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ABSTRACT: 

 

Research on handheld LiDAR data has recently been proliferated due to the emergence of digital twins and indoor mapping. 

However, most of the existing studies cannot be reproduced in another computational environment. Computational reproducibility 

requires data, code/software, and computational environment (e.g. versions, settings, etc.) to be openly available. Although there are 

an increasing number of researches that contribute towards open data, there are still few studies investigating the remaining two 

aspects. One of the common tasks in digital twin research is the estimation of indoor space areas. This paper contributes to the 

computational reproducibility of estimating the area of indoor spaces on a handheld LiDAR dataset using the DBSCAN algorithm. 

The collected dataset -representing the Geomatics Engineering Department of Hacettepe University, code, and the computational 

environment was made openly available to satisfy the requirements of computational reproducibility. Three different experiments 

have been carried out: i) identification of the optimal DBSCAN parameter values for a single indoor space, ii) evaluating to what 

extent these values are applicable to other rooms, and iii) investigating the effect of room enter/exit times on the estimated room 

sizes. The main finding of this paper is that the simple consideration of an open-door, which reduces data collection time, the 

uncertainty of a wall’s coordinates, and imperfect choice of DBSCAN parameters, may substantially increase the estimated indoor 

space size ranging between approximately 40% to 300%. Consequently, relying solely on the DBSCAN algorithm for indoor space 

area estimation should not be considered as a valid approach.  

 

Code and computational environment: https://github.com/banbar/HU_Geomatics_LiDAR 

Data: https://doi.org/10.6084/m9.figshare.24866175.v1 

 

 

1. INTRODUCTION 

Open science is crucial to the advancement of knowledge, 

innovation, and the collective well-being of society. Only by 

relying on an open-science approach, computational 

reproducibility of research findings could be satisfied 

(McKiernan et al., 2016). In order to contribute towards open-

science, and satisfy computational reproducibility three 

components of a research must be made publicly accessible: i) 

data, ii) code/software, and the iii) computational environment 

(e.g. operating system, library/package versions, etc.) that the 

research has initially been executed (Bajorath, 2023). Although 

most research on open-science and computational 

reproducibility has been on life sciences, geographical 

information science is increasingly recognising the importance 

of these principles (Kedron, Li, Fotheringham, & Goodchild, 

2021).    

 

International organizations such as ISPRS or ACM has already 

contributed towards this agenda by providing benchmark 

datasets (Sithole & Vosselman, 2004) or designing GIS Cups 

that detail a problem by providing the required datasets (Ali, 

Krumm, Rautman, & Teredesai, 2012). In addition, an 

increasing number of scientific journals, such as SoftwareX or 

The Journal of Open Source Software are dedicated to the 

advancement of open-science and computational reproducibility 

as researchers share their scientific software. Furthermore, other 

renowned journals including the International Journal of 

Geographical Information Science require a ‘Data and Codes 

Availability Statement’, in which the authors are invited to 

share data and codes used in their research.  

 

The proliferation of Light Detection and Ranging (LiDAR) 

sensors enabled researchers to collect and analyse point cloud 

data. The applications that rely on point-cloud data range from 

autonomous vehicles (Caesar et al., 2020) to archaeology 

(Chase et al., 2011), and from forestry (Hyyppä et al., 2008) to 

3D city modelling (Özdemir & Remondino, 2018). Most of the 

studies relied on aerial, mobile or terrestrial LiDAR. However; 

handheld LiDAR sensors are getting popular as well, thanks to 

the advancement of technology that incorporated LiDAR 

sensors into smartphones (Catharia et al., 2023; Luetzenburg, 

Kroon, & Bjørk, 2021).  

