment 

metrics - area, under curve (AUC), accuracy (OA), sensitivity, 

and specificity – were considered to measure the model’s 

performance and prediction capabilities.  AUC is a commonly 

used metric in landslide susceptibility mapping, as it evaluates 

the model's ability to distinguish between different thresholds 

while balancing sensitivity and specificity. AUC values range 

from 0 to 1, with higher values indicating better discriminatory 

power in identifying landslide-prone areas compared to non-

landslide areas. The higher the AUC, the better the performance 

of the models at separating between the landslide and non-

landslide samples. The OA is another widely used metric 

measuring the degree of agreement between predicted and 

observed samples of landslides and non-landslides. It offers a 

comprehensive assessment of how well a model can predict 

outcomes. Sensitivity, also referred to as the true positive rate, 

reflects the model’s ability to accurately recognize areas 

affected by landslides. It indicates the proportion of true 

landslide occurrences that the model correctly identifies, 

showcasing its accuracy. Similarly, specificity, or the true 

negative rate, demonstrates how well the model can correctly 

distinguish non-landslide areas. 

 

3.5 Statistical Significance  

It is essential to utilize both statistical significance testing and 

accuracy assessment metrics in order to accurately compare the 

performance of landslide susceptibility maps generated by 

different machine learning algorithms. The application of the 

Wilcoxon signed-rank test, a non-parametric statistical test, was 

integral in determining the discrepancies between the 

predictions of various models in this study. 

 

The test relies on a null hypothesis, assuming that there is no 

difference in the performances of the models by exploring p-

values and z-values to assess the likelihood of either rejecting or 

accepting this hypothesis. Different significance levels (e.g., %1 

or 5%) can be used to refute or accept the hypothesis. When the 

p-value falls below the specified threshold of 0.05 and the z-

value exceeds the critical margins of -1.96 or +1.96, a 

significant difference in model performances becomes evident, 

resulting in the clear rejection of the null hypothesis. 

Conversely, if the p-value is at or above 0.05 and the z-value 

stays within the range of -1.96 to +1.96, the null hypothesis 

remains valid, indicating an absence of substantial variation 

between the models being examined. 

 

3.6 Programming Language and Reproducibility 

Once obtaining the slope units in the QGIS platform using the 

LaGriSU toolpack, all analysis was carried out in R Studio with 

the following main libraries: tidyverse for data manipulation 

and handling, sf and BAMMtools for importing and analyzing 

the geospatial covariates, randomForest for the application of 

regular RF, and SpatialML for GRF. To provide reproducibility 

and increase the transparency of the study, the main script of the 

code was shared in the following GitHub repository: 

(https://github.com/tekeali/SpatiallyAwareLSM). 

 

4. RESULTS & DISCUSSION 

In the initial phase of this study, a multicollinearity test was 

conducted whether there exists a potential issue undermining 

the goodness-of-fit of the artificially intelligent models. The test 

involved the computation of the variance inflation factor (VIF) 

and tolerance (TOL) for each covariate, as presented in Table 2. 

Multicollinearity is a common problem in modeling when 

predictor variables are highly correlated, as it can affect the 

accuracy of the individual effects of landslide-related 

parameters and compromise the reliability of the model’s 

predictions. To identify potential multicollinearity among the 

geospatial covariates, two indicators are commonly used: 

tolerance (TOL) and variance inflation factor (VIF). Generally, 

a VIF score above 10 or a TOL score below 0.1 indicates 

significant multicollinearity. In our study, the VIF scores ranged 

from 1.10 to 5.31, suggesting varying degrees of 

interdependence among the geospatial covariates, while the 

TOL scores ranged from 0.19 to 0.91. Despite the presence of 

some multicollinearity, our results suggest that it may not 

significantly impact the accuracy of the model’s outcomes. 