 

Handheld LiDAR devices have been commonly used in various 

research areas, and specifically regarding digital twins, where 

researchers aim to create highly detailed and accurate 3D 

representations of physical environments, such as buildings and 

conference rooms. By capturing precise locational data through 

laser pulses emitted from the handheld LiDAR system, 

researchers can generate dynamic and real-time digital replicas 

of physical spaces. This technology proves particularly valuable 

in infrastructure management, and Building Information 

Modelling (BIM). Converting a point cloud data into an as-is 

BIM is referred to as scan-to-BIM; which is usually a labour 

intensive and error-prone task that necessitates manual 

operations (Xiong, Adan, Akinci, & Huber, 2013). Although 

most of the existing research focused on segmentation (i.e. 

identifying walls, ceiling, floor etc.) and reconstruction of 

building interiors from point cloud data, it is equally important 

to obtain geometric constructs, on top of these or separately, 

such as the indoor space size. Such geometric constructs would 

be valuable to assess how well the constructed indoor space 

matches with the building plans.     
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On the other hand, there are relatively few resources that utilise 

handheld LiDAR for both capturing both outdoor and indoor of 

a building. The aim of this paper is to bridge this gap, and 

provide an openly available dataset of the Geomatics 

Engineering Department of Hacettepe University, which is 

scanned first from outside, and then inside. In addition, the 

developed Python code could readily be used to estimate the 

area of an indoor space by relying on the DBSCAN algorithm 

(Ester, Kriegel, Sander, & Xu, 1996). The structure of this 

paper is as follows. Second section describes the methodology 

of the paper. Specifically, it first introduces the openly available 

Hacettepe University, Geomatics Engineering Department 

handheld LiDAR dataset, and then describes the method to 

identify the indoor space area of a selected room or lecture hall. 

Third section describes the results. Fourth section is the 

discussion, which emphasise on the importance of correct 

selection of the input parameters of the DBSCAN algorithm 

(namely minPts and eps). Finally, in the fifth section 

conclusions and future research directions are stated. 

 

2. METHOD 

This section describes the method of the paper. First, a new 

open LiDAR dataset is described. Second, how DBSCAN could 

and have previously been used for clustering point clouds has 

been detailed.  

 

2.1 A New and Open Handheld LiDAR Dataset 

The Geomatics Engineering Department of Hacettepe 

University is located at the Beytepe Campus, which is a vibrant 

campus in Ankara, capital of Turkey. The centre coordinate of 

the building in latitude and longitude is 39.865566 and 

32.733853. The data collection was carried out on 9 October 

2022 Sunday with a GeoSLAM ZEB Horizon with its camera 

ZEB Vision attached. The specifications of the LiDAR scanner, 

as stated in its web-site, are as follows: i) 300K points/second, 

ii) a total of 16 sensors, iii) relative accuracy of up to 6mm, and 

iv) a range of 100 metres (GeoSLAM, 2023). The data 

collection date was specifically chosen to be a Sunday to ensure 

a smooth data collection process. 

 

The data collection relied on loop-closure by fixing the sensor 

at a known point for about 30 seconds (Figure 1a) and then 

moving around the building to capture its facades. While doing 

so we have surveyed two more positions (one of them is 

illustrated in Figure 1b), and then moved inside the building, 

and completed the loop-closure by finalising the surveying at 

the initial point. The building has five floors: ground, three 

above the ground, and the basement. Apart from the basement 

floor, all of the accessible lecture halls and indoor spaces have 

been surveyed. In order to ease the data collection process, 

rooms of the indoor spaces were left open. On the ground floor, 

three lecture halls and one reception room were surveyed. On 

the first floor, a lecture hall was surveyed. On the second floor, 

an office space, PhD meeting room, and a lab was surveyed. 

Finally, the kitchen was surveyed on the third floor. The two 

restrooms and a utility room were surveyed only on the ground 

floor and the first floor.  

 

Once the data collection was finalized it has to be processed to 

obtain the Laz file. This process resulted in a total three folders 

and 33 files. The two of the folders are relevant as they contain 

the images. Specifically, the Project_1 folder includes all the 

fisheye images obtained from the camera while data collection, 

and the panoromas folder includes the panoramic images 

obtained by processing the fisheye images. The image timings 

of the panoramic images are recorded under the 

imageTimings.json file. This file would be used within the 

context of this research to identify the start/end times of the 

scan of an indoor space. The Laz files could be visualised and 

processed with CloudCompare, which is an open-source 

software to analyse point clouds (Figure 1c). The lecture hall 

surveyed in the first floor is highlighted in a red rectangle, as its 

area was estimated in section 3. The final important file used is 

the data.txt, is obtained by exporting the Laz file in txt format in 

CloudCompare. The file is composed of eight attributes to 

define each point (a total of ~131M points). Specifically, the x, 

y and z of the point define the location of the point, as well as 

the associated colour information in red, green and blue bands 

are obtained through associating point cloud with the images. 

Finally, the timing and intensity of the measurement are also 

recorded.  

 

  
(a) (b) 

 
(c) 

Figure 1. Handheld LiDAR data collection requires fixation at 

known points (a, b). Once the collected data are processed, the 

resulting .laz file can visualised in CloudCompare (the 

classroom 4 -C4- is highlighted in red) (c). 

 

2.2 DBSCAN for Determining an Indoor Space 

The approach taken to determine the indoor space area is to 

segment the point cloud belonging to that area by a clustering 

algorithm. One of the common clustering algorithms that has 

been widely used is the Density Based Spatial Clustering of 

Applications with Noise (DBSCAN) algorithm (Ester et al., 

1996). DBSCAN groups data points based on their density 

within the feature space. The algorithm identifies clusters by 

relying on two parameters: eps and minPts, and classifying each 

data point into three classes: i) core point, ii) border point, and 

iii) noise point. The algorithm works by iteratively expanding 

clusters around core points, which have a minimum number of 

neighbouring data points (minPts) within a specified radius 

(eps). Border points are within the eps radius of a core point, 

which are considered part of the same cluster. On the other 

hand, points that fall outside the radius of all core points are 

classified as noise points.  
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DBSCAN can handle outliers and capable of discovering 

clusters with varying shapes and sizes. It does not require an 

input specifying the predefined number of clusters, which 

makes it suitable for applications in spatial data analysis and 

anomaly detection. Even though there has been criticism on the 

algorithm regarding its computational complexity (Gan & Tao, 

2015), these issues have been clarified later on (Schubert, 

Sander, Ester, Kriegel, & Xu, 2017). DBSCAN is considered to 

be one of the foundational algorithms in which researchers 

developed various extensions to overcome its limitations, such 

as handling varying densities within a dataset (Khan, Rehman, 

Aziz, Fong, & Sarasvady, 2014). The algorithm has uses not 

only in vector spatial data, but also raster images (Shen et al., 

2016), and recently point cloud data (Tao et al., 2015). 

 

Ghosh & Lohani (2013) compared two renowned clustering 

algorithms -namely DBSCAN and OPTICS- on LiDAR data. 

They found out that the DBSCAN performed better on the 

Adjusted Rand Index (Hubert & Arabie, 1985). An analytical 

study was suggested to adjust the eps parameter, which was 

varied between 0.7 and 4.0 metres on an aerial LiDAR dataset 

having an average point density of 4.85 points/m2. A mobile 

LiDAR dataset was collected on a road had an average point 

density of approximately 1020 points/m2. However, how this 

estimation was realised has not been described in the paper. The 

average point density could be estimated for an aerial LiDAR 

survey by dividing the total number of points to the scanned 

area. On the other hand, it is difficult to have an average point 

density on a point cloud data obtained through a handheld 

LiDAR sensor due to the substantial heterogeneity within the 

data collection procedure. Specifically, the variations in indoor 

space areas, walking time through these spaces, and the distance 

between the operator and the concrete objects (e.g. walls and 

ceiling) as well as the distribution of objects (e.g. desks, 

furniture, vehicles for parking areas) in space make it difficult 

to come up with a single average point density measure 

(Romero-Jarén & Arranz, 2021). Furthermore, in our case, the 

building was scanned from both outdoor and indoor, which 

associates points belonging to walls from both outdoor and 

indoor environments.  

 

The user has to explore the panoromas folder and identify when 

the operator got into and out of the indoor space to be analysed. 

The user would then note these image numbers, and then the 

timings would automatically be retrieved from the 

imageTimings.json file. This would enable the extraction of 

points that are obtained within that time interval. This would be 

used as an input to the DBSCAN algorithm, which is used to 

find the most dominant cluster representing the extents of the 

chosen indoor space (Figure 2). 

 

 
Figure 2. DBSCAN is used to remove noise from the initial 

point cloud data 

 

Finally, the point cloud representing the most dominant cluster 

are excluded for further analysis (Figure 3a). The most 

dominant cluster is assumed to represent the indoor space to be 

examined. However, if the DBSCAN parameters are wrongly 

provided, all points may be considered as noise, in which case 

the estimated area would be extremely large. 