 

Covariates Tolerance VIF 

Aspect 0.91 1.10 

CI 0.29 3.48 

Curvature 0.20 5.05 

Elevation 0.27 3,75 

Lithology 0.79 1.26 

LULC 0.83 1.20 

Plan Curvature 0.41 2.41 

Profile Curvature 0.29 3.40 

Slope 0.23 4.42 

TPI 0.19 5.31 

TRI 0.28 3.56 

TWI 0.23 4.34 

Valley Depth 0.33 3.04 

Table 2. Multicollinearity test for geospatial covariates. 

Following the initial analyses, a series of accuracy assessment 

metrics, including area under curve (AUC), overall accuracy 

(OA), sensitivity, and specificity, were used to measure the 

predictive performances of both algorithms. The results 

revealed significant differences in performance between the two 

artificially intelligent models. The GRF demonstrated a 

significantly higher overall accuracy score of 80.82% compared 

to RF’s 75.34%. Additionally, the GRF showed superior 

discriminatory power with an AUC value of 85.22%, surpassing 

RF’s AUC of 82.50%. When it came to correctly identifying 

positive cases, the GRF also outperformed RF with a sensitivity 

rate of 80.49% compared to RF’s 74.42%. Similarly, GRF 

showed higher proficiency in specificity with a score of 

81.25%, surpassing RF’s 76.67%. The differences in 

performance could be attributed to the unique mechanisms of 

each algorithm. GRF, specifically engineered to incorporate 

spatial elements, likely benefits from this spatial context, 

enhancing its predictive accuracy. By integrating this important 

aspect of the landslide susceptibility mapping practices, the 
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GRF might excel in identifying localized patterns or 

relationships within the data that RF, devoid of geographic 

considerations, might overlook. Consequently, the inclusion of 

geographical factors in GRF might have contributed to its 

superior performance metrics across accuracy, AUC, sensitivity, 

and specificity when compared to RF. These results underscore 

the significance of feature relevance and the impact of 

incorporating contextual information, such as spatiality, in 

improving the predictive power of machine learning models. 

 

Figure 2. Landslide susceptibility maps with slope-based 

mapping units produced by (a) GRF and (b) RF. 

 

The produced landslide susceptibility maps were discretized 

into five distinct categories—very low, low, moderate, high, and 

very high—through the application of the Jenks classification 

approach (as illustrated in Figure 2). The areas characterized by 

high and very high landslide susceptibility were primarily 

clustered in the north-western and south-eastern sectors of the 

Lake Sapanca Basin, diverging from expectations of 

concentration along the lakeshore areas. This divergence can be 

ascribed to the distinctive topography prevalent in the 

northwestern sectors, characterized by steeper slopes and 

elevated terrain in contrast to the relatively flatter lakeshore 

regions. Such topographical disparities contribute to increased 

soil saturation and diminished frictional resistance, thereby 

amplifying the susceptibility to landslides. On the other hand, 

the distribution of landslide susceptibility zones varied across 

landslide susceptibility maps, displaying some inconsistencies. 

The GRF model exhibited notably increased areas categorized 

as very high and high landslide susceptibility zones, 

predominantly concentrated in the north-central region of the 

area under study. 

The application of the Wilcoxon signed-ranked test to ascertain 

the statistical significance in predictive performances between 

the two algorithms yielded compelling results. The test 

confirmed a statistically significant difference between the 

predictions generated by these models at a 95% significance 

level. This statistical significance suggests that the variation in 

performance metrics, such as accuracy, AUC, sensitivity, and 

specificity, observed between GRF and RF is not merely due to 

chance but holds substantive significance. Consequently, these 

findings reinforce the notion that GRF and RF indeed produce 

predictions with significantly divergent levels of accuracy and 

effectiveness in discerning patterns within the dataset. The 

validation of this statistical significance bolsters the confidence 

in the superiority of one model over the other, providing 

substantial evidence to support the selection or preference for 

one algorithm based on its demonstrated performance. 