 

 
(a) 

 
(b) 

Figure 3. The cluster having the highest number of points is 

assumed to represent the indoor space (a), in which many 

details including desks, chairs and windows are pertained (b) 

 

Although previous studies suggest an automatic way of 

estimating the eps value, the user would still need to identify the 

minPts (Wang et al., 2019).   

 

3. RESULTS 

This section describes the results obtained by analysing the 

point cloud data identify the area of indoor spaces. The 

experiments are carried out under four headings. First, the most 

effective configuration of the DBSCAN parameters has been 

investigated for a given indoor space. The histogram of the 

cluster of points representing the investigated indoor space are 

further examined, which could then be used to have a refined 

area estimation. Second, an investigation has been carried out to 

determine the extent to which these values can be generalised. 

Specifically, six additional indoor spaces are further 

investigated with the same parameters that have been used in 

the first experiment. Third, the effect of altering the chosen 

image time on the results have been investigated for four 

restrooms that have the same area. 

  

3.1 Adjusting the Parameters of DBSCAN     

The two parameters of the DBSCAN algorithm are: minPts and 

eps. In order to determine the values of these two parameters an 

empirical investigation has been carried out for the classroom 4 

(i.e. C4 is highlighted in Figure 1c), in which final year students 

take most of their courses. The minPts parameter has been fixed 

to 60, and the eps parameter was varied between 0.15 and 0.25. 

The actual classroom size of C4 is 71.81 m2. All of the 

experiments took almost six minutes on a computer with the 

following specifications: 16 GB RAM with an Intel Core i7-

6500U CPU with 2.50GHz.  

 

There a total number approximately 4.5M points that fall within 

the C4. Once this point cloud was down sampled with the 

voxel_down_sample method with a voxel size of 0.05 (which 

has been fixated for all the following experiments), there were 

258952 points. The higher the voxel size, the lower the total 

number of points. These points were then clustered using the 

cluster_dbscan method of the open3d package (StackOverflow, 
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2023). Once all the clusters are formed, the one with the largest 

number of points was assumed to represent the cluster. The 

estimated area, number of points within the main cluster (i.e. the 

cluster having the highest number of points), and the number of 

clusters are illustrated in Table 1. 

 

The lowest eps value resulted in an unusually large estimated 

indoor space area. This is because noisy observations were also 

considered within the cluster, and therefore the area was 

estimated based on these outliers. In addition, the highest 

number of clusters also occurred within this context.  

 

Table 1. The effect of the eps parameter on the results 

eps Estimated m2 # cluster points # clusters 

0.15 5447.01 103,008 275 

0.16 100.17 178,865 45 

0.17 100.17 199,258 28 

0.18 100.61 213,642 28 

0.19 101.77 224,582 15 

0.20 101.90 228,848 10 

0.21 102.94 229,632 5 

0.22 102.94 229,788 8 

0.23 102.94 229,933 8 

0.24 103.32 230,070 11 

0.25 104.02 230,114 10 

 

It should also be noted that as expected the number of clusters 

reduce with incrementing eps values, as the formed clusters had 

to be denser. However, when the value was increased from 0.21 

to 0.22, the number of clusters also increased. The reason for 

this outcome is that noise points might have found sufficient 

neighbours to form a cluster. Nevertheless, in order to keep the 

estimated indoor space area at minimum and number of clusters 

together in balance, the eps value was chosen to be 0.20. 

Consequently, the estimated area was over the real value (i.e. 

71.81 m2) by about 40%. In order to understand this large 

deviation, the point-cloud corresponding to the main cluster that 

represents the investigated classroom is further investigated.  

 

The histogram values of the point cloud in all dimensions reveal 

important insights into the detected cluster. The histogram plots 

would be saved under the directory that has the dataset and the 

code, if the visualize and writeout parameters are enabled in the 

configuration file. In the case of C4, when eps = 0.20 and 

minPts = 60, the histograms along the x- and y-dimensions are 

illustrated in Figure 4. 

 

 
(a) 

 
(b) 

Figure 4. The histograms of the x- (a), y- (b) and z-values of 

the main cluster representing the selected indoor space are also 

obtained to enable further manual interpretation. The red-lines 

indicate the selected locations for the wall surfaces.  

 

Once the walls width is eliminated with a manual interpretation, 

which are visualised in red lines, the estimated area would be 

much closer to the real value (i.e. Δx×Δy~10.4×6.8 = 70.72). It 

could be observed that there is a dense region towards both 

ends of the histograms that correspond to the walls, which are 

almost a metre in length. 

 

The main cluster was also saved as cleaned.pcd. Once it is 

observed, the door was also considered to be part of the indoor 

space. Since the door-opening is along the x-dimension, the 

door’s x-values could be observed in Figure 4a, at the very right 

of the histogram, where the door is actually located (refer to 

Figure 3a). As it is expected, the number of occurrences for the 

corresponding x-values (i.e. x ~ -5.5) are substantially lower 

than most of the remaining values. 

 

3.2 Same Parameters, Different Rooms 

This subsection describes how well the previous parameter 

setting (i.e. eps = 0.20, minPts = 60 and voxel size = 0.05) could 

be generalised for the different indoor spaces. Specifically, the 

results regarding seven different indoor spaces are investigated 

in this subsection. The investigated room IDs; C1, C2, and C3 

correspond to the classrooms at the first-floor of the building. 

The C4 is above the C1 but without the extra space for the 

hangers. BA is the office space of the first author, PhD is the 

meeting room of graduate students. The BA, PhD, and GIS Lab 

are on the second-floor, and finally Kitchen is on the third-

floor. The ratio column identifies to what extent the main 

cluster used to estimate the room size is within the sampled 

point-cloud. For example, in the C4 case described in Table 1, 

this ratio value would have been 228848 / 258952 =0.88. The 

results are illustrated in Table 2. 

 

Table 2. The estimation of indoor space areas on different 

rooms 

Room ID True m2 Estimated m2  # clusters Ratio 

C1 77.05 106.60 11 0.85 

C2 66.31 95.12 34 0.69 

C3 66.31 117.83 19 0.78 

BA 21.7 42.48 22 0.79 

PhD 29.78 63.63 16 0.87 

Kitchen 14.77 23.69 12 0.74 

GIS Lab 49.33 76.25 5 0.94 
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The running time of these experiments varied between three 

minutes and eight minutes. This run time cannot be directly 

associated with the total cluster points, true room size, or the 

total number of down sampled points. All of these, in addition 

to the distribution of sampled points within the room contribute 

towards the run-time in a complex way. Similar to the previous 

scenario, the area is overestimated with a percentage ranging 

from 38% (i.e. room ID: C1) to almost 215% (i.e. room ID: 

PhD). As the DBSCAN parameters used in this experiment 

were derived from C4, directly above C1, they provided the 

closest approximation to C1. On the other hand, the error in the 

PhD case is substantial, and suggest that the one parameter 

setting cannot be directly applied to all rooms.  

 

3.3 The Effect of Marginal Changes on Room Enter/Exit 

Times 

The rooms have previously been identified by user selecting the 

appropriate images from the panoromas folder. However, 

different users may select different images, and the effects of 

this decision on area estimation are investigated on this section. 

Specifically, four restrooms (two on the ground-floor, and two 

on the first-floor) are analysed in detail in this subsection. 

While male and female restrooms are identical within 

themselves (i.e. M0 ≡M1 and F0 ≡F1, where the M and F refer 

to male and female respectively, while the numbers refer to the 

floor of the restroom). Similar to the previous scenario, the 

DBSCAN parameters were set as eps = 0.20 and minPts = 60, 

with a down sample voxel size of 0.05.  

 

The optimal start and end times are indicated with two 

parameters: s and e, which vary depending on the specific 

restroom. This optimal decision was altered with one image on 

both aspects. The optimal selection of a room is denoted with s 

and e denoting start and end respectively. Therefore, s-1 and 

e+1 scenario would indicate the user has selected the start 

image one prior compared to our optimal selection, and the user 

selected the exit image one after with respect to our optimal 

selection. The estimated areas are illustrated for these different 

scenarios in Table 3. All of the surveyed restrooms have the 

same area (i.e. 9.18 m2) on the building plan. 