 

 

 
Figure 3. Global explanation of geospatial covariates with 

GRF. 

Both the global and local interpretation of the GRF algorithm 

was also made (Figure 3). The results showed that the slope 

parameter emerged as the globally most influential factor, but 

local interpretations disclosed notable variations in the 

importance of causative factors contingent upon location.  For 

example, the curvature parameter was the most important 

geospatial covariate in approximately one-third (34.23%) of the 

slope units, mostly located in the northernmost zones of the 

basin. On the other hand, elevation was the most important 

landslide-related parameter for 14.67% of the slope units 

primarily located in the southern sector of the study area. These 

results underscore the importance of comprehending the spatial 

patterns and site-specific characteristics inherent in landslide 

conditioning factors linked to landslide occurrences. 

Understanding the intricate spatial dynamics affecting landslide 

susceptibility can greatly strengthen the predictive and 

preventive capabilities for mitigating landslide incidents. 

 

While many studies have utilized a variety of mapping units 

such as grid cells and pixel-based approaches, this study 

diverges from conventional methods and instead focuses on 

slope units and incorporates the spatially weighted GRF 
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method. This approach aims to promote homogeneity within 

each unit while also allowing for diversity among different 

units, as the hydrological and geomorphological conditions 

within natural landscapes are closely linked to these units. For 

instance, Chowdhuri et al. (2020) experimented with the 

evidential belief function (EBF), GWR, and RF method and 

their ensemble forms (RF-EBF and RF-GWR). RF-EBF and 

RF-GWR models showed prediction capabilities of 91.8% and 

89.9%, respectively. Likewise, Zhao et al. (2024) used artificial 

neural networks, support vector machines, RF, GWR, and 

GWANN to predict landslide susceptibility of Yichang City, 

Hubei Province. The GWANN model exhibited the strongest 

performance (AUC = 0.788) among all models tested. It was 

closely followed by the ML model ANN (AUC = 0.771), SVM 

(AUC = 0.754), and RF (AUC = 0.759). However, the GWR 

model displayed the lowest performance (AUC = 0.738) among 

the models evaluated. Furthermore, the authors highlighted that 

employing grid cells with a 90-meter spatial resolution presents 

challenges in storing the spatial distance matrix and factor 

weight matrix for extensive study areas due to limitations in 

hardware memory and computing power. They proposed 

leveraging distributed computing techniques to process 

extensive datasets, thereby enhancing the model’s predictive 

capabilities at a local scale. Despite the obtained satisfying 

performances, these studies mainly adopted the pixel-based 

mapping unit, which might limit the nuanced understanding of 

spatial dynamics of the landslide phenomena. 

 

In the literature, there are several tools available for generating 

slope units, such as r.slopeunits (Alvioli et al., 2016) and the 

recently developed Slope Unit Maker (Woodard et al., 2023). 

r.slopeunits has been utilized and tested across various studies 

(e.g., Aguilera et al., 2022; Camilo et al., 2017; Schlögel et al., 

2018), establishing a certain level of trust and reliability within 

the literature. On the other hand, LaGriSU may require an 

evaluation of its stability, interoperability, and robustness given 

its relatively limited adoption in landslide susceptibility 

mapping practices. Therefore, future studies may consider the 

integration of segmentation quality metrics to understand the 

effectiveness of this particular tool.  

 

Another issue worth discussing here is the adopted terrain 

segmentation methodology, which can significantly influence 

the landslide prediction process. This decision plays a critical 

role as it affects how features are represented, how sensitive the 

model is, how efficiently it runs, and the overall quality of the 

segmentation. The segmentation scale directly determines the 

level of detail versus generalization captured in terrain 

attributes, necessitating an exploration of the trade-offs between 

granularity and oversimplification. In the context of this study, 

the exclusive reliance on slope units as the primary mapping 

units holds numerous advantages, particularly in capturing 

terrain-related variables relevant to landslide prediction. 