 

Table 3. Estimated area for the surveyed restrooms 

Scenario M0 F0 M1 F1 

s-1 e-1 13.83 19.13 15.15 21.1 

s e-1 13.86 18.47 15.1 14.11 

s+1 e-1 13.82 17.21 15.08 14.08 

s-1 e 13.83 19.12 15.48 21.1 

s e 13.86 18.62 15.39 14.11 

s+1 e 13.8 18.42 15.49 14.07 

s-1 e+1 14.12 27.2 15.48 21.1 

s e+1 14.11 19.14 15.43 19.68 

s+1 e+1 14.11 18.87 15.48 14.07 

 

The results are consistent at different scales. The male 

restrooms are quite stable regardless of the scenario, while the 

one on the ground floor produced more accurate results. Similar 

to the previous analysis described in subsection 3.2, area is 

over-estimated with about 50% for the male restroom at the 

ground floor, and with about 65% for the male restroom at the 

first floor. On the other hand, a lesser level of consistency was 

observed for the female restrooms. Consequently, the over-

estimation was even more emphasised in this context, and the in 

worst-case reached to almost 300% for the female restroom on 

the ground floor.  

4. DISCUSSION 

The estimated areas using the manually tuned DSBSCAN 

parameters are substantially larger than the true values. The 

main reasons for this outcome are two-fold. First, the area was 

estimated on the simple calculation of the width × depth of the 

room along the x- and y- dimensions. These values are assumed 

to be their maximum, which meant the inclusion of all points 

representing the wall into the estimated area. Since all the 

rooms are also scanned from outside of the building, this region 

could be as large as a metre, which could be observed in Figure 

4. Second, the door of a room has also been considered to be 

part of the indoor space, which also increased the estimated 

area. The one-size-fits-all approach, in which tuning the 

parameters of DBSCAN for a single indoor space, and then 

using them in the remaining rooms was found to be an invalid 

approach. Specifically, tuning the DBSCAN for different rooms 

is required. This finding is in-line with (Lari & Habib, 2012), 

who suggested the estimation of local point density indices. 

Specifically, different rooms may have different densities within 

themselves, which may be required to be considered. 

 

Planar surface detection is one of the potential research areas 

that could contribute to this research, in addition to 

investigating different clustering algorithms such as Fuzzy C-

means (Biosca & Lerma, 2008). Furthermore, recent research 

investigated how Haugh Transform could be used for the 

detection of planar surfaces in a point cloud dataset (Tian et al., 

2020). The HT idea could be extended to include other classes 

in a more complex outdoor scene including trees and 

pedestrians by leveraging convolutional neural networks (Song 

et al., 2020).  One of the challenging tasks on planar surface 

detection on a point-cloud dataset is the identification of 

parallel planes. In order to avoid this problem, Walczak, 

Poreda, & Wojciechowski (2019) utilised an improved version 

of DBSCAN (namely HDBSCAN). They have relied on the 

S3DIS benchmark dataset, which has been kindly provided by 

researchers at Stanford University (Armeni et al., 2016). The 

seminal work provides a framework for semantic parsing of the 

point cloud, which could segment objects like a board, 

bookcase or table, within a room. Furthermore, Nguyen, Belton, 

& Helmholz (2019) investigated the effectiveness of other 

benchmark models for planar surface detection including 

Random Sample Consensus (RANSAC), Principal Component 

Analysis (PCA) or Robust and Diagnostic Principal 

Components Analysis (RDPCA).  

 

5. CONCLUSIONS 

This paper contributed towards the estimation of an indoor area 

space on a point cloud dataset obtained from a handheld LiDAR 

sensor using the DBSCAN algorithm. The findings of this paper 

are reproducible, as both the data and the code has been made 

openly available. The approach taken in this paper could be 

considered as a base-line method, as new methods would likely 

improve the accuracy of the estimated indoor space areas. 

Planar surface detection should be incorporated into the 

analysis, and the developed reproducible approach should be 

generalised into a Python package by incorporating existing 

methods. Further tests should be carried out both on this dataset 

and on existing openly available datasets, such as S3DIS to 

investigate the effectiveness of the proposed methods.   
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