However, other potentially valuable mapping units might have 

been overlooked. Alternative segmentation methodologies, such 

as those rooted in diverse geomorphological and hydrological 

features (such as grid units, catchment areas, and aspect-based 

units), or the adoption of object-oriented image segmentation 

(known as OBIA or GEOBIA), could provide a more holistic 

representation of terrain characteristics impacting landslides. 

These different units might capture distinct aspects of the 

landscape that, when integrated, could enhance the quality and 

accuracy of landslide susceptibility maps. Recognizing this, our 

future studies aim to incorporate a broader spectrum of mapping 

units derived from varied segmentation methodologies.  

Beyond the chosen mapping unit for landslide susceptibility 

prediction practices, the process of down-sampling and up-

sampling may introduce inconsistencies, which is a matter 

evident in numerous studies within the literature. In our 

endeavour, various sources were tapped to procure geospatial 

covariates, some bearing distinct spatial resolutions. For 

instance, DEM derivatives maintained a spatial resolution of 30 

meters, while the LULC map derived from Sentinel-2 boasted a 

finer resolution of 10 meters. To ensure a more uniform dataset 

for analysis, a deliberate choice was made in favor of a 30-meter 

spatial resolution. This decision aimed to mitigate virtual 

resolution increases and curtail potential distortions or biases 

stemming from resolution disparities. By adopting this 

approach, our study sought to create a more consistent and 

reliable dataset, thereby reducing the potential distortions or 

biases stemming from resolution variations. The study produced 

slope units from these pixels, strategically introducing a terrain-

related variable that exhibits greater constancy across diverse 

spatial scales.  

 

5. CONCLUSIONS 

This study aims to improve the accuracy of the produced 

landslide susceptibility maps by applying the GRF approach 

integrated with the slope-based mapping units, thereby 

alleviating the limitations posed by non-geographically oriented 

approaches and grid mapping units. Furthermore, it endeavours 

to assess the comparative effectiveness of this approach against 

the conventional RF algorithm, intending to establish a more 

coherent and precise predictive model for areas prone to 

landslides. The culmination of this research leads to several key 

conclusions: 

 

Firstly, the GRF, specifically designed to integrate spatial 

information into the prediction stage, demonstrated a superior 

performance over the regular RF model, showcasing 

approximately a 5% and 3% increase in OA and AUC scores, 

respectively. Secondly, the application of the Wilcoxon signed-

rank test validated a statistically significant difference between 

GRF and RF predictions at a 95% confidence level. This 

confirms that the differences seen in performance metrics 

among the models were not coincidental; rather, they indicate 

significant variations in accuracy and effectiveness. Finally, 

when analyzing the GRF algorithm on a global scale, it 

highlighted slope as the most impactful factor. However, on a 

local level, some variations emerged, showcasing different 

primary causative factors across various locations. Recognizing 

these spatial patterns and site-specific characteristics is 

paramount in effectively predicting and mitigating landslide 

incidents. 

 

While acknowledging the plethora of geographically weighted 

models in existing literature, this study deliberately narrows its 

focus to specific themes to maintain a manageable scope. 

Notably, certain novel members of the geographically weighted 

model family, such as geographically weighted gradient 

boosting and geographically convolutional neural network 

weighted regression, were not integrated into this investigation. 

In future pursuits, we aspire to expand the horizons of this 

research by integrating these advanced models. By doing so, we 

seek to enhance and diversify the methodologies applied in 

spatially focused landslide susceptibility assessment. The 

inclusion of these sophisticated models holds promise in 

offering heightened precision, nuanced spatial insights, and a 

more comprehensive understanding of the intricate relationships 

between geospatial variables and landslide occurrences. This 
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expansion aims to push the boundaries of knowledge in 

landslide susceptibility assessment, fostering a richer 

understanding of spatially varying influences and improving the 

predictive accuracy of such models. 
